ReasonNet: End-to-End Driving with Temporal and Global Reasoning

Hao Shao1 Letian Wang2 Ruobing Chen1 Steven L. Waslander2 Hongsheng Li3 Yu Liu1,4*

1SenseTime Research 2University of Toronto 3CUHK MMLab 4Shanghai Artificial Intelligence Laboratory

Abstract

The large-scale deployment of autonomous vehicles is yet to come, and one of the major remaining challenges lies in urban dense traffic scenarios. In such cases, it remains challenging to predict the future evolution of the scene and future behaviors of objects, and to deal with rare adverse events such as the sudden appearance of occluded objects. In this paper, we present ReasonNet, a novel end-to-end driving framework that extensively exploits both temporal and global information of the driving scene. By reasoning on the temporal behavior of objects, our method can effectively process the interactions and relationships among features in different frames. Reasoning about the global information of the scene can also improve overall perception performance and benefit the detection of adverse events, especially the anticipation of potential danger from occluded objects. For comprehensive evaluation on occlusion events, we also release publicly a driving simulation benchmark DriveOcclusionSim consisting of diverse occlusion events. We conduct extensive experiments on multiple CARLA benchmarks, where our model outperforms all prior methods, ranking first on the sensor track of the public CARLA Leaderboard [53].

1. Introduction

Despite significant recent progress in the field of autonomous driving, truly large-scale deployment of autonomous vehicles (AVs) on public roads has yet to be established. The majority of the remaining issues lie in navigating dense urban traffic scenes, where a large number of different dynamic objects (e.g., vehicles, bicycles, pedestrians), complex road geometries and road user interactions are involved. In such circumstances, currently deployed or tested solutions could make incorrect or unexpected decisions, resulting in severe accidents or traffic infractions [4, 24, 53]. Two of the major challenges behind such autonomous incompetence include 1) how to achieve a comprehensive understanding of the driving scene and, more importantly, how to make high-fidelity predictions on the future evolution of the driving scene; 2) how to deal with rare adverse events in long-tail distributions, such as undetected but relevant objects in occluded regions.

Comprehensive scene understanding and high-fidelity prediction of how objects in the scene will move in the future are vital for autonomous vehicles to take safe and reliable actions. Toward this end, modularized methods were proposed to decompose the task into three sequential sub-tasks: detection [37–40, 42], tracking [5, 65], and forecasting [6, 26, 28, 32, 33, 59–61]. While more interpretability is provided by developing each module independently, these sub-tasks are still regarded as open research questions and errors in each sub-task can propagate and accumulate, leading to unstable overall performance. In contrast, end-to-end driving methods [9, 10, 51] have recently emerged as a promising method to solve these subtasks in a monolithic manner directly. However, a high-fidelity future prediction necessitates sufficient temporal reasoning over the historic
information of the scene [22, 50], which is usually only somewhat considered in previous end-to-end driving methods if not completely ignored. For example, [10, 15] only exploited scene information in the current frame, and [54] simply concatenated features in historic frames for temporal reasoning. In such cases, the interactions and relationships amongst features in different frames and objects cannot be sufficiently modeled. Thus in this paper, we propose a temporal reasoning module to effectively fuse information from different frames for better driving performance.

On the other hand, rare adverse events in long-tailed distributions remain a notoriously challenging issue on the way toward large-scale deployment of autonomous vehicles. For example, one such challenge is the difficulty in detecting occluded but relevant objects in the scene. While a large amount of research has focused on improving perception performance [37, 57], the occluded objects essentially lie out of the scope of observable elements, and failure to consider such objects can result in either dangerous or overly cautious driving behavior. Our observation is that, while humans also suffer from similar limitations to autonomous vehicles regarding occluded objects, they are able to reason about these unobservable spaces by exploiting global information of the scene such as road geometry and driving interaction patterns, to anticipate potential danger even under occlusion. For example, when one human driver notices another vehicle braking abruptly, the driver may reason the presence of an occluded object (e.g., a pedestrian) ahead, reminding himself to drive cautiously. Thus, our insight is that, a safe and intelligent autonomous vehicle should also master the global reasoning capability to have a better perception of the scene. In this paper, we propose a transformer-based global reasoning module to sufficiently fuse information of the environment and objects, and analyze their interactions for better scene understanding. Such global reasoning capability not only benefits interaction modeling with occluded objects, but also improves overall perception performance. Examples of such performance gains include better traffic light status identification by reasoning over other vehicles’ actions and more accurate future trajectory forecasting by reasoning over interactions among objects. Besides, considering the fact that the occlusion events lie in the long-tailed distribution and have been rare in currently available datasets, we also construct a Driving in Occlusion Simulation benchmark (DOS) consisting of 4 occlusion scenarios, each with 25 cases, as a comprehensive occlusion event evaluation benchmark in the field of end-to-end autonomous driving.

In this paper, we propose a novel end-to-end driving framework named temporal and global reasoning network (ReasonNet), which provides enhanced reasoning on the temporal evolution and the global information of the scene, for better perception performance and driving quality. Our contributions are three-fold:

- We propose a novel temporal and global reasoning Network (ReasonNet) to enhance historic scene reasoning for high-fidelity prediction of the scene’s future evolution and improve global contextual perception performance even under occlusion.

- We present a new benchmark called Driving in Occlusion Simulation benchmark (DOS), which consists of diverse occlusion scenarios in urban driving for systematic evaluation in occlusion events, and make the benchmark publicly available.

- We experimentally validate our method on multiple benchmarks with complex and adversarial urban scenarios. Our model ranks first on the sensor track of the CARLA autonomous driving leaderboard.

2. Related work

End-to-end Autonomous Driving End-to-end autonomous driving in urban scenarios has become more studied recently thanks to the CARLA simulator and leaderboard [21]. Recent works mainly consist of reinforcement learning (RL) and imitation learning (IL) methods. The reinforcement Learning methods train the agents by constantly interacting with simulated environments and learning from these experiences. Latent DRL [54] first trains an embedding space as a latent representation of the environment observation, and then conducts reinforcement learning with the latent observation. Roach [66] utilizes an RL agent with privileged information of the environment to distill a model only with regular information (e.g. sensor) as the final agent. WOR [9] builds a model-based RL agent along with the world model and reward model. The final agent is distilled from the expert knowledge acquired from these pretrained models. Imitation learning methods aim at learning from an expert agent to bypass interacting with the environment. Early IL methods include CIL [17] and CILRS [18], which apply a conditional architecture with different network branches for different navigation commands. LBC [11] first trains an imitation learning agent with privileged information, which is then distilled into a model using sensor data. Transfuser [15, 47] designs a multi-modal transformer to fuse information between the front camera image and LiDAR data. LAV [10] exploits data of not only the ego vehicle but also surrounding vehicles for data augmentation by learning a viewpoint-invariant spatial intermediate representation. TCP [63] proposes a network with two branches which generates the control signal and waypoints respectively. An adaptive ensemble is applied to fuse the two output signals. InterFuser [51] uses a transformer to fuse and process multimodal multi-view sensors for comprehensive scene understanding.
Attention for Autonomous Driving

The attention mechanism has been demonstrated to be a powerful module in many areas of deep learning, including the context of driving. The classic attention-based Transformer architecture [55] was originally established in Natural Language Processing. Transformer (VIT) was then applied in Computer Vision (vision Transformer, ViT [20, 49]) and attains excellent performance on ImageNet classification. Later generations move on to generalize the attention mechanism to the driving domain, including motion forecasting [23, 36, 58], driver attention prediction [25, 34] and object tracking [45, 52]. In the field of end-to-end autonomous driving, TransFuser [15, 47] exploits several transformer modules for the fusion of data from the front view camera and LiDAR. NEAT [14] uses intermediate attention maps to iteratively compress 2D image features into a compact bird-eye-view (BEV) representation for driving. InterFuser [51] utilizes a transformer encoder and decoder to fuse information and decode the feature into interpretable embeddings.

Multi-task Learning

Our end-to-end driving framework adopts multi-task learning, with a joint objective of object detection, occupancy forecasting, traffic sign prediction and waypoint prediction. MotionNet [62] proposes a spatio-temporal pyramid network for joint perception and motion prediction based on BEV maps. PhPNet [41] proposes a new object trajectory representation and multi-object tracker to handle occlusion and false positives. IntentNet [7] predicts the high-level intentions of each agent from semantic HD maps building. ST-P3 [29] proposes an egocentric-aligned accumulation technique to preserve geometry information in 3D space and utilize a dual pathway modeling to consider past motion variations.

3. Method

We aim at learning a driving policy \(\pi \) that generates raw control commands by taking multi-view multi-modal sensor readings, vehicle measurements, and navigation commands as inputs. As shown in Figure 2, the proposed ReasonNet consists of three parts: 1) a perception module that extracts bird’s-eye-view (BEV) features from LiDAR and RGB data; 2) a temporal reasoning module that processes temporal information and maintains a memory bank storing historic features; 3) a global reasoning module that captures the interaction/relationship amongst objects and the environment, to detect adverse events (e.g. occlusion) and improve overall perception performance. This section will introduce these modules in detail.

3.1. Perception Module

The perception module is responsible for processing and fusing different sensor data at the early stage of our framework, based on which temporal and global reasoning can be conducted by later modules. Specifically, five sensors are utilized: four RGB cameras (left, front, right and rear) \(I_{rgb} = I_{0,1,2,3} \) and one LiDAR sensor \(I_{lidar} = I_4 \). Four image inputs are obtained from the four cameras, and an additional focus-view image input is center-cropped from the front image to capture distant traffic lights. Point cloud data is retrieved from the LiDAR sensor. Our perception module includes a 2D backbone to embed image input into keys and values, a 3D backbone to embed LiDAR input into queries, and a BEV decoder that utilizes these keys, values, and queries to obtain features of the bird’s-eye view (BEV) map, waypoints, and traffic signs.

Image Input

For each image input of \(I_{rgb} \), a 2D CNN backbone ResNet [27] is applied to generate a feature map \(f_i \). Then, we use a convolution layer to map the channels of \(f_i \) to \(C_v \) and flatten it to one-dimensional tokens. A sinusoidal positional encoding and learnable sensor embeddings are added to the tokens, so that the following network can distinguish them from different cameras and relative positions. Finally, tokens of different images are passed through a standard transformer encoder with \(K_v \) layers. Each layer consists of Multi-Headed Self-Attention [55], MLP blocks and layer normalization [3]. This image fusion operation can contribute to a better perception of global context from multi-view inputs, generating keys and values for the image-LiDAR fusion in BEV decoder.

LiDAR Input

For the LiDAR input, we use PointPillars [35] as our 3D perception backbone to process points in the ego-vehicle-centered area \(x \in [-H_b, H - H_b] \) and \(y \in [-W/2, W/2] \). Specifically, we use a simplified version of PointNet [48] to encode the information of raw LiDAR points. Each pillar includes the points in a 0.25m×0.25m area. The extracted feature map is downsampled to \(C_v \times H \times W \) for computation reduction and then serves as BEV queries used in the BEV decoder and memory bank.

Sensor-Fusion BEV Decoder

The BEV decoder follows a standard transformer architecture design with \(K_{bev} \) layers to fuse tokens from different sensors. Tokens from the RGB images are fed as values and keys into the decoder, and tokens from the LiDAR points are fed as the \(H \times W \) queries to generate BEV features. In addition, two other kinds of queries for the prediction of traffic signs and waypoints \(w \) are also fed into the decoder. Following InterFuser [51], we use a 2-layer MLP as the traffic sign classifier to predict the traffic light state and whether there is a stop sign ahead; we then use a single-layer GRU [16] to auto-regressively generate consecutive waypoints \(\{w_t\}_{t=1}^{T_f} \) conditioned on the goal location of the ego vehicle. \(T_f \) denotes the number of the predicted time steps. To pretrain the perception module in the first training stage, the generated BEV feature is passed through a one-stage CenterPoint [64] to generate the \(H \times W \times 7 \) BEV map covering an \(H \times W \) spatial region, where the seven channels represent object existence.
We map every query element to a distribution over $H \times W$ memory elements and correspondingly aggregate their values v to obtain the readout feature $M \in \mathbb{R}^{C_v \times T_h \times H \times W}$ for each frame t stored in the memory:

$$M_{i,j} = \sum_{i=0,j=0}^{i=H-1,j=W-1} v_{i,j} S(q_{h,w}, k_{t,i,j}) \quad (2)$$

The aggregated features from all historic frames are then concatenated with the current-frame feature value to get $M' \in \mathbb{R}^{C_v \times (T_h+1) \times H \times W}$, which is then passed through a GRU to progressively fuse temporal information and get $M_{fused} \in \mathbb{R}^{C_v \times H \times W}$ as the final output of the module. Technically, we take the L2 similarity proposed in STCN [13] as the similarity measure function, which is more stable than the dot product [46]. The current-frame feature query q is obtained by passing the features from the 3D backbone $F \in \mathbb{R}^{C_b \times H \times W}$ through a query encoder (several convolution layers). The historic-frame feature key k and value v are taken from the temporal memory bank.

Memory Bank Maintaining As above, we have introduced the temporal processing at one single frame. After every τ frame, the obtained feature key and value at that frame will be used to update the memory bank. Specifically, the current-frame feature query q is directly copied and fed into the memory bank as the memory key without extra computation. The final output M_{fused} will first be encoded
to a BEV map M_p. The BEV map M_p will be concatenated with the final output M_{fused} and passed through a value encoder to obtain the memory value v, which is fed into the memory back. With the above key-value pairs, the memory bank maintains two kinds of buffer: the short-term and long-term buffer. On the one hand, the new key-value pair will be appended to the short-term buffer, as a high-resolution memory of the scene in the past few seconds for accurate feature matching. Considering the limited GPU memory resources, we limit the buffer size and older key-value pairs will be discarded when the limit number T_s is reached. However, when these older features are discarded, the long-term behavior of the traffic participants is missing, which can be crucial for motion forecasting in complex traffic scenarios. Thus on the other hand, inspired by XMem [12], the memory bank also maintains a long-term buffer that selectively stores important/representative key-value feature pairs discarded by the short-term buffer. Considering the fact that the objects surrounding the ego vehicle are sparse most of the time2, the long-term buffer selectively stores key-value features (k and v) which meet one of the two criteria: 1) their corresponding location in the BEV map M_p has a high probability of object existence; 2) their usage frequency is in top-K of all candidate key-value features. The usage frequency is defined by its cumulative normalized similarity (Eq. 1). The features selected by the above criteria are appended to the last frame of memory. And if the last memory frame is full, we will initialize one new frame with the zero vector and set it as the last frame to store new features. When the number of frames reaches the limit T_l, the obsolete memory will be removed. Such a compact storing strategy can efficiently track long-term representative features and intermittently occluded objects, while balancing the resources required.

3.3. Global Reasoning module

Rare adverse events such as occluded objects are a notorious issue for the practical deployment of AVs. Our insight is that humans perceive their surroundings not only through sensors, but also by exploiting global information on the scene to reason over the unobservable spaces. For instance, when a vehicle performs an emergency stop without a clear reason, humans can infer that there is potentially an occluded object ahead of the vehicle and will drive more cautiously. Thus we propose the global reasoning module to capture the interaction and relationship between objects and the environment to detect adverse events (e.g., occlusion) and improve overall perception performance. The module consists of three parts: 1) an object-environment and object-object interaction modeling process; 2) an occupancy decoder to generate the occupancy map; 3) a consistency loss to encourage consistent prediction of waypoints and the occupancy map.

Interaction Modeling

The object-environment and object-object interaction modeling process aims at reasoning about the relationship among objects and the environment. On the one hand, M_{fused} features whose corresponding location in the BEV map M_p has a high probability of object existence will be extracted to represent object features. On the other hand, M_{fused} features will also be downsampled to represent the environment features. All object and environment features are used to construct a graph, which is passed through a graph attention network (GAT) [56] for interaction modeling.

Occupancy Decoder

Taking the features outputted by the GAT as keys and values, and the learnable positional embeddings as queries, the occupancy decoder utilizes a transformer decoder with K_{ops} layers to generate: 1) the traffic sign feature, which is then concatenated with the traffic sign feature from the BEV decoder to generate the final traffic sign prediction; 2) the occupancy map feature, which is then applied with convolution operation to generate the occupancy map $O_t \in \mathbb{R}^{T_t \times H \times W}$. At a future time t, each cell in the occupancy map contains a value in the range $[0, 1]$ representing the probability that the cell is occupied.

Consistency Loss

Currently, our framework predicts the waypoints and the occupancy map independently, which are not necessarily consistent. For example, the waypoints could overlap some obstacles in the occupancy map. Thus we propose a consistency loss to discourage waypoints’ crossing the high-probability region of the occupancy map. Further, the consistency loss also encourages generating longer waypoint trajectories for efficient driving. Specifically, the consistency loss aims at minimizing the average object existence probability of the cells that cover the predicted waypoints, and maximizing the average l_2 length of the waypoint trajectory w:

$$
L_{\text{consistency}} = \frac{1}{T_f} \left(\sum_{t=0}^{T_f} \sum_{i=0}^{N_c^t} \frac{O_{t,i}}{N_c^t} - \lambda \sum_{t=0}^{T_f} \| w(t) \|_2 \right) \tag{3}
$$

where N_c^t denotes the number of covered cell at step t, $O_{t,i}$ denotes the object existence probability at cell i at time t.

3.4. Control

Following [11], we use two PID controllers for lateral and longitudinal control, to track the heading and velocity of predicted waypoints respectively. If a red traffic light or stop sign is detected, the ego-vehicle will brake. Additionally, an emergency stop will also be performed if the ego vehicle’s current bounding box crosses the area in the occupancy map that has a high object existence probability or if the future waypoints overlap with objects in the BEV map.

2 Based on the data collected from the CARLA simulator, only 7% of the ego-vehicle-centered BEV map area is occupied by active objects.
3.5. Training Setup

The training of our framework consists of two stages. In the first stage, we train the perception module to predict BEV features, traffic sign features, and waypoints. Specifically, the loss of BEV features and traffic sign features is computed with additional prediction heads, which are discarded in the next stage. In the second stage, we freeze the perception module and train the other two modules. Five loss terms are considered: 1) the waypoints loss \(L_w \) that minimizes the error between predicted waypoints and expert waypoints; 2) the BEV map loss \(L_{BEV} \) that follows \([10, 64]\) to minimize the current-frame BEV map prediction error; 3) the traffic sign loss \(L_{sign} \) for the traffic regulation prediction; 4) occupancy map loss \(L_{opy} \) that minimizes the occupancy prediction error in a future horizon; 5) the consistency loss \(L_{consistency} \) which encourages a consistent generation of the waypoints and occupancy map. These loss terms are balanced by corresponding loss weights.

4. Drive in Occlusion Sim (DOS) Benchmark

In order to address the issue that occlusion events are rare in existing datasets and benchmarks, we present the Drive in Occlusion Simulation benchmark (DOS), a CARLA-based framework providing diverse driving scenarios with occluded objects. As shown in Figure 3, the proposed DOS benchmark includes four types of challenging occlusion driving scenarios:

Parked Cars (#1) The ego vehicle is driving in a straight lane with parked cars on the side. Pedestrians can first appear on the sidewalk (visible) and then suddenly emerge through the occluded areas between parked cars (occluded).

Sudden Brake (#2) The ego vehicle is driving in a straight lane along with other vehicles ahead. Pedestrians can suddenly emerge from the sidewalks, causing the other vehicles to brake while remaining invisible to the ego vehicle.

Left Turn (#3) The ego vehicle intends to perform an unprotected left turn at an intersection, but a truck in the opposite lane blocks the view of oncoming traffic, intermittently obscuring vehicles driving straight through the intersection.

Red Light Infraction (#4) The ego vehicle is crossing an intersection after some trucks. A left-to-right vehicle running a red light suddenly appears, forcing the trucks to brake promptly. But the ego vehicle’s view toward the running-light vehicle is blocked by the trucks, so it remains invisible to the ego vehicle.

Each of the four scenarios in the DOS benchmark comprises 25 different cases varying in the road environment and background traffic. Compared to a previous occlusion benchmark AUTOCASTSIM \([19]\), the DOS benchmark: 1) includes occlusions of both vehicles and pedestrians, instead of only vehicles; 2) includes 100 cases of 4 scenarios, instead of only 3 cases of 3 scenarios; 3) considers specific occlusions that can potentially be resolved by temporal reasoning (intermittent occlusion, #1, #3) and global reasoning (constant occlusion but with interaction clues, #2, #4) about the scene, instead of random occlusions as in AUTOCASTSIM. Thus our scenarios can also serve as a good tracking-with-intermittent-occlusion benchmark and a People-as-Sensor \([2, 31]\) benchmark.

5. Experiments

5.1. Experiment Setup

Implementation We implement and evaluate our approach on the open-source CARLA simulator with version
Table 2. Ablation study on different short-term buffer size T_s and long-term buffer size T_l, on the Town 05 Long benchmark and the proposed DOS benchmark. Performance is evaluated over three runs. CR: Collision rate, Red: Red light violation, Blocked: Vehicle blocked, SR: Success rate. SR#1 denotes the first kind of scenario in the DOS benchmark. As the two buffer sizes increase, improvement is witnessed in all metrics but the road completion.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Town 05 Long</th>
<th>DOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_s</td>
<td>T_l</td>
</tr>
<tr>
<td>T_s T_l</td>
<td>DS↑</td>
<td>RC↑</td>
</tr>
<tr>
<td>0 0</td>
<td>66.7±3.8</td>
<td>97.6±2.7</td>
</tr>
<tr>
<td>1 0</td>
<td>67.9±3.4</td>
<td>96.8±2.3</td>
</tr>
<tr>
<td>2 0</td>
<td>68.1±3.1</td>
<td>96.9±3.4</td>
</tr>
<tr>
<td>1 1</td>
<td>70.9±2.0</td>
<td>95.7±3.1</td>
</tr>
<tr>
<td>0 4</td>
<td>70.5±2.1</td>
<td>96.4±2.5</td>
</tr>
<tr>
<td>4 2</td>
<td>73.2±1.9</td>
<td>95.9±2.3</td>
</tr>
</tbody>
</table>

5.3. Ablation study

We investigate the effect of the temporal and global reasoning modules on the Town05 Long benchmark and the DOS benchmark. For each scenario in DOS, we take 5 cases for training and 20 cases for evaluation. In addition to the three metrics mentioned earlier, we also present four more metrics for detailed analysis: collision rate (CR), red light violation (Red), ego vehicle blocked frequency (Blocked), and success rate (SR). The first three metrics are normalized by the driven distance (km). Visualizations of how the temporal reasoning and global reasoning work can be found at Figure 4 and Figure 5 respectively.

Dataset Collection

We collect an expert dataset of 2M frames by running a rule-based expert agent on all 8 public towns and 21 types of weather, with the access to the privileged information in the CARLA simulator. We randomly set routes, spawn dynamic objects and adversarial scenarios provided in [47], to diversify the collected data. To ensure the temporal continuity of collected data, the data are collected at a high frequency of 10HZ.

Metrics

We consider three major metrics introduced by the CARLA LeaderBoard: route completion ratio (RC), infraction score (IS), and driving score (DS). The route completion ratio is the percentage of the route completed. The infraction score measures infractions triggered. When collisions or traffic rule violations occur, the infraction score will decay by a discount factor. The driving score is the product of the route completion ratio and the infraction score, describing both driving progress and safety, and thus is the primary ranking metric in the CARLA Leaderboard.

5.2. Comparison to the state of the art

Table 1 shows the top 8 entries on the public CARLA Leaderboard. Readers can refer to Sec 2 for descriptions of these methods. Our method outperforms all prior methods, with the highest driving score and infraction score, and the second highest route completion. The previous leading method InterFuser uses a transformer for sensor fusion but lacks temporal and global reasoning. Compared to InterFuser, our method improved the driving score, road completion, and infraction score by 5%, 2%, and 6% respectively.

0.9.10.1 [21]. We use ResNet-50 pretrained on ImageNet as the 2D backbone and PointPillars trained from scratch as the 3D backbone. We predict $T_f = 4$ time steps for the waypoints and occupancy map, and the interval between each time step is 0.5 seconds. The memory bank maintains $T_s = 4$ frames in the short-term buffer and $T_l = 2$ frames in the long-term buffer. The memory bank is updated every $\tau = 2$ frame. We refer readers to Appendix A for more details.

Long-Term Memory Selection Strategy

Table 3 studies the effect of different long-term memory selection strategies. Specifically, the proposed strategy in Sec 3.2 includes two selection criteria. So here we ablate the effect of the two criteria by 1) only selecting the short-term feature with top-K usages (usage-based); 2) only selecting the feature with a high probability of the existence of an object (object-based). Besides, we also compared a random selection strategy. As in Table 3, the random selection strategy has the poorest performance especially on the DOS benchmark, as random selection could miss important and repre-
be more informative for capturing historic behaviors.

toward the running-light vehicle is blocked by the front trucks, so the running-light vehicle remains invisible to the ego vehicle. The rectangles mark the occluded objects.

sentative features on the scene. Compared to our strategy utilizing both criteria, the two ablations omitting one of the criteria have a performance drop, especially on the DOS benchmark. The usage-based strategy performs worse than the object-based, showing that the features of objects could be more informative for capturing historic behaviors.

Table 3. Ablation study on different long-term memory selection strategies. Our proposed strategy considering both the usage and object criteria outperforms the random selection strategy and the two methods with only one criteria, especially on the DOS benchmark.

Table 4. Ablation study on the global reasoning module. The performance would drop when 1) the entire global reasoning module is removed; 2) the consistency loss is not applied; 3) the traffic sign feature from the reasoning module is not utilized.

6. Conclusion

We present ReasonNet, a novel end-to-end autonomous driving framework including two major components: a temporal reasoning module and a global reasoning module. The temporal reasoning module processes the historic information on the driving scene for high-fidelity forecasting of other road participants and dynamically maintains a temporal memory bank. The global reasoning module models the interaction and relationship among the objects and environment to detect adverse events especially occlusion, and improve overall perception performance. Our method pushes the state-of-the-art performance of the CARLA leaderboard by a considerable margin. Moreover, we also publicly release a new benchmark DOS consisting of diverse occlusion scenarios, to facilitate the study of occlusion detection in the field of end-to-end autonomous driving.
References

[53] CARLA team. Carla autonomous driving leaderboard.

End-to-end model-free reinforcement learning for urban
driving using implicit affordances. In Proceedings of
the IEEE/CVF conference on computer vision and pattern

information processing systems, pages 5998–6008, 2017. 3

