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Abstract

Knowledge-based visual question answering (VQA) re-
quires external knowledge beyond the image to answer the
question. Early studies retrieve required knowledge from
explicit knowledge bases (KBs), which often introduces
irrelevant information to the question, hence restricting the
performance of their models. Recent works have sought to
use a large language model (i.e., GPT-3 [3]) as an implicit
knowledge engine to acquire the necessary knowledge for
answering. Despite the encouraging results achieved by
these methods, we argue that they have not fully activated
the capacity of GPT-3 as the provided input information is
insufficient. In this paper, we present Prophet—a concep-
tually simple framework designed to prompt GPT-3 with
answer heuristics for knowledge-based VQA. Specifically,
we first train a vanilla VQA model on a specific knowledge-
based VQA dataset without external knowledge. After that,
we extract two types of complementary answer heuristics
from the model: answer candidates and answer-aware
examples. Finally, the two types of answer heuristics
are encoded into the prompts to enable GPT-3 to better
comprehend the task thus enhancing its capacity. Prophet
significantly outperforms all existing state-of-the-art meth-
ods on two challenging knowledge-based VQA datasets,
OK-VQA and A-OKVQA, delivering 61.1% and 55.7%
accuracies on their testing sets, respectively.

1. Introduction

Recent advances in deep learning have enabled substan-
tial progress in visual question answering (VQA) which re-
quires a machine to answer free-form questions by reason-
ing about given images. Benefiting from large-scale vision-
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Figure 1. Conceptual comparisons of three knowledge-based
VQA frameworks using a frozen GPT-3 model [3]. While PICa
[43], KAT [11], and REVIVE [22] directly feed the caption (C)
and question (Q) into GPT-3 as the prompt, we argue that the
information they provide for GPT-3 is insufficient thus cannot
fully activate GPT-3’s potential. In contrast, our Prophet learns
a vanilla VQA model without external knowledge to produce
answer heuristics, which endows GPT-3 with richer and more
task-specific information for answer prediction.

language pretraining, the state-of-the-art methods have even
surpassed human level on several representative bench-
marks [1,41,48]. Despite the success of these methods, their
reasoning abilities are far from satisfactory, especially when
external knowledge is required to answer the questions.
In this situation, the task of knowledge-based VQA is
introduced to validate models’ abilities to leverage external
knowledge. Early knowledge-based VQA benchmarks
additionally provide structured knowledge bases (KBs) and
annotate required knowledge facts for all the questions
[38, 39]. More recently, benchmarks emphasizing on open-
domain knowledge have been established [29, 32], which
means KBs are no longer provided and any external knowl-
edge resource can be used for answering. We focus on the
task with open-domain knowledge in this paper.

A straightforward solution for knowledge-based VQA
is to retrieve knowledge entries from explicit KBs, e.g.,
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Wikipedia and ConceptNet [23]. Then a KB-augmented
VQA model performs joint reasoning over the retrieved
knowledge, image, and question to predict the answer [7,
8, 28, 42, 51]. However, the performance of these retrieval-
based approaches is limited for two reasons: (i) the required
knowledge may not be successfully retrieved from the KBs;
and (ii) even if the required knowledge is retrieved, plenty
of irrelevant knowledge is inevitably introduced, which
hampers the learning of VQA models.

Apart from those studies using explicit KBs, another line
of research resorts to pretrained large language models, e.g.,
GPT-3 [3], as implicit knowledge engines for knowledge
acquisition. A pioneering work by PICa employs the frozen
GPT-3 model to answer the question with formatted prompt
as its input [43]. Given a testing image-question pair,
PICa first translates the image into a caption using an off-
the-shelf captioning model. The question, caption, and a
few in-context examples are then integrated into a textual
prompt that can induce GPT-3 to predict the answer directly.
Thanks to the powerful knowledge reasoning ability of
GPT-3, PICa achieves significant performance improve-
ments compared to those retrieval-based methods using
explicit KBs. Inspired by PICa, KAT [11] and REVIVE
[22] learn KB-augmented VQA models to exploit both the
implicit knowledge from GPT-3 and explicit knowledge
from KBs for answer prediction. The synergy of the two
knowledge resources brings further improvements to their
models. Despite the promising results achieved by these
methods, they have not fully activated GPT-3 due to the
following limitations:

(i) The generated captions cannot cover all the necessary
information in the image. Consider the example in
Figure 1, the caption “a group of people walk in a city
square” contribute nothing to answering the question
“what fruit comes from these trees”. In this situation,
GPT-3 has to make an aimless and biased guess to
answer the question.

(ii) GPT-3 employs a few-shot learning paradigm that
requires a few in-context examples to adapt to new
tasks. Therefore, the choice of these examples is
critical to model performance. As reported in [43],
all its example selection strategies achieve far inferior
performance to the oracle strategy that uses the simi-
larity of ground-truth answers.

We ask: Is it possible to endow GPT-3 with some heuristics
to enhance its capacity for knowledge-based VQA?

In this paper, we present Prophet—a conceptually
simple framework designed to prompt GPT-3 with
answer heuristics for knowledge-based VQA. By answer
heuristics, we mean some promising answers that are
presented in a proper manner in the prompt. Specifically,
we introduce two types of answer heuristics, namely

answer candidates and answer-aware examples, to
overcome the limitations in (i) and (ii), respectively. Given
a testing input consisting of an image and a question, the
answer candidates refer to a list of promising answers to
the testing input, where each answer is associated with a
confidence score. The answer-aware examples refer to a list
of in-context examples, where each example has a similar
answer to the testing input. Interestingly, these two types of
answer heuristics can be simultaneously obtained from any
vanilla VQA model trained on a specific knowledge-based
VQA dataset. A schematic of Prophet is illustrated at the
bottom of Figure 1.

Without bells and whistles, Prophet surpasses all previ-
ous state-of-the-art single-model results on the challenging
OK-VQA and A-OKVQA datasets [29, 32], including the
heavily-engineered Flamingo-80B model trained on 1.8B
image-text pairs [1]. Moreover, Prophet is friendly to most
researchers, as our results can be reproduced using a single
GPU and an affordable number of GPT-3 invocations.

2. Related Work

Visual Question Answering (VQA). VQA has been of
growing interest over the last few years. Recent studies in
VQA research can be roughly divided into the following
categories: better visual features [2, 15, 33, 49], more
powerful model architectures [13, 17, 20, 45, 47], and more
effective learning paradigms [4, 5, 19, 21, 25, 34, 50]. Most
current state-of-the-art VQA methods employ the Trans-
former architecture [36]. By incorporating vision-language
pretraining on large-scale datasets, they have approached
or even surpassed human-level performance on several
representative benchmarks [1, 40, 41, 44, 48]. Besides these
studies on general-purpose VQA, there is also a growing
trend towards exploring more granular VQA tasks with
specific reasoning skills, e.g., neural-symbolic reasoning
[14, 16] and knowledge utilization [29, 30, 38].

Knowledge-based VQA. The core of this task lies in
knowledge acquisition and integration. Early explorations
parse the inputs into structured queries and retrieve support-
ing knowledge from fixed knowledge bases (KBs) to obtain
the answers [38, 39]. As the provided knowledge resources
are not sufficient to represent general knowledge, subse-
quent research mainly focuses on acquiring explicit knowl-
edge from multiple open-domain knowledge resources, e.g.,
ConceptNet [23], Wikipedia [37], and Google Images [42].
This retrieved knowledge is integrated with the image-
question pair for answer prediction [8, 27, 42]. Motivated
by the promising capacities of large language models (e.g.,
GPT-3 [3]) in knowledge reasoning, recent state-of-the-art
approaches regard GPT-3 as an implicit knowledge engine.
They either utilize it to get answer prediction directly [43]
or to extract answer candidates with evidence to improve
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Figure 2. Our Prophet framework has two stages: answer heuristics generation and heuristics-enhanced prompting. In the answer
heuristics generation stage, a vanilla VQA model trained on the knowledge-based VQA dataset is employed to generate two types of
answer heuristics, i.e., answer candidates and answer-aware examples. In the heuristics-enhanced prompting stage, the answer heuristics,
question, and caption are integrated into a formatted prompt to instruct GPT-3 to predict an answer. As shown in the example, both answer
heuristics contribute to the answer of “helium”.

answer prediction [11, 22]. Similar to [43], our Prophet
uses GPT-3 to predict answers directly. We believe the
few-shot learning capability of GPT-3 has not been fully
activated and this motivates us to prompt GPT-3 with
answer heuristics.

In-context learning. Unlike the pretrain-then-finetune
paradigm for language models like BERT [6], GPT-3 in-
troduces a novel in-context few-shot learning paradigm.
To adapt to a new task, GPT-3 only needs to concate-
nate a few examples of the task with the input as the
prompt at inference time and requires no parameter updates.
This appealing property has inspired research on training
multimodal few-shot learners [1, 35]. Empirical studies
show that a huge model (e.g., 80B parameters in Flamingo
[1]) is required for effective few-shot learning, which is
unaffordable for most people to reproduce their results.

3. The Prophet Framework
Our Prophet is a conceptually simple two-stage frame-

work. In the answer heuristics generation stage, a vanilla
VQA model is learned to generate two types of answer
heuristics, i.e., answer candidates and answer-aware exam-
ples (detailed in §3.2). In the heuristics-enhanced prompt-
ing stage, the answer heuristics, question, and caption are
integrated into a formatted prompt to instruct GPT-3 to
predict an answer (detailed in §3.3). An overview of the
Prophet framework is depicted in Figure 2.

3.1. Preliminaries

Before presenting the Prophet, we briefly introduce the
in-context learning paradigm developed by GPT-3 and its
adaptation to knowledge-based VQA by PICa [43].

GPT-3 is an autoregressive language model pretrained
on a tremendous dataset. During inference, in-context
few-shot learning formulates a new downstream task as a
text sequence generation task on the frozen GPT-3 model.
Given a testing input x, its target y is predicted condi-
tioned on a formatted prompt p(h, E ,x), where h refers
to a prompt head, aka instruction, that describes the task,
E = {e1, e2, ..., en} corresponds to n in-context examples.
Denoting the target y = (y1, y2, ..., yL) as a text sequence
of L tokens, at each decoding step l, we have:

yl = argmax
ŷl

pGPT-3(ŷ
l|p, y<l) (1)

where each in-context example ei = (xi,yi) contains an
input-target pair of the task, which is constructed manually
or sampled from the training set.

To adapt GPT-3 to address the knowledge-based VQA
task, the key is to design the appropriate prompts. Given a
question q and an image v as inputs, the VQA task aims to
predict a target answer a. Since GPT-3 does not understand
images intrinsically, the image needs to be translated into
a caption c using an off-the-shelf captioning model. PICa
formulates the testing input x as the following template:

Context: c \n Question: q \n Answer:

where the variables marked in blue will be substituted by
specific testing inputs. \n stands for a carriage return in
the template. Accordingly, each in-context example ei is
formulated into a similar template as follows:
Context: ci \n Question: qi \n Answer: ai

where ci, qi, and ai refer to an image-question-answer
triplet collected from the training set. The complete prompt
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of PICa consists of a fixed prompt head, a few in-context
examples, and a testing input. This prompt is fed into GPT-3
for answer prediction.

Our Prophet inherits the pipeline of PICa. In addition,
we introduce answer heuristics into the prompt structure to
better activate the capacity of GPT-3, which leads to more
accurate answers.

3.2. Stage-1. Answer Heuristics Generation

We introduce two types of answer heuristics: answer
candidates and answer-aware examples. Given a testing
input consisting of an image and a question, the answer
candidates refer to a list of promising answers to the testing
input, where each answer is associated with a confidence
score. The answer-aware examples refer to a list of in-
context examples, where each example has similar answers
to the testing input.

Interestingly, these two types of answer heuristics can
be obtained simultaneously from any vanilla VQA model
trained on the knowledge-based VQA task.

Denote a VQA dataset as D = {(vi, qi, ai)}Mi=1 ,
where vi, qi, ai refer to the image, question, and answer,
respectively. The most frequent answers in the training
set form an answer vocabulary W = {wj}Sj=1. A vanilla
VQA model M is learned from D to perform an S-way
classification over the answers. Generally, the VQA model
can be separated into two submodels, i.e., a backbone Mb

and a classification head Mh. The backbone Mb acts as
an encoder to fuse multimodal inputs v and q and obtain a
fused feature z:

z = Mb(v, q) (2)

The classification head Mh simply adopts a linear layer
followed by a sigmoid function to project the fused feature z
into a prediction vector y ∈ RS over the answer vocabulary:

y = Mh(z) (3)

where y[i] denotes the i-th element of y, representing the
confidence score for answer wi. Based on the above defini-
tions, we explain how to generate the two types of answer
heuristics below. Note that although the learned VQA
model M does not incorporate any external knowledge,
it can be used for knowledge-based VQA when trained
properly. We regard it as a reference model and compare
its performance to Prophet in the experiments to show the
effectiveness of GPT-3 for knowledge-based VQA.

Answer candidates. Given a testing input (v, q), we obtain
its prediction vector y from Eq.(3). After that, we select the
top-K answers with the highest scores:

IAC = argTopK
j∈{1,2,...,S}

y[j] (4)

where IAC denotes an index set of the top-K answer
candidates. The answer candidates C are defined as follows:

C = {(wj , y[j]) | j ∈ IAC} (5)

where wj and y[j] are an answer candidate and its con-
fidence score, respectively. To make the formats of the
in-context examples and testing input consistent, for each
example ei we also calculate and provide a set of answer
candidates Ci.
Answer-aware examples. Several previous studies have
shown that the choice of in-context examples is crucial
for GPT-3’s few-shot learning performance [24, 43]. Their
results motivate us to devise an answer-aware example
selection strategy.

Given a testing input (v, q) and any training input
(vi, qi), we can obtain their corresponding fused features z
and zi from Eq.(2) using the trained model. Since the fused
features are linearly projected for answer prediction, we
conjecture that these fused features lie in a latent answer
space that contains rich semantics of the answers to the
given image-question pairs. If z and zi are close in the
latent space, they are more likely to share similar answers
and image-question inputs.

We calculate the cosine similarity of the fused feature
between the testing input and each training input, then select
top-N nearest neighbors in the latent space as the answer-
aware examples:

IAE = argTopN
i∈{1,2,...,M}

zT zi
∥z∥2∥zi∥2

(6)

where IAE is an index set of the top-N similar samples in
D. The answer-aware examples E are defined as follows:

E = {(vi, qi, ai) | i ∈ IAE} (7)

Note that the fused features of the training inputs can be
computed and stored beforehand, allowing efficient answer-
aware example selection.

3.3. Stage-2. Heuristics-enhanced Prompting

In this stage, we use the obtained answer heuristics,
i.e., answer candidates C and answer-aware examples E , to
obtain a heuristics-enhanced prompt that facilitates the few-
shot learning capacity of GPT-3 for knowledge-based VQA.

A prompt consists of a prompt head, a set of in-context
examples, and a testing input. The prompt head describe the
VQA task in natural language. We refer to the prompt head
designed in PICa and supplement it with a new description
of the answer candidates. Although we encourage GPT-
3 to generate answers according to the answer candidates,
we also allow it to take broad explorations and generate
answers beyond the candidates. The complete format of our
prompt head is shown in the yellow box of Figure 2.
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Our in-context examples are derived from the obtained
N answer-aware examples E = {e1, e2, ..., eN}. Based on
PICa’s template in §3.1, for example ei, we introduce its
answer candidates Ci by adding one line of code as follows:

Context: ci \n Question: qi \n
Candidates: wj1 (y[j1]), wj2 (y[j2]),...,wjK (y[jK ]) \n
Answer: ai

where j1, j2, · · · , jK correspond to the actual indices of the
elements in Ci. Each answer candidate wjk is paired with
its confidence score y[jk] within a bracket. The confidence
scores additionally offer the reliability of the corresponding
answer candidates, which helps GPT-3 focus more on the
promising candidates and be more tolerant of the less
relevant candidates. For the testing input, its template is
similar to that for the in-context examples, except that the
answer slot is left blank for GPT-3 to fill with.

To better exploit available examples, we use the multi-
query ensemble strategy [43]. Specifically, we increase
the number of answer-aware examples to N*T to obtain
T paralleled prompts, where each prompt still contains N
examples. By prompting GPT-3 for T times, we obtain T
answer predictions. The majority voting is performed over
the T predictions to determine the final answer. The effects
of different N and T will be verified in the experiments.

4. Experiments

We evaluate the performance of Prophet on two prevalent
knowledge-based VQA datasets: OK-VQA [29] and A-
OKVQA [32]. We conduct comprehensive ablation exper-
iments to explore the effectiveness of Prophet. By taking
the ablation results into account, we perform thorough
comparisons of Prophet and state-of-the-art methods.

4.1. Datasets

OK-VQA is a commonly used knowledge-based VQA
dataset [29]. The dataset contains 9K and 5K image-
question pairs for training and testing, respectively. All
questions are manually filtered to ensure that outside knowl-
edge is required to answer the questions. Each data sample
is annotated with ten open-ended answers. The accuracy
computed by the soft scores is used as the evaluation
metric [10]. We use the 1.1 version of OK-VQA in the
experiments.

A-OKVQA is currently the largest knowledge-based VQA
dataset [32]. The dataset is split into three subsets: 17K
training, 1K validation, and 7K testing. Each question is
annotated with ten open-ended answers for direct answer
(DA) evaluation. In addition, it provides a multiple choice
(MC) evaluation to ask models to choose the correct answer
from four choices.

4.2. Implementation Details

We use the MCAN-large [46] as our default VQA
model to generate answer heuristics. To improve the
model capability, we modify the original MCAN model
by: (i) replacing the original bottom-up-attention region-
based features with the grid-based features extracted from
CLIP’s visual encoder with a RN50×64 backbone [31]; and
(ii) replacing the original LSTM network with a pretrained
BERT-large model [6].

Similar to [28], we apply the transfer learning paradigm
to further enhance the model capability. The model is first
pretrained on the VQAv2 dataset [10] and Visual Genome
dataset [18]. To prevent data contamination, we remove
those samples from the pretraining dataset, whose images
are used in the testing split of OK-VQA. After that, the
pretrained model is further finetuned on the training split
of OK-VQA to obtain our final VQA model. Note that
the answer vocabulary of the pretrained model (with 3,129
answers) is quite different from the vocabulary of OK-
VQA. To bridge this gap, we merge the answer vocabulary
of OK-VQA1 with the existing vocabulary, resulting in an
expanded answer vocabulary with 4,477 answers for model
finetuning. This model is trained on a single Nvidia RTX
3090 GPU, which is affordable for most people.

To show the improvements of the above strategies over
the original MCAN model, we report the accuracies on the
testing set of OK-VQA as follows:

from scratch,
original model [46]

from scratch,
improved model

transfer learning,
improved model

31.5 35.6 53.0

More details are provided in the supplementary material.
During the prompting stage, we follow PICa to use

OSCAR+ as the captioning model [49]. Unless otherwise
noted, we set the number of answer candidates K=10, the
number of in-context examples N=16, and the number of
queries T=5 as our default settings. The version of GPT-3
used in our experiments is text-davinci-002. Sampling
temperature is set to 0.

The settings and strategies for OK-VQA can be directly
transferred to A-OKVQA to address its DA task. For the
MC task, we follow the strategy in [32] to project the
predicted answer to the nearest answer choice. Moreover,
we design a Prophet variant for the MC task. It uses a
slightly different prompt by adding the multiple choices to
in-context examples and testing input, and instructs GPT-3
to choose the correct one from four choices.

4.3. Ablation Studies

We conduct ablation experiments for Prophet on OK-
VQA using the default settings above. Results shown in

1Similar to [2], we collect answers that appear more than eight times in
the training set of OK-VQA, resulting in 2,794 answers.
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VQA model, paradigm stage-1 acc. accuracy

ViLBERT, retrieval [42] 35.20 40.28 (+5.08)
ViLBERT, prompt† 35.28 44.97 (+9.69)

(a) Prompting vs. retrieval. Our prompting-based
paradigm is more effective than the retrieval-based
paradigm in MAVEx [42]. †: our re-implementation.

visual features stage-1 acc. accuracy

Bottom-Up [2] 46.83 55.34 (+8.51)
VinVL [49] 47.88 56.23 (+8.35)
CLIP-ViT-L/14 [31] 52.03 60.12 (+8.09)
CLIP-RN50×64 [31] 53.04 60.84 (+7.80)

(b) Capability of VQA models. More powerful VQA
models lead to higher accuracies, but obtain slightly
less relative improvements from stage-2.

#candidates (K) hit rate accuracy

0 - 49.63
1 53.04 56.04
5 75.20 60.17
10 79.83 60.84

(c) Answer candidates. They are
critical to Prophet, and increasing the
number K leads to better performance.

example selection hit rate accuracy

(a) rand 5.31 58.66
(b) ques + img [43] 59.58 59.82
(c) fused 83.63 60.84
(d) fused + ques + img 82.45 60.38
(e) answer logits 79.25 60.40

(d) Example selection strategy. Our answer-aware
example selection based on fused features is more
effective than the others.

#examples (N ) accuracy (T=1) accuracy (T=5)

0 49.97 49.97
1 54.89 56.75
8 57.49 59.91

16 57.52 60.84
20 57.91 61.10

(e) Numbers of examples and queries. Increasing the
numbers of examples N and queries T improves the
performance with linearly increasing overheads.

variants accuracy

(a) default 60.84
(b) w/o prompt head 60.54
(c) w/o confidence scores 55.46
(d) w/o image captions 58.27
(e) default+tags [43] 60.51

(f) Prompt contents. The default
settings contain the exact necessary
information for prompting.

Table 1. Ablation experiments for Prophet. All the reported results are evaluated on the testing set of OK-VQA v1.1. The best result in
each table is bolded and the result with the default settings is marked in gray .

Table 1 and Figure 3 are discussed in detail below.

Prompting vs. retrieval. Prophet uses a prompting-based
paradigm to predict the answer based on a set of promising
answer candidates. In contrast, a previous work MAVEx
[42] exploits answer candidates but adopts a retrieval-
based paradigm to search knowledge from external KBs to
determine the answer. As both Prophet and MAVEx train
a VQA model to generate answer candidates (stage-1), we
can compare the superiority of the two paradigms (stage-2).
In Table 1a, we show the performance of the two paradigms
in terms of stage-1 accuracy and final accuracy, respectively.

For a fair comparison, we re-implement the VQA model
used in MAVEx, i.e., ViLBERT [25], to generate answer
heuristics for our Prophet. From the results, we can see that
based on the same VQA model, our Prophet outperforms
MAVEx by a large margin (44.97% vs. 40.28%), show-
ing the superiority of our prompting-based paradigm over
MAVEx’s retrieval-based paradigm in external knowledge
acquisition and integration.

Capability of VQA models. In Table 1b we study how
the VQA models of different capabilities impact the perfor-
mance of Prophet. To better control the model capability,
we use the same MCAN model trained with four visual
features: region-based Bottom-Up [2] and VinVL [49]
features and grid-based CLIP features from two backbones
(ViT-L/14 and RN50×64) [31]. Results show that more
powerful VQA models (reflected in the stage-1 accuracies)
lead to better performance of Prophet, as they provide
answer heuristics of higher quality. Combining the results
in Table 1a, we also observe that more powerful VQA
models achieve less relative improvements from GPT-3,
which can be explained by the intrinsic diminishing return
property. As a by-product, we verify that the visual

(a) behavior distribution (b) per-type accuracy

Figure 3. We conduct a statistical analysis of Prophet’s prediction
behaviors in terms of (a) distribution and (b) per-type accuracy.
As Prophet takes K answer candidates from MCAN as inputs, we
define three prediction behaviors for Prophet as follows: “keep
top-1”, “in top 2-K”, and “beyond top K”. All the testing samples
can be categorized into one of the three classes.

features are important to the performance of knowledge-
based VQA, which is consistent with the observations
in [22]. The models with CLIP-based visual features
significantly outperform those with region-based features,
indicating that the CLIP’s visual features contain richer
visual knowledge due to large-scale pretraining.

We have observed a significant performance improve-
ment of Prophet over its corresponding MCAN model in
stage-1 (60.84% vs. 53.04%). To better understand this
improvement, we conduct a statistical analysis of Prophet’s
prediction behaviors. As Prophet takes K answer candi-
dates from MCAN as inputs, we define three prediction
behaviors for Prophet: “keep top-1”, “in top 2-K”, and
“beyond top-K”. All the testing samples can be categorized
into one of the three classes. The statistical results in
Figure 3 show that: (i) for 68.1% of the testing samples
(the green slice), Prophet keeps the top-1 predictions of
MCAN. These samples achieve a 69% accuracy and are
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mostly easy samples; (ii) for 21.8% of the testing samples
(the blue slice), Prophet selects answers from the top 2-K
answer candidates. These samples are relatively hard, so
that MCAN delivers a 24% accuracy while Prophet has a
much higher 40% accuracy; (iii) for the remaining 10.1%
of the testing samples (the yellow slice), Prophet predicts
answers beyond the answer candidates2. These are the most
difficult samples that MCAN delivers a 12% accuracy while
Prophet magnificently achieves a 42% accuracy. In a word,
Prophet acts like a real prophet that adaptively selects the
essence and discards the dross from MCAN.

Answer candidates. Table 1c varies the number of answer
candidates K from 0 to 10 to explore its effect on Prophet.
For each testing sample, if the ground-truth answer is hit
by one of the K answer candidates, we accumulate the soft
score of that ground-truth answer3. The hit rate is calculated
over the testing set by dividing the accumulated score by the
number of samples.

From the results, we can see that: (i) without any answer
candidates, Prophet’s accuracy drops by 6.4 points (K=0
vs. K=1), showing the importance of answer candidates in
Prophet; (ii) with the increase of answer candidates, the hit
rate and final accuracy grow accordingly but they exhibit a
tendency to saturate. This is because the quality of answer
candidates eventually meets saturation as K increases; (iii)
when K=1, the final accuracy is even higher than the hit
rate (56.04% vs. 53.04%), which implies that GPT-3 has
a strong capability to correct the wrong answer candidates
while keeping the correct ones.

Example selection strategy. To show the effectiveness of
our answer-aware example selection strategy, we compare
it to other example selection strategies in Table 1d. The
compared strategies include: (a) rand: examples that are
randomly selected; (b) ques + img: examples that are
selected based on the joint similarity of question and image
features, which is used in PICa; (c) fused: our default
strategy that selects examples based on the similarity of
fused features; (d) fused + ques + img: a combination of our
default strategy and PICa’s strategy; and (e) answer logits:
examples that are selected based on the similarity of answer
logits obtained in Eq.(3). Besides the final accuracy, we
also report the hit rate of the answers within the selected
examples for each strategy.

The results show that the accuracy is positively
correlated with the hit rate of answers, which verifies
our hypothesis that answer-aware examples contribute
significantly to the performance of Prophet. Compared
with other strategies, our default strategy (c) achieves the

2The probability that Prophet’s prediction is constituted of the
combination of candidates is rare that can be neglected.

3In practice, multiple ground-truth answers are provided. If multiple
answers are hit simultaneously, we choose the answer with the largest soft
score for accumulation.

best performance with the highest hit rate. The strategy
(d) that integrates other information (ques + img) into the
(c) leads to worse performance due to the introduction
of irrelevant and noisy information. Finally, strategy (e)
reports slightly worse performance than (c). We conjecture
that is because the answer logits have lost too much
information of the input question and image, which is also
useful for GPT-3 to perform knowledge reasoning.

Numbers of examples and queries. Table 1d contains
the ablation studies for the numbers of examples and
queries. We choose different numbers of examples
N ∈ {0, 1, 8, 16, 20} for each query and different numbers
of queries T ∈ {1, 5}, respectively. The results show that
the performance of Prophet improves with the increase
of N and T , which is consistent with the results in PICa.
By increasing T from 1 to 5, the entries with larger N
enjoy greater performance improvements at the expense of
linearly increasing overheads.

Interestingly, the Prophet variant with N=0 delivers
worse performance than the VQA model in stage-1 (49.97%
vs. 53.04%), even though answer candidates are provided.
Meanwhile, when given one example (N=1), the Prophet
variant distinctly surpasses the VQA model (56.75% vs.
53.04%). This suggests the necessity of few-shot in-context
examples for GPT-3 to activate its capability to adapt to the
knowledge-based VQA task.

Prompt contents. In Table 1f, we ablate the prompt
contents in the default settings by: (b) removing the prompt
head; (c) removing the confidence scores for answer can-
didates; (d) removing image captions; and (e) adding
predicted tags from external models [43].

The results lead to the following observations: First,
the confidence scores are of critical importance to the
performance of our Prophet. This is because they carry the
necessary information for GPT-3 to understand the answer
candidates. Second, without image captions, Prophet still
works steadily. This reflects the fact that our answer
heuristics in prompts already provide sufficient information
for Prophet to solve the task. Third, the prompt head is
of less importance, indicating that GPT-3 is capable of un-
derstanding the task directly from the in-context examples.
Finally, introducing extra information like object tags leads
to a slight performance drop, which is contrary to the results
in PICa. We conjecture this information has already been
encoded in answer heuristics implicitly.

4.4. Main Results

We use most of the default settings for the comparisons
below, except that the number of examples N is set to 20.
Comparative results on OK-VQA. Table 2 contains the
comparisons of our Prophet and existing state-of-the-art
methods on OK-VQA. The table is split into three sections.
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method accuracy
methods with external knowledge bases
Mucko [51] 29.2∗

ConceptBERT [9] 33.7∗

KRISP [28] 38.9
Visual Retriever-Reader [27] 39.2
MAVEx [42] 40.3
TRiG [8] 49.4
UnifER [12] 42.1
methods with multimodal pretraining
Unified-IO (2.8B) [26] 54.0
Flamingo (80B) [1] 57.8
methods with GPT-3 API
PICa [43] 48.0
KAT† [11] 53.1
REVIVE† [22] 56.6
Prophet (ours) 61.1

Table 2. Comparisons to the state-of-the-art methods on OK-
VQA. The compared methods are split into three groups based on
their knowledge resources and usages. ∗: accuracy is evaluated on
OK-VQA v1.0. †: method needs to query GPT-3 during training.

The first section lists the retrieval-based methods leveraging
external KBs [8, 9, 27, 28, 42, 51]. The second section
contains the methods that are directly pretrained on a large-
scale multimodal corpus [1, 26]. The last section shows the
methods that incorporate the large language model GPT-3,
which is publicly available via an online API [11, 22, 43].

Our Prophet belongs to the last section. It outperforms
all the compared methods by a distinct margin. Prophet
is 13.1 points higher than PICa [43] when both methods
use GPT-3 as the only knowledge resource. This confirms
our hypothesis that the capacity of GPT-3 has not been
fully activated in previous studies. Compared to KAT [11]
and REVIVE [22], which utilize GPT-3 and other external
KBs together in sophisticated systems, our Prophet is much
simpler and more effective. Moreover, KAT and REVIVE
need to use GPT-3 to process all the training samples for
their model training, which significantly increases the costs.
In contrast, our Prophet only uses GPT-3 at inference time,
which is more economical. Compared to the Flamingo-80B
[1], Prophet delivers a 3.3 point improvement and is more
resource-efficient from the perspective of reproducibility4.
Comparative results on A-OKVQA. Table 3 contains
the comparative results on the challenging A-OKVQA
dataset. We compare our Prophet to the strong baselines
in [32] and the current state-of-the-art method Unified-
IO [26]. The results show the superiority of our Prophet
over the counterparts on both the DA and MC tasks, re-

4Flamingo-80B is trained on 1,536 TPUv4 for 15 days which is
unaffordable for most researchers, but Prophet uses one RTX-3090 to train
a VQA model for 4 days and a certain number of GPT-3 invocations.

method DA MC
val test val test

ClipCap [32] 30.9 25.9 56.9 51.4
ViLBERT [32] 30.6 25.9 49.1 41.5
LXMERT [32] 30.7 25.9 51.4 41.6
KRISP [32] 33.7 27.1 51.9 42.2
GPV-2 [32] 48.6 40.7 60.3 53.7
Unified-IO [26] - 45.2 - -
Prophet 58.2 55.7 59.3 57.3
Prophet-MC - - 76.4 73.6

Table 3. Comparisons to previous results on A-OKVQA. DA
and MC refer to the direct-answer and multiple-choice tasks,
respectively. Prophet-MC is a variant of Prophet that is specifically
designed for the MC task.

flecting the effectiveness and generalization of our method.
Furthermore, we also provide a Prophet variant called
Prophet-MC, which is specifically designed for the MC
task. Specifically, we slightly modify the prompt in Prophet
by adding the information of multiple choices into the in-
context examples and testing input, and instruct GPT-3 to
choose the correct one from four choices. More details are
provided in the supplementary material. Compared to the
original Prophet, Prophet-MC achieves significantly higher
accuracy on the MC task, showing the enormous potential
of Prophet to be applied to other related tasks.

5. Conclusion

We present Prophet, a conceptually simple framework
which uses GPT-3 as the knowledge engine for knowledge-
based VQA. To better activate the few-shot learning capac-
ity of GPT-3, we introduce a novel paradigm to prompt
GPT-3 with answer heuristics. Extensive ablations, com-
parative experiments, and comprehensive analyses on two
challenging datasets show the superiority of Prophet over
all existing state-of-the-art methods, including the heavily-
engineered Flamingo-80B model. Notably, Prophet is
implemented with limited resources—a single GPU and an
affordable number of GPT-3 invocations. We hope that our
work will serve as a solid baseline to inspire future research
on the knowledge-based VQA task and beyond.
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