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Abstract

The large-scale deployment of autonomous vehicles is
yet to come, and one of the major remaining challenges
lies in urban dense traffic scenarios. In such cases, it
remains challenging to predict the future evolution of the
scene and future behaviors of objects, and to deal with rare
adverse events such as the sudden appearance of occluded
objects. In this paper, we present ReasonNet, a novel end-
to-end driving framework that extensively exploits both tem-
poral and global information of the driving scene. By rea-
soning on the temporal behavior of objects, our method
can effectively process the interactions and relationships
among features in different frames. Reasoning about the
global information of the scene can also improve overall
perception performance and benefit the detection of adverse
events, especially the anticipation of potential danger from
occluded objects. For comprehensive evaluation on occlu-
sion events, we also release publicly a driving simulation
benchmark DriveOcclusionSim consisting of diverse occlu-
sion events. We conduct extensive experiments on multi-
ple CARLA benchmarks, where our model outperforms all
prior methods, ranking first on the sensor track of the public
CARLA Leaderboard [53].

1. Introduction
Despite significant recent progress in the field of au-

tonomous driving, truly large-scale deployment of au-
tonomous vehicles (AVs) on public roads has yet to be
established. The majority of the remaining issues lie in
navigating dense urban traffic scenes, where a large num-
ber of different dynamic objects (e.g. vehicles, bicycles,
pedestrians), complex road geometries and road user inter-
actions are involved. In such circumstances, currently de-
ployed or tested solutions could make incorrect or unex-
pected decisions , resulting in severe accidents or traffic in-
fractions [4, 24, 53]. Two of the major challenges behind
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Figure 1. Temporal reasoning on the historic behaviors of sur-
rounding objects can benefit the prediction of the scene evolution
and objects’ future behaviors. Global reasoning on the interaction
among objects and the environment allows for inference about un-
observable space and occluded objects, anticipating potential dan-
ger and enhancing perception/driving performance.

such autonomous incompetence include 1) how to achieve
a comprehensive understanding of the driving scene and,
more importantly, how to make high-fidelity predictions on
the future evolution of the driving scene; 2) how to deal
with rare adverse events in long-tail distributions, such as
undetected but relevant objects in occluded regions.

Comprehensive scene understanding and high-fidelity
prediction of how objects in the scene will move in the fu-
ture are vital for autonomous vehicles to take safe and reli-
able actions. Toward this end, modularized methods were
proposed to decompose the task into three sequential sub-
tasks: detection [37–40, 42], tracking [5, 65], and forecast-
ing [6, 26, 28, 32, 33, 59–61]. While more interpretability is
provided by developing each module independently, these
sub-tasks are still regarded as open research questions and
errors in each sub-task can propagate and accumulate, lead-
ing to unstable overall performance. In contrast, end-to-
end driving methods [9, 10, 51] have recently emerged as a
promising method to solve these subtasks in a monolithic
manner directly. However, a high-fidelity future prediction
necessitates sufficient temporal reasoning over the historic
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information of the scene [22, 50], which is usually only
somewhat considered in previous end-to-end driving meth-
ods if not completely ignored. For example, [10, 15] only
exploited scene information in the current frame, and [54]
simply concatenated features in historic frames for temporal
reasoning. In such cases, the interactions and relationships
amongst features in different frames and objects cannot be
sufficiently modeled. Thus in this paper, we propose a tem-
poral reasoning module to effectively fuse information from
different frames for better driving performance.

On the other hand, rare adverse events in long-tail distri-
butions remain a notoriously challenging issue on the way
toward large scale deployment of autonomous vehicles. For
example, one such challenge is the difficulty in detecting
occluded but relevant objects in the scene. While a large
amount of research has focused on improving perception
performance [37, 57], the occluded objects essentially lie
out of the scope of observable elements, and failure to con-
sider such objects can result in either dangerous or overly
cautious driving behavior. Our observation is that, while
humans also suffer from similar limitations to autonomous
vehicles regarding occluded objects, they are able to rea-
son about these unobservable spaces by exploiting global
information of the scene such as road geometry and driv-
ing interaction patterns, to anticipate potential danger even
under occlusion. For example, when one human driver no-
tices another vehicle braking abruptly, the driver may rea-
son the presence of an occluded object (e.g., a pedestrian)
ahead, reminding himself to drive cautiously. Thus, our
insight is that, a safe and intelligent autonomous vehicle
should also master the global reasoning capability to have
a better perception of the scene. In this paper, we pro-
pose a transformer-based global reasoning module to suf-
ficiently fuse information of the environment and objects,
and analyze their interactions for better scene understand-
ing. Such global reasoning capability not only benefits in-
teraction modeling with occluded objects, but also improves
overall perception performance. Examples of such perfor-
mance gains include better traffic light status identification
by reasoning over other vehicles’ actions and more accurate
future trajectory forecasting by reasoning over interactions
among objects. Besides, considering the fact that the oc-
clusion events lie in the long-tail distribution and have been
rare in currently available datasets, we also construct a Driv-
ing in Occlusion Simulation benchmark (DOS) consisting
of 4 occlusion scenarios, each with 25 cases, as a compre-
hensive occlusion event evaluation benchmark in the field
of end-to-end autonomous driving.

In this paper, we propose a novel end-to-end driving
framework named temporal and global reasoning network
(ReasonNet), which provides enhanced reasoning on the
temporal evolution and the global information of the scene,
for better perception performance and driving quality. Our

contributions are three-fold:

• We propose a novel temporal and global reasoning
Network (ReasonNet) to enhance historic scene rea-
soning for high-fidelity prediction of the scene’s fu-
ture evolution and improve global contextual percep-
tion performance even under occlusion.

• We present a new benchmark called Driving in
Occlusion Simulation benchmark (DOS), which con-
sists of diverse occlusion scenarios in urban driving for
systematic evaluation in occlusion events, and make
the benchmark publicly available.

• We experimentally validate our method on multiple
benchmarks with complex and adversarial urban sce-
narios. Our model ranks first on the sensor track of the
CARLA autonomous driving leaderboard.

2. Related work
End-to-end Autonomous Driving End-to-end autonomous
driving in urban scenarios has become more studied
recently thanks to the CARLA simulator and leader-
board [21]. Recent works mainly consist of reinforcement
learning (RL) and imitation learning (IL) methods. The
reinforcement Learning methods train the agents by con-
stantly interacting with simulated environments and learn-
ing from these experiences. Latent DRL [54] first trains an
embedding space as a latent representation of the environ-
ment observation, and then conducts reinforcement learn-
ing with the latent observation. Roach [66] utilizes an RL
agent with privileged information of the environment to dis-
till a model only with regular information (e.g. sensor) as
the final agent. WOR [9] builds a model-based RL agent
along with the world model and reward model. The final
agent is distilled from the expert knowledge acquired from
these pretrained models. Imitation learning methods aim
at learning from an expert agent to bypass interacting with
the environment. Early IL methods include CIL [17] and
CILRS [18], which apply a conditional architecture with
different network branches for different navigation com-
mands. LBC [11] first trains an imitation learning agent
with privileged information, which is then distilled into a
model using sensor data. Transfuser [15, 47] designs a
multi-modal transformer to fuse information between the
front camera image and LiDAR data. LAV [10] exploits
data of not only the ego vehicle but also surrounding vehi-
cles for data augmentation by learning a viewpoint-invariant
spatial intermediate representation. TCP [63] proposes a
network with two branches which generates the control sig-
nal and waypoints respectively. An adaptive ensemble is
applied to fuse the two output signals. InterFuser [51] uses
a transformer to fuse and process multimodal multi-view
sensors for comprehensive scene understanding.
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Attention for Autonomous Driving The attention mech-
anism has been demonstrated to be a powerful module
in many areas of deep learning, including the context of
driving. The classic attention-based Transformer architec-
ture [55] was originally established in Natural Language
Processing. Transformer (VIT) was then applied in Com-
puter Vision (vision Transformer, VIT [20, 49]) and attains
excellent performance on Imagenet classification. Later
generations move on to generalize the attention mecha-
nism to the driving domain, including motion forecast-
ing [23, 36, 58], driver attention prediction [25, 34] and ob-
ject tracking [45,52]. In the field of end-to-end autonomous
driving, TransFuser [15, 47] exploits several transformer
modules for the fusion of data from the front view camera
and LiDAR. NEAT [14] uses intermediate attention maps to
iteratively compress 2D image features into a compact bird-
eye-view (BEV) representation for driving. InterFuser [51]
utilizes a transformer encoder and decoder to fuse informa-
tion and decode the feature into interpretable embeddings.
Multi-task Learning Our end-to-end driving framework
adopts multi-task learning, with a joint objective of ob-
ject detection, occupancy forecasting, traffic sign predic-
tion and waypoint prediction. MotionNet [62] proposes a
spatio-temporal pyramid network for joint perception and
motion prediction based on BEV maps. PnPNet [41] pro-
poses a new object trajectory representation and multi-
object tracker to handle occlusion and false positives. In-
tentNet [7] predicts the high-level intentions of each agent
from semantic HD maps building. ST-P3 [29] proposes an
egocentric-aligned accumulation technique to preserve ge-
ometry information in 3D space and utilize a dual pathway
modeling to consider past motion variations.

3. Method
We aim at learning a driving policy π that generates raw

control commands by taking multi-view multi-modal sen-
sor readings, vehicle measurements, and navigation com-
mands as inputs. As shown in Figure 2, the proposed Rea-
sonNet consists of three parts: 1) a perception module that
extracts bird’s-eye-view (BEV) features from LiDAR and
RGB data; 2) a temporal reasoning module that processes
temporal information and maintains a memory bank stor-
ing historic features; 3) a global reasoning module that cap-
tures the interaction/relationship amongst objects and the
environment, to detect adverse events (e.g. occlusion) and
improve overall perception performance. This section will
introduce these modules in detail.

3.1. Perception Module

The perception module is responsible for processing and
fusing different sensor data at the early stage of our frame-
work, based on which temporal and global reasoning can
be conducted by later modules. Specifically, five sensors

are utilized: four RGB cameras (left, front, right and rear)
Irgb = I0,1,2,3 and one LiDAR sensor Ilidar = I4. Four
image inputs are obtained from the four cameras, and an
additional focus-view image input is center-cropped from
the front image to capture distant traffic lights. Point cloud
data is retrieved from the LiDAR sensor. Our perception
module includes a 2D backbone to embed image input into
keys and values, a 3D backbone to embed LiDAR input into
queries, and a BEV decoder that utilizes these keys, values,
and queries to obtain features of the bird’s-eye view (BEV)
map, waypoints, and traffic signs.
Image Input For each image input of Irgb, a 2D CNN back-
bone ResNet [27] is applied to generate a feature map fi.
Then, we use a convolution layer to map the channels of
fi to Cv and flatten it to one-dimensional tokens. A si-
nusoidal positional encoding and learnable sensor embed-
dings are added to the tokens, so that the following network
can distinguish them from different cameras and relative
positions. Finally, tokens of different images are passed
through a standard transformer encoder with Ke layers.
Each layer consists of Multi-Headed Self-Attention [55],
MLP blocks and layer normalization [3]. This image fu-
sion operation can contribute to a better perception of global
context from multi-view inputs, generating keys and values
for the image-LiDAR fusion in BEV decoder.
LiDAR Input For the LiDAR input, we use PointPil-
lars [35] as our 3D perception backbone to process points
in the ego-vehicle-centered area x ∈ [−Hb, H − Hb]
and y ∈ [−W/2,W/2]. Specifically, we use a simpli-
fied version of PointNet [48] to encode the information of
raw LiDAR points. Each pillar includes the points in a
0.25m×0.25m area. The extracted feature map is down-
sampled to Cv × H × W for computation reduction and
then serves as BEV queries used in the BEV decoder and
memory bank.
Sensor-Fusion BEV Decoder The BEV decoder follows
a standard transformer architecture design with Kbev layers
to fuse tokens from different sensors. Tokens from the RGB
images are fed as values and keys into the decoder, and to-
kens from the LiDAR points are fed as the H ×W queries
to generate BEV features. In addition, two other kinds of
queries for the prediction of traffic signs and waypoints w
are also fed into the decoder. Following InterFuser [51], we
use a 2-layer MLP as the traffic sign classifier to predict the
traffic light state and whether there is a stop sign ahead; we
then use a single-layer GRU [16] to auto-regressively gen-
erate consecutive waypoints {wt}

Tf

t=1 conditioned on the
goal location of the ego vehicle. Tf denotes the number
of the predicted time steps. To pretrain the perception mod-
ule in the first training stage, the generated BEV feature is
passed through a one-stage CenterPoint [64] to generate the
H ×W × 7 BEV map covering an Hm × Wm spatial re-
gion, where the seven channels represent object existence
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Figure 2. The proposed ReasonNet consists of three modules: 1) the perception module fuses different sensor data to generate the BEV
feature, traffic sign feature, and waypoints in the early stage of our framework; 2) the temporal reasoning module processes current
and historic features and maintains a memory bank to store historic features; 3) the global reasoning module models the interaction and
relationship among objects and the environment to detect adverse events (e.g. occlusion) and improve overall perception performance.

probability, offset from grid center, bounding box extent,
heading angle and velocity for objects at each grid cell.

3.2. Temporal Reasoning module

Compared to existing end-to-end driving methods that
only exploit scene information of the current frame [10,15]
or simply concatenate features of historic frames [54], we
propose a temporal reasoning module that can sufficiently
store and fuse temporal information to benefit the motion
forecasting of traffic participants and the tracking of in-
termittently occluded objects. As shown in Figure 2, our
temporal reasoning module includes temporal processing to
fuse current and historic features through an attention mech-
anism, and maintains a memory bank which stores historic
short-term and long-term feature keys and values.
Temporal Processing Considering that information in dif-
ferent historic frames could have different relevance to the
current scene, we apply an attention-based memory read-
ing from the historic features. Specifically, for each his-
toric frame t stored in the memory, we first measure its rel-
evance by calculating the normalized similarity S between
the historic-frame feature key k ∈ RCk×Th×H×W 1 and the
current-frame feature query q ∈ RCk×H×W :

S(qh,w,kt,i,j) =
(kt,i,j − qh,w)

2∑i=H−1,j=W−1
i=0,j=0 (kt,i,j − qh,w)2

(1)

1C, H , W denotes the channel, height, and width of the feature respec-
tively, Th denotes the number of the frames stored in the memory bank.

We map every query element to a distribution over H ×
W memory elements and correspondingly aggregate their
values v to obtain the readout feature M ∈ RCv×Th×H×W

for each frame t stored in the memory:

Mt,h,w =

i=H−1,j=W−1∑
i=0,j=0

vt,i,jS(qh,w,kt,i,j) (2)

The aggregated features from all historic frames are then
concatenated with the current-frame feature value to get
M

′ ∈ RCv×(Th+1)×H×W , which is then passed through
a GRU to progressively fuse temporal information and get
Mfused ∈ RCv×H×W as the final output of the module.
Technically, we take the L2 similarity proposed in STCN
[13] as the similarity measure function, which is more stable
than the dot product [46]. The current-frame feature query
q is obtained by passing the features from the 3D backbone
F ∈ RCv×H×W through a query encoder (several convolu-
tion layers). The historic-frame feature key k and value v
are taken from the temporal memory bank.
Memory Bank Maintaining As above, we have introduced
the temporal processing at one single frame. After every
τ frame, the obtained feature key and value at that frame
will be used to update the memory bank. Specifically, the
current-frame feature query q is directly copied and fed into
the memory bank as the memory key without extra com-
putation. The final output Mfused will first be encoded
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to a BEV map Mp. The BEV map Mp will be concate-
nated with the final output Mfused and passed through a
value encoder to obtain the memory value v, which is fed
into the memory back. With the above key-value pairs, the
memory bank maintains two kinds of buffer: the short-term
and long-term buffer. On the one hand, the new key-value
pair will be appended to the short-term buffer, as a high-
resolution memory of the scene in the past few seconds for
accurate feature matching. Considering the limited GPU
memory resources, we limit the buffer size and older key-
value pairs will be discarded when the limit number Ts is
reached. However, when these older features are discarded,
the long-term behavior of the traffic participants is miss-
ing, which can be crucial for motion forecasting in com-
plex traffic scenarios. Thus on the other hand, inspired by
XMem [12], the memory bank also maintains a long-term
buffer that selectively stores important/representative key-
value feature pairs discarded by the short-term buffer. Con-
sidering the fact that the objects surrounding the ego vehi-
cle are sparse most of the time2, the long-term buffer selec-
tively stores key-value features (k and v) which meet one
of the two criteria: 1) their corresponding location in the
BEV map Mp has a high probability of object existence; 2)
their usage frequency is in top-K of all candidate key-value
features. The usage frequency is defined by its cumulative
normalized similarity (Eq. 1). The features selected by the
above criteria are appended to the last frame of memory.
And if the last memory frame is full, we will initialize one
new frame with the zero vector and set it as the last frame
to store new features. When the number of frames reaches
the limit Tl, the obsolete memory will be removed. Such
a compact storing strategy can efficiently track long-term
representative features and intermittently occluded objects,
while balancing the resources required.

3.3. Global Reasoning module

Rare adverse events such as occluded objects are a no-
torious issue for the practical deployment of AVs. Our in-
sight is that humans perceive their surroundings not only
through sensors, but also by exploiting global information
on the scene to reason over the unobservable spaces. For
instance, when a vehicle performs an emergency stop with-
out a clear reason, humans can infer that there is potentially
an occluded object ahead of the vehicle and will drive more
cautiously. Thus we propose the global reasoning module to
capture the interaction and relationship between objects and
the environment to detect adverse events (e.g. occlusion)
and improve overall perception performance. The module
consists of three parts: 1) an object-environment and object-
object interaction modeling process; 2) an occupancy de-
coder to generate the occupancy map; 3) a consistency loss

2Based on the data collected from the CARLA simulator, only 7% of
the ego-vehicle-centered BEV map area is occupied by active objects.

to encourage consistent prediction of waypoints and the oc-
cupancy map.
Interaction Modeling The object-environment and object-
object interaction modeling process aims at reasoning about
the relationship among objects and the environment. On the
one hand, Mfused features whose corresponding location
in the BEV map Mp has a high probability of object exis-
tence will be extracted to represent object features. On the
other hand, Mfused features will also be downsampled to
represent the environment features. All object and environ-
ment features are used to construct a graph, which is passed
through a graph attention network (GAT) [56] for interac-
tion modeling.
Occupancy Decoder Taking the features outputted by the
GAT as keys and values, and the learnable positional em-
beddings as queries, the occupancy decoder utilizes a trans-
former decoder with Kopy layers to generate: 1) the traf-
fic sign feature, which is then concatenated with the traf-
fic sign feature from the BEV decoder to generate the final
traffic sign prediction; 2) the occupancy map feature, which
is then applied with convolution operation to generate the
occupancy map Ot ∈ RTf×H×W . At a future time t, each
cell in the occupancy map contains a value in the range [0,1]
representing the probability that the cell is occupied.
Consistency Loss Currently, our framework predicts the
waypoints and the occupancy map independently, which
are not necessarily consistent. For example, the waypoints
could overlap some obstacles in the occupancy map. Thus
we propose a consistency loss to discourage waypoints’
crossing the high-probability region of the occupancy map.
Further, the consistency loss also encourages generating
longer waypoint trajectories for efficient driving. Specifi-
cally, the consistency loss aims at minimizing the average
object existence probability of the cells that cover the pre-
dicted waypoints, and maximizing the average l2 length of
the waypoint trajectory w:

Lconsistency =
1

Tf

( Tf∑
t=0

∑Nt
c

i=0 Ot,i

N t
c

− λ

Tf∑
t=0

∥wt∥1

)
(3)

,where N t
c denotes the number of covered cell at step t, Ot,i

denotes the object existence probability at cell i at time t.

3.4. Control

Following [11], we use two PID controllers for latitudi-
nal and longitudinal control, to track the heading and veloc-
ity of predicted waypoints respectively. If a red traffic light
or stop sign is detected, the ego-vehicle will brake. Addi-
tionally, an emergency stop will also be performed if the
ego vehicle’s current bounding box crosses the area in the
occupancy map that has a high object existence probability
or if the future waypoints overlap with objects in the BEV
map.
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Figure 3. An illustration for the four types of occlusion scenarios
included in the proposed DOS benchmark. The orange color de-
notes the ego car. The blue/green dots denote the occluded/visible
trajectory of the occluded dangerous object.

3.5. Training Setup

The training of our framework consists of two stages.
In the first stage, we train the perception module to predict
BEV features, traffic sign features, and waypoints. Specif-
ically, the loss of BEV features and traffic sign features is
computed with additional prediction heads, which are dis-
carded in the next stage. In the second stage, we freeze
the perception module and train the other two modules.
Five loss terms are considered: 1) the waypoints loss Lw

that minimizes the error between predicted waypoints and
expert waypoints; 2) the BEV map loss LBEV that fol-
lows [10, 64] to minimize the current-frame BEV map pre-
diction error; 3) the traffic sign loss Lsign for the traffic reg-
ulation prediction; 4) occupancy map loss Lopy that mini-
mizes the occupancy prediction error in a future horizon; 5)
the consistency loss Lconsistency which encourages a consis-
tent generation of the waypoints and occupancy map. These
loss terms are balanced by corresponding loss weights.

4. Drive in Occlusion Sim (DOS) Benchmark

In order to address the issue that occlusion events are rare
in existing datasets and benchmarks, we present the Drive
in Occlusion Simulation benchmark (DOS), a CARLA-
based framework providing diverse driving scenarios with
occluded objects. As shown in Figure 3, the proposed
DOS benchmark includes four types of challenging occlu-
sion driving scenarios:

Parked Cars (#1) The ego vehicle is driving in a straight

Rank Method DS ↑ RC ↑ IS ↑
1 ReasonNet (Ours) 79.95 89.89 0.89
2 InterFuser [51] 76.18 88.23 0.84
3 TCP [63] 75.14 85.63 0.87
4 LAV [10] 61.85 94.46 0.64
5 TransFuser [15] 61.18 86.69 0.71
6 Latent TransFuser [15] 45.20 66.31 0.72
7 GRIAD [8] 36.79 61.85 0.60
8 TransFuser+ [1] 34.58 69.84 0.56

Table 1. Performance comparison on the public CARLA leader-
board [53] (accessed Nov 2022). For all three metrics, higher is
better. Our method ranks first overall on the leaderboard, with the
highest driving score (DS) and infraction score (IS), and the sec-
ond highest route completion (RC).

lane with parked cars on the side. Pedestrians can first ap-
pear on the sidewalk (visible) and then suddenly emerge
through the occluded areas between parked cars (occluded).
Sudden Brake (#2) The ego vehicle is driving in a straight
lane along with other vehicles ahead. Pedestrians can sud-
denly emerge from the sidewalks, causing the other vehicles
to brake while remaining invisible to the ego vehicle.
Left Turn (#3) The ego vehicle intends to perform an un-
protected left turn at an intersection, but a truck in the oppo-
site lane blocks the view of oncoming traffic, intermittently
obscuring vehicles driving straight through the intersection.
Red Light Infraction (#4) The ego vehicle is crossing an
intersection after some trucks. A left-to-right vehicle run-
ning a red light suddenly appears, forcing the trucks to brake
promptly. But the ego vehicle’s view toward the running-
light vehicle is blocked by the trucks, so it remains invisible
to the ego vehicle.

Each of the four scenarios in the DOS benchmark com-
prises 25 different cases varying in the road environment
and background traffic. Compared to a previous occlusion
benchmark AUTOCASTSIM [19], the DOS benchmark: 1)
includes occlusions of both vehicles and pedestrians, in-
stead of only vehicles; 2) includes 100 cases of 4 scenar-
ios, instead of only 3 cases of 3 scenarios; 3) considers spe-
cific occlusions that can potentially be resolved by temporal
reasoning (intermittent occlusion, #1, #3) and global rea-
soning (constant occlusion but with interaction clues, #2,
#4) about the scene, instead of random occlusions as in
AUTOCASTSIM. Thus our scenarios can also serve as a
good tracking-with-intermittent-occlusion benchmark and a
People-as-Sensor [2, 31] benchmark.

5. Experiments

5.1. Experiment Setup

Implementation We implement and evaluate our ap-
proach on the open-source CARLA simulator with version
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Setting Town 05 Long DOS

Ts Tl DS ↑ RC ↑ IS ↑ CR ↓ Red ↓ Blocked ↓ SR#1 ↑ SR#2 ↑ SR#3 ↑ SR#4 ↑
0 0 66.7±3.8 97.6±2.7 0.68±0.03 0.18±0.03 0.05±0.02 0.03±0.03 22±1.6 28±3.4 26±2.1 25±1.6
1 0 67.9±3.4 96.8±2.3 0.70±0.02 0.16±0.04 0.04±0.03 0.05±0.02 30±3.6 38±3.6 32±2.8 32±3.4
2 0 68.1±3.1 96.9±3.4 0.70±0.03 0.16±0.03 0.04±0.02 0.05±0.03 28±5.5 48±4.1 38±4.4 52±3.9
2 1 70.9±2.0 95.7±3.1 0.74±0.02 0.13±0.02 0.04±0.02 0.06±0.04 55±4.4 57±4.1 48±4.1 55±5.5
4 0 70.5±2.1 96.4±2.5 0.73±0.04 0.14±0.03 0.03±0.02 0.06±0.03 32±5.4 58±4.4 40±5.5 55±4.9
4 2 73.2±1.9 95.9±2.3 0.76±0.03 0.11±0.02 0.03±0.01 0.07±0.03 63±4.2 73±3.6 80±4.2 70±5.5

Table 2. Ablation study on different short-term buffer size Ts and long-term buffer size Tl, on the Town 05 Long benchmark and the
proposed DOS benchmark. Performance is evaluated over three runs. CR: Collision rate, Red: Red light violation, Blocked: Vehicle
blocked, SR: Success rate. SR#1 denotes the first kind of scenario in the DOS benchmark. As the two buffer sizes increase, improvement
is witnessed in all metrics but the road completion.

0.9.10.1 [21]. We use ResNet-50 pretrained on ImageNet
as the 2D backbone and PointPillars trained from scratch
as the 3D backbone. We predict Tf = 4 time steps for
the waypoints and occupancy map, and the interval between
each time step is 0.5 seconds. The memory bank maintains
Ts = 4 frames in the short-term buffer and Tl = 2 frames
in the long-term buffer. The memory bank is updated every
τ = 2 frame. We refer readers to Appendix A for more
details.

Dataset Collection We collect an expert dataset of 2M
frames by running a rule-based expert agent on all 8 pub-
lic towns and 21 types of weather, with the access to the
privileged information in the CARLA simulator. We ran-
domly set routes, spawn dynamic objects and adversarial
scenarios provided in [47], to diversify the collected data.
To ensure the temporal continuity of collected data, the data
are collected at a high frequency of 10HZ.

Metrics We consider three major metrics introduced by the
CARLA LeaderBoard: route completion ratio (RC), infrac-
tion score (IS), and driving score (DS). The route comple-
tion ratio is the percentage of the route completed. The in-
fraction score measures infractions triggered. When colli-
sions or traffic rule violations occur, the infraction score will
decay by a discount factor. The driving score is the prod-
uct of the route completion ratio and the infraction score,
describing both driving progress and safety, and thus is the
primary ranking metric in the CARLA Leaderboard.

5.2. Comparison to the state of the art

Table 1 shows the top 8 entries on the public CARLA
Leaderboard. Readers can refer to Sec 2 for descriptions
of these methods. Our method outperforms all prior meth-
ods, with the highest driving score and infraction score, and
the second highest route completion. The previous leading
method InterFuser uses a transformer for sensor fusion but
lacks temporal and global reasoning. Compared to Inter-
Fuser, our method improved the driving score, road comple-
tion, and infraction score by 5%, 2%, and 6% respectively.

5.3. Ablation study

We investigate the effect of the temporal and global rea-
soning modules on the Town05 Long benchmark and the
DOS benchmark. For each scenario in DOS, we take 5 cases
for training and 20 cases for evaluation. In addition to the
three metrics mentioned earlier, we also present four more
metrics for detailed analysis: collision rate (CR), red light
violation (Red), ego vehicle blocked frequency (Blocked),
and success rate (SR). The first three metrics are normalized
by the driven distance (km). Visualizations of how the tem-
poral reasoning and global reasoning work can be found at
Figure 4 and Figure 5 respectively.
Memory Size Table 2 studies the effect of different short-
term buffer size Ts and long-term buffer size Tl. The over-
all observation is that, as the two buffer sizes increase,
improvement is witnessed in all metrics but road comple-
tion. Specifically, when the long-term memory is removed
(Tl = 0), the average success rates drop sharply from 71.5
to 36 on DOS scenarios that require keeping track of in-
termittently occluded objects (#1 and #3). If we remove
the temporal reasoning module (Ts = Tl = 0), the driving
score on the Town05 benchmark drops by 9%, and the av-
erage success rate on the DOS benchmark drops by 46%.
We hypothesize that the drop in performance is because 1)
it can be really hard to accurately estimate the objects’ fu-
ture motion based only on single-frame data; 2) temporal
information can help keep track of objects that are intermit-
tently occluded; 3) the global reasoning module may also
work poorly when historic information is missing.
Long-Term Memory Selection Strategy Table 3 studies
the performance of different long-term memory selection
strategies. Specifically, the proposed strategy in Sec 3.2 in-
cludes two selection criteria. So here we ablate the effect
of the two criteria by 1) only selecting the short-term fea-
ture with top-K usages (usage-based); 2) only selecting the
feature with a high probability of the existence of an object
(object-based). Besides, we also compared a random selec-
tion strategy. As in Table 3, the random selection strategy
has the poorest performance especially on the DOS bench-
mark, as random selection could miss important and repre-
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Setting Town 05 Long DOS

DS ↑ RC ↑ IS ↑ CR ↓ Red ↓ Blocked ↓ SR#1 ↑ SR#2 ↑ SR#3 ↑ SR#4 ↑
Random 71.2±5.4 96.6±2.4 0.74±0.04 0.13±0.04 0.03±0.01 0.06±0.02 33±4.4 55±6.2 42±5.5 53±5.4
Usage-based 72.0±3.9 95.9±2.2 0.75±0.04 0.12±0.03 0.03±0.01 0.06±0.02 45±4.2 62±3.4 53±2.8 62±3.9
Object-based 72.2±3.7 96.1±3.0 0.75±0.03 0.12±0.03 0.03±0.01 0.05±0.02 57±4.1 65±3.6 73±4.4 60±3.7
Full (Ours) 73.2±1.9 95.9±2.3 0.76±0.03 0.11±0.02 0.03±0.01 0.07±0.03 63±4.2 73±3.6 80±4.2 70±5.5

Table 3. Ablation study on different long-term memory selection strategies. Our proposed strategy considering both the usage and object
criteria outperforms the random selection strategy and the two methods with only one criteria, especially on the DOS benchmark.

Setting Town 05 Long DOS

DS ↑ RC ↑ IS ↑ CR ↓ Red ↓ Blocked ↓ SR#1 ↑ SR#2 ↑ SR#3 ↑ SR#4 ↑
No global reasoning 68.9±4.6 97.4±2.9 0.71±0.04 0.15±0.04 0.05±0.02 0.05±0.02 28±2.8 34±3.4 29±2.0 27±3.6
No consistency loss 72.2±3.4 96.1±3.2 0.75±0.03 0.12±0.02 0.03±0.02 0.06±0.03 60±4.1 72±3.9 77±4.9 68±4.2
No traffic sign prediction 71.1±2.7 96.0±4.1 0.74±0.03 0.11±0.03 0.05±0.03 0.07±0.03 62±4.4 72±4.0 82±2.8 70±4.1
Full (Ours) 73.2±1.9 95.9±2.3 0.76±0.03 0.11±0.02 0.03±0.01 0.07±0.03 63±4.2 73±3.6 80±4.2 70±5.5

Table 4. Ablation study on the global reasoning module. The performance would drop when 1) the entire global reasoning module is
removed; 2) the consistency loss is not applied; 3) the traffic sign feature from the reasoning module is not utilized.

T - 1 T - 2 T - 3 T - 4

T - 1 T - 2 T - 3 T - 4

0

0.5

1.0

Figure 4. Visualization of the attention map between one object’s
current-frame feature query and the historic-frame feature stored
in the short-term buffer, in two cases. The object’s current-frame
feature consistently attends to its corresponding region in the his-
toric feature map.

Previous Frame Current Frame T T + 1 T + 2

stopping! stopping!

occluded

occluded occluded

Figure 5. We show two cases of how our framework reasons the
presence of the occluded object. In the first case, a pedestrian first
appeared on the sidewalk (visible) and then emerges between two
parked cars (occluded). In the second case, a vehicle runs the red
light, forcing trucks to brake abruptly. But the ego vehicle’s view
toward the running-light vehicle is blocked by the front trucks, so
the running-light vehicle remains invisible to the ego vehicle. The
rectangles mark the occluded objects.

sentative features on the scene. Compared to our strategy
utilizing both criteria, the two ablations omitting one of the
criteria have a performance drop, especially on the DOS
benchmark. The usage-based strategy performs worse than
the object-based, showing that the features of objects could
be more informative for capturing historic behaviors.

Global Reasoning Design Table 4 studies the performance
when different designs of the global reasoning module are
applied. First, we remove the entire module and observe a
significant drop in all metrics but the road completion. For
instance, the average success rate on the DOS benchmark
dropped from 71.5 to 29.5. This demonstrates the effec-
tiveness of global reasoning, especially in occlusion events.
Second, we ablated the consistency loss, which could alle-
viate the sub-optimal issues in collected expert data. A re-
moval of consistency loss leads to a lower driving score and
higher collision rate on the Town 05 benchmark and a lower
success rate on the DOS benchmark. Third, excluding the
traffic sign feature from the global reasoning model results
in an increase on the red light violation. One explanation is
that the traffic sign feature from the global reasoning mod-
ule could help reason the distant traffic light state according
to other road participants’ behavior.

6. Conclusion

We present ReasonNet, a novel end-to-end autonomous
driving framework including two major components: a tem-
poral reasoning module and a global reasoning module. The
temporal reasoning module processes the historic informa-
tion on the driving scene for high-fidelity forecasting of
other road participants and dynamically maintains a tempo-
ral memory bank. The global reasoning module models the
interaction and relationship among the objects and environ-
ment to detect adverse events especially occlusion, and im-
prove overall perception performance. Our method pushes
the state-of-the-art performance of the CARLA leaderboard
by a considerable margin. Moreover, we also publicly re-
lease a new benchmark DOS consisting of diverse occlu-
sion scenarios, to facilitate the study of occlusion detection
in the field of end-to-end autonomous driving.
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Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014. 3

[17] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen
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