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Figure 1. Given 4 sparse static RGB camera views of a dynamic scene (a), our proposed Tensor4D decomposition enables multiview
reconstruction to achieve fine-grained geometry reconstruction even on human fingers (b) and temporal-consistent novel view synthesis on
a 3D holographic display (c,d,e). The 4 cameras are settled on four conners of the display. The proposed method demonstrates low-cost,
portable and highly immersive telepresence experience.

Abstract

We present Tensor4D, an efficient yet effective approach
to dynamic scene modeling. The key of our solution is an
efficient 4D tensor decomposition method so that the dy-
namic scene can be directly represented as a 4D spatio-
temporal tensor. To tackle the accompanying memory is-
sue, we decompose the 4D tensor hierarchically by pro-
jecting it first into three time-aware volumes and then nine
compact feature planes. In this way, spatial information
over time can be simultaneously captured in a compact and
memory-efficient manner. When applying Tensor4D for dy-
namic scene reconstruction and rendering, we further fac-
torize the 4D fields to different scales in the sense that struc-
tural motions and dynamic detailed changes can be learned
from coarse to fine. The effectiveness of our method is val-
idated on both synthetic and real-world scenes. Extensive
experiments show that our method is able to achieve high-
quality dynamic reconstruction and rendering from sparse-
view camera rigs or even a monocular camera. The code
and dataset will be released at https://github.com/
DSaurus/Tensor4D.

1. Introduction

High quality reconstruction and Photo-realistic render-
ing of a dynamic scene from a set of input images is nec-

essary for many applications such as AR/VR, 3D content
production and entertainment. Traditional methods use
classical mesh-based representation to reconstruct the dy-
namic scenes, which, unfortunately, are prone to produce
reconstruction errors and rendering artifacts when the scene
contains thin structures, specular surfaces and topological
changes [9, 19, 23, 26, 49].

Recent advances in neural rendering approaches, which
learn scene representations in the form of neural radiance
fields (NeRF), have shown impressive novel view syn-
thesis of general static scenes given only multi-view im-
ages [32]. They are immediately extended to dynamic
scenes: some methods (e.g., NeRF-T) consider time as an
additional input dimension to NeRF representation [56,62],
while other methods (e.g., D-NeRF) disentangle a dynamic
scene into a canonical radiance field and a dynamic motion
field [11,28,37,40,55]. Either way, learning a 4D function is
one of the main cornerstones. Unfortunately, directly using
MLP to fit such a function often suffers from high time and
computation cost, i.e., dozens of hours on high-end GPUs.

In fact, the aforementioned limitation also exists in con-
ventional NeRF-based methods for static scenes, and re-
searchers have proposed to use discrete data structures like
voxel grids [65] or triplanes [7] to accelerate NeRF train-
ing and rendering. However, these techniques are difficult
to be extended to dynamic domains as introducing an addi-
tional time dimension will exponentially increase memory
footprint, hindering them from modeling high-quality ap-
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pearance details.
In this work, we pursue a dynamic scene representation

that also utilizes explicit feature grids to accelerate network
training while avoiding huge memory consumption when
introducing an additional time dimension. To this end, we
bypass the construction of a high resolution 4D tensor; in-
stead, we propose to model a 4D field using hierarchical
tri-projection decomposition. Our decomposition method
extends the tri-projection in EG3D [7]. It firstly project a
full 4D field into three time-aware volumes, each of which
is then further decomposed into three feature planes. In
this way, we model the 4D field using only nine 2D feature
planes, and we empirically find that although being highly
compact, such a representation is powerful enough to rep-
resent dynamic scenes containing complex motions. More-
over, the usage of explicit data structure also allows us to
design a coarse-to-fine strategy to further improve the per-
formance of our method.

By utilizing and factorizing an explicit 4D tensor, our
method enables both efficient reconstruction and compact
representation of dynamic scenes. Besides, the decompo-
sition scheme also introduces implicit constraints on the
representation since only low-rank tensors can be approx-
imated by a small number of lower-dimensional compo-
nents. Such a constraint can serve as an inherent regulariza-
tion when the input observation is limited, e.g., under sparse
and fixed cameras setting or even monocular inputs. In this
paper, we first apply our method for sparse-view dynamic
reconstruction by adopting our Tensor4D decomposition to
time-conditioned radiance fields in “NeRF-T”. In addition,
our decomposition method can also be used for single-view
dynamic reconstruction. This is achieved through decom-
posing both the 4D dynamic motion field and the canonical
radiance field in “D-NeRF”. With proper regularization, our
system enables efficient and high-quality reconstruction of
dynamic objects under both camera settings.

2. Related Work

Multiview Reconstruction and Rendering. There are
various ways to capture and reconstruct the 3D dynamic
scenes, involving methods based on silhouette [24, 54],
stereo [30, 46], flow [17, 44, 70], segmentation [41, 42], and
photometric [3, 20]. With RGBD cameras, real-time solu-
tions like DynamicFusion [34] estimates the non-rigid de-
formations of a dynamic scene and integrates depth frames
to reconstruct the geometry model in the canonical space.
This method is later extended for telepresence and holo-
graphic communication [10, 25, 66]. However, these sys-
tems heavily rely on depth sensors to obtain accurate ge-
ometry. In contrast, our method can reconstruct and render
dynamic scenes using sparse-view RGB cameras.

In the past few years, neural implicit representations un-
derwent rapid development and have been applied for multi-

view reconstruction and rendering of static scenes. Some
methods represent the geometry as the zero level-set of a
neural network, and use differentiable surface rendering to
optimize the network weights [35, 47, 64]. Given dense ob-
servation of an object, these methods are able to accurately
recover its surface. NeRF [32], on the other hand, uses
volume rendering to optimize the scene representation. Its
simplicity and impressive results inspires a lot of following
works, including in-the-wild reconstruction [31, 52], light-
ing and material estimation [4, 48, 67], generation [1, 6, 18,
22, 43, 53], human rendering [45, 51, 57, 68, 69] and so on.
More recently, several methods unify surface and volumet-
ric rendering, enabling accurate geometry reconstruction
and high-quality novel view synthesis [36, 59, 63]. Com-
pared to these static scene representations, we aim to en-
able free view synthesis of dynamic scenes from extremely
sparse cameras.
NeRF for Dynamic Scenes. Modeling scenes in 4D do-
main with time dimension included is a direct solution to
extend NeRF for dynamic domains. Typical approaches
includes VideoNeRF [62], NeRFlow [11], DyNeRF [27],
and DCT-NeRF [56]. Specifically, VideoNeRF [62] directly
learns a spatiotemporal irradiance field from a single video
and uses depth estimation to address the shape-motion am-
biguities in monocular inputs, while NeRFlow [11] and
DCT-NeRF [56] use point trajectory to regularize the net-
work optimization. To deal with the limitation of topology-
change modeling in deformation field, Park et al. [38] repre-
sent HyperNeRF which can lift NeRF to higher dimensions.

Dynamic scenes can also be rendered by deforming the
radiance field in the canonical space. For example, Nerfies
[37] optimizes an additional continuous deformation field
by warping each observed point into a canonical 5D NeRF.
D-Nerf [40] and NR-Nerf [55] follow a similar framework,
but take only monocular videos as training data. In addi-
tion, DeVRF [28] uses voxel-based representation instead
of MLPs to model the 3D canonical space and the 4D de-
formation field. Using parametric body templates as the se-
mantic prior, methods like Neural Body [39] and Human-
NeRF [60] enable photo-realistic novel view synthesis of
complex human performance. The discrepancy between the
practical capture process and the existing experimental pro-
tocols for monocular videos has been shown in [16].
NeRF Acceleration. Numerous works emerge with the
purpose of speeding up static NeRF using explicit data
structures including feature maps, voxels and tensors. For
instance, DVGO [50] achieves fast convergence through an
explicit representation of a density voxel grid and a feature
voxel grid. With the sparse voxel octree structure, NSVF
[29] accelerates the novel view reconstruction by discard-
ing the empty voxels in a coarse-to-fine manner. Similarly,
Plenoxels [14] and PlenOctree [65] model a scene through
a hierarchical 3D grid with spherical harmonics, which can
realize an optimization with two orders of magnitude faster
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Figure 2. Illustration of our hierarchical tri-projection decom-
position method. For a neural 4D field f(x, y, z, t), we first de-
compose the 3D space part from 4D spatio-temporal tensor into
three time-aware volumes, which are then further projected onto
nine 2D planes.

than NeRF. In DIVeR [61], ray marching only finds a fixed
number of hits on the voxel grid to accelerate volumetric
rendering. Moreover, hashing encoding [33] and tensor de-
composition [8] are also used as compact representations
for NeRF acceleration.

For dynamic scene modeling, DeVRF [28] enables fast
non-rigid neural rendering with both 3D volumetric and
4D voxel field. In addition, V4D [15] introduce an effec-
tive conditional positional encoding for 4D data to realize
fast novel view synthesis. TiNeuVox [12] represents scenes
with optimizable explicit data structures and accelerates ra-
diance fields modeling, while Wang et al. extended PlenOc-
trees [65] into free-view video rendering [58]. However, the
low-res volumetric design of these works hinders the ca-
pacity of rendering high-quality images. In addition, there
are also several concurrent works [5, 13, 21] adopt 6-plane
decomposition for dynamic scenes. Compared with these
methods, our hierarchical decomposition is more efficient
to capture time variations and represent dynamic scenes.

3. Method
Building on prior work for spatio-temporal representa-

tions and tri-projection decomposition (Sec. 3.1), we pro-
pose a hierarchical tri-projection decomposition method
(Sec. 3.2) and a coarse-to-fine strategy (Sec. 3.3), which al-
low us to learn a 4D field at a modest cost of training time
and GPU memory.

3.1. Preliminary

Spatio-temporal 4D NeRF representation. To represent
dynamic objects using neural radiance fields, a naive way is
to condition the original neural radiance fields on the times-
tamp [56, 62], which we term as NeRF-T. Mathematically,

NeRF-T can be formulated as:

f(x, y, z, t) = (f , σ),

g(f , θ, ϕ) = c,
(1)

where f is a dynamic implicit field that produces a high-
dimensional feature f and a density value σ for a point at
position (x, y, z) and time instance t, and g is a function that
takes into account the viewing direction (θ, ϕ) to predict the
final RGB color.

To achieve better disentanglement of shape and motion,
some methods like D-NeRF [40] propose deformable neural
radiance field which adopts a canonical 3D representation
with the 4D flow fields:

f(x, y, z, t) = (x̂, ŷ, ẑ),

g(x̂, ŷ, ẑ, θ, ϕ) = (c, σ),
(2)

where g is the radiance field in canonical configuration and
f is a scene flow field representing the mapping between
the scene at time instant t and the canonical space.

From the above formulation one can easily observe that
both NeRF-T and D-NeRF rely on modeling a 4D field
f(x, y, z, t), i.e., the dynamic implicit field in NeRF-T and
the flow field in D-NeRF. Existing methods mainly adopt
MLPs to fit these 4D fields. Such an implicit neural rep-
resentation does not have an explicit structure and requires
extensive computation time for both training and rendering.
Tri-projection Decomposition. The tri-projection decom-
position is widely used in recent work including EG3D [7]
and TensoRF [8] in order to accelerate the training and ren-
dering process in MLP-based NeRF frameworks. Such de-
composition factorizes a n-dimensional tensor Vh into three
lower-dimensional ((n − 1)-D) tensors V i

l {i = 1, 2, 3} by
projecting Vh along the x, y and z-axis respectively. For
example, triplane-based decomposition proposed by EG3D
projects the 3D tensor into three 2D feature planes. Com-
pared to voxel-based representations, triplane representa-
tion effectively reduces the memory footprint and improves
the performance of 3D generation and reconstruction.

3.2. Hierarchical Tri-projection Decomposition

Our goal is to design a dynamic scene representation
with explicit feature grids to accelerate network training and
volumetric rendering. However, directly constructing a 4D
tensor costs a huge amount of memory and is unacceptable
for the purpose of high-resolution rendering. Therefore, we
propose a hierarchical triprojection decomposition to fac-
torize the 4D tensor into several compact features, which
reduces memory consumption by a large margin while pre-
serving the capability of fitting 4D fields.

Specifically, for a neural 4D field f(x, y, z, t), we first
decompose the 3D space part from 4D spatio-temporal
tensor into three time-aware volumetric tensors via tri-

16634



projection decomposition:

Π3(f(x, y, z, t)) = {fz(x, y, t), fy(x, z, t), fx(y, z, t)} ,
(3)

where Π3 denotes the projection operator. To further lower
space complexity and enable high-resolution representa-
tion, we decompose each feature volume into three feature
planes as:

π3(fz) = {fzt(x, y), fzy(x, t), fzx(y, t)}
π3(fy) = {fyt(x, z), fyz(x, t), fyx(z, t)}
π3(fx) = {fxt(y, z), fxz(y, t), fxy(z, t)}

(4)

where π3 denotes the volume-to-plane tri-projection. In
this way, we compactly represent a 4D field using 9 planes.
Given any spatio-temporal coordinate (x, y, z, t), we can ef-
ficiently query its value in the 4D field by projecting it onto
the planes and retrieving the corresponding value via bilin-
ear interpolation. Fig 2 is an illustration of our decomposi-
tion method. Our hierarchical triprojection decomposition
reduces the space complexity from O(n4) to O(n2) with
n being the spatial resolution of the grid, significantly low-
ering memory footprint without sacrificing representation
power.
Differences from 6-plane decomposition. Compared with
6-plane decomposition [5, 13, 21] which pairs the time di-
mension with only one spatial dimension (xt, yt, zt), our
method first decomposes the 4D tensor in the spatial do-
main to obtain three time-aware volumes and then 9 de-
composed planes. Note that the three volumes are decom-
posed independently, making the 9 planes different from
each other. Specifically, when using a linear layer g = {}
to decompose the volume fz(x, y, t) = {., fzy(x, t), .}
and the volume fy(x, z, t) = {., fyz(x, t), .}, the planes
fzy(x, t) and fyz(x, t) behave differently since they are op-
timized independently to capture time variations in the vol-
umes fz(x, y, t) and fy(x, z, t), respectively. In this way,
the 9 planes can leverage time-aware information in all
possible combinations of the time and spatial dimensions
(xt, yt, zt, xyt, yzt, xzt, xyzt). This property enables our
representation to capture various dynamic information hier-
archically at different levels of spatial dimensions. There-
fore, our method is more efficient in representing dynamic
scenes, where variations in time dimension are often in-
tense, complex, and long-range.

Our decomposition supports various types of 4D fields
including the time-conditioned radiance field in NeRF-T
and the 4D flow field in D-NeRF. In this paper, we present
a dynamic radiance field decomposition method (Sec. 4.1)
for multiview dynamic reconstruction as well as a 4D flow
decomposition method (Sec. 4.2) for single-view setting.

3.3. Coarse-to-fine Strategy
To further improve the efficiency of our 4D decomposi-

tion, we propose an optional coarse-to-fine strategy to fac-

torize the 4D fields into different scales in different train-
ing phases. In coarse level, we adopt low-resolution feature
planes (128 × 128) to decompose the 4D fields, which im-
proves the robustness of the training process and achieves
fast convergence. After coarse level training, we addi-
tionally use high-resolution feature planes (512 × 512) for
4D decomposition to represent dynamic details and achieve
high-quality rendering. Specifically, we factorize the 4D
fields into different scales:

f(x, y, z, t) =
{
π3(Π3(f

LR)), π3(Π3(f
HR))

}
, (5)

where fLR and fHR are the coarse-level and fine-level
components of f(x, y, z, t), respectively. In the coarse
level, the decomposed feature planes is low-resolution to
represent coarse 3D structures and 4D dynamic changes. In
the fine level, we adopt the high-resolution feature planes
in each element to decompose the 4D fields, which focuses
more on recovering dynamic details.

4. Tensor4D for Dynamic Reconstruction
As shown in Fig. 3, we apply our 4D tensor decomposi-

tion into the task of dynamic reconstruction with two inputs:
1) Dynamic reconstruction under sparse and fixed cam-

eras. For this setting, we factorize NeRF-T instead of D-
NeRF using our proposed 4D decomposition, which we
found more efficient and flexible to represent topologically-
varying objects (Sec. 4.1).

2) Dynamic reconstruction using monocular camera. For
this setting, we separately decompose the 4D flow fields and
the 3D canonical representation since it ensures appearance
consistency across different frames and achieves more ro-
bust performance (Sec. 4.2).

4.1. Multi-view Reconstruction

In this section, we present our dynamic reconstruction
system under sparse multi-view setting. The goal of our
system is 1) efficient and high-quality dynamic reconstruc-
tion with low memory and time cost, and 2) robust recon-
struction under sparse and fixed camera setting.

To this end, we adopt our 4D decomposition (Eq. 5) to
factorize the NeRF-T representation with the coarse-to-fine
strategy. Specifically, we can obtain nine low-resolution
feature planes TLR and nine high-resolution feature planes
THR to represent the 4D NeRF-T fields after our 4D de-
composition. Then for volume rendering, when sampling a
point p at (x, y, z, t) in the ray r with direction of (θ, ϕ), we
first query the feature Fp of p in both the LR and the HR
feature planes. Take the LR features for example:

FLR
p (x, y, z, t) = π3(Π3(f

LR))

= ⊕(π3(f
LR
z ), π3(f

LR
y ), π3(f

LR
x ))

= ⊕(⊕(TLR
zt (x, y), TLR

zy (x, t), TLR
zx (y, t)), ...),

(6)
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Figure 3. The framework of Tensor4D for multi-view and monocular reconstruction. a). Tensor4D for multi-view reconstruction. The
4D NeRF-T fields are separately factorized by the LR and HR feature planes. b). Tensor4D for monocular reconstruction. The 4D flow
fields are factorized by the LR feature plane for better disentanglement of shape and motion. The 3D canonical representation is factorized
by three LR and HR feature planes.

where we concatenate all features queried in the nine LR
planes as the final LR feature of the sampling point p. Then
we concatenate the LR and HR features with the positional
encoding of (x, y, z, t) into the geometry MLP Eg to obtain
the density σ and high-dimension feature f :

Eg(F
LR
p , FHR

p , γ(x, y, z, t)) = (f , σ), (7)

where γ() is the positional encoding function. Next, we
concatenate the high-dimension feature f with the posi-
tional encoding of (θ, ϕ) and feed it into the color MLP:

Ec(f , γ(θ, ϕ)) = c (8)

In this way, we can render the images through volume ren-
dering and adopt color loss to train our decomposed feature
planes T and neural network Ec and Eg:

Lc = ∥Ci,j − C∗
i,j∥ (9)

With our coarse-to-fine design, our method can recover
high-fidelity dynamic details effectively and efficiently.

To achieve robust dynamic reconstruction under sparse
multi-view setting, we further adopt regularization for all
decomposed feature planes T :

Lr =
∑
T

∑
i,j

√
(Ti+1,j − Ti,j)2 + (Ti,j+1 − Ti,j)2,

(10)
where Lr is the TV loss for each feature plane T to keep
their sparsity. To regularize the geometry, we also intro-
duce surface constraint into volume rendering. Specifically,
we adopt the SDF as the base geometry representation and
follow NeuS [59] to render the SDF field. Then we add
surface constraint loss to enforce a smooth surface:

Le = ∥∥∇s(x, y, z, t)∥2 − 1∥2 (11)

The final training loss Lm is the regularization loss Lr, Le

and the color loss Lc:

Lm = λrLr + λeLe + λcLc (12)

4.2. Monocular Reconstruction
Different from the sparse view setting, we adopt 4D de-

composition for D-NeRF in monocular capture cases. This
is because monocular setting is much more ill-posed than
sparse-view inputs, and the explicit disentanglement of ap-
pearance and motions can guarantee the consistency across
different frames. Since D-NeRF represents the dynamic ob-
jects with the 4D flow fields and a 3D canonical representa-
tion, we separately factorize these two fields. First, for the
4D flow fields, we only adopt coarse level decomposition
and factorize it into low-resolution feature planes:

f(x, y, z, t) = π3(Π3(f
LR)). (13)

Our coarse decomposition focuses more on the coarse and
rigid motion, which improves the robustness of flow esti-
mation and can achieve better disentanglement of shape and
motion. Then for the 3D canonical representation, we adopt
both coarse and fine level decomposition:

h(x̂, ŷ, ẑ) = π3(h
HR) + π3(h

LR). (14)

Therefore, we can obtain 9 flow feature planes Tf for 4D
flow fields and 6 canonical feature planes Th for 3D canon-
ical representation. The volume rendering in monocular
cases is similar to multi-view cases. For a sampling point
p, we first obtain the point flow feature Ff using Eq. 6 with
nine flow planes Tf . Then we adopt the flow MLP Ef to
predict the movement of the point:

Ef (Fp, γ(x, y, z, t)) = (x̂, ŷ, ẑ). (15)

Then we obtain the point canonical feature Fc by querying
the canonical feature planes Th. Take the LR feature FLR

c

for example:

FLR
c = π3(h

LR) = ⊕(TLR
hz

(x, y), TLR
hy

(x, z), TLR
hz

(x, y)).
(16)

Next, we feed canonical feature FLR
c and the positional en-

coding of (x̂, ŷ, ẑ) into the geometry MLP Eg to obtain
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Figure 4. Example results of our method. Space and time novel view rendering results from sparse-view fixed cameras. The top three
results are from four front view cameras and the bottom is from 12 circular cameras.

high-dimension feature f and density σ:

Eg(F
LR
c , γ(x̂, ŷ, ẑ)) = (f , σ). (17)

Finally, we adopt Eq. 8 to predict color c for volume render-
ing and Eq. 9 for training color loss Lc. We also add feature
regularization loss Lr in Eq. 10 and surface constraint loss
Le in Eq. 11. The total training loss Ls is:

Ls = λcLc + λrLr + λeLe. (18)

5. Experiment
Dataset. To evaluate the performance of our methods for
multiview inputs, we build a sparse-view capture system
with 6 forward-facing RGB cameras mounted on the bor-
ders of a 32” Looking Glass 3D holographic display [2].
All cameras are synchronized and calibrated. Using this
system, we capture multiple sequences of various challeng-
ing human motions, including dancing, thumbing up, wav-
ing hands, wearing hats and manipulating bags. We use 4
of them for reconstruction and rendering in all our experi-
ments, while leaving the other two for quantitative evalua-
tion. We also use three 360° multiview full body sequences

captured with 12 evenly spaced cameras on a camera ring
for qualitative evaluation. For monocular evaluation, we use
the synthetic dataset provided by D-NeRF [40] and select
3 scenes (“lego”, “standup” and “jumpingjacks”) from this
dataset, with the numbers of training frames ranging from
50 to 200. More details about data collection and prepro-
cessing can be found in the Supp.Mat..
Baselines. We mainly compare our method against the fol-
lowing state-of-the-art baselines that are most related to our
work: D-NeRF [40], NeRF-T, TiNeuVox [12] and NeuS-T.
Here, NeRF-T is our extension of vanilla NeRF [32] by in-
troducing an additional time input, and NeuS-T is extended
from NeuS [59] similarly. Among these baselines, D-NeRF
and TiNeuVox represent the dynamic scenes through de-
forming a canonical one, while NeRF-T and NeuS-T di-
rectly learn a time-conditioned 4D radiance fields. TiNeu-
Vox uses explicit voxel grids to accelerate network training,
while others purely use MLPs to model the scene.

5.1. Results and Comparison

Qualitative Results. We train our model for each individ-
ual sequences, and present some example results for novel
view synthesis in Fig. 4 and the Supp.Mat.. The results
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Figure 5. Comparison on monocular synthetic dataset against D-NeRF [40] and TiNeuVox [12].

Figure 6. Comparison on sparse-view real-world dataset against D-Nerf [40], TiNeuVox [12] and Neus-T [59]. Four of camera views
from our datasets are used for reconstruction and rendering.

cover various body motions, clothing styles and accessories.
As shown in Fig. 4, our method can render high-quality im-
ages for dynamic scenes and faithfully recover appearance
details like the thin finger motions, semi-transparent silk,
hand-object interaction, face expressions and cloth wrin-
kles. See our Supp.Video. for better visualization.
Comparisons on monocular dynamic dataset. We first
compare our method with the baselines on monocular syn-
thetic dataset. Qualitative results are presented in Fig. 5.
Compared to other methods, ours recovers more appearance
details and generate less artifacts. The numeric results in
Tab. 1 also prove that our method outperforms state-of-the-
art methods in terms of rendering quality and accuracy.
Comparisons on sparse view dataset. We then evaluate
the performance of different methods for novel view synthe-
sis given four camera views from our collected six camera-
view real-world datasets. The remained two views are used

for quantitative evaluation. Results reported in Fig. 6 and
Tab. 2 show again that our method performs better in accu-
rate and high-quality appearance detail synthesis.

Comparisons of training efficiency. We compare the train-
ing time and model size for memory in Tabs. 3 and 4. Our
method requires significantly less training time compared
to the original D-NeRF, NeRF-T, and Neus-T in monoc-
ular and multi-view scenarios. Compared to Ours-NeRF-
T and Ours-D-NeRF, the longer training time observed in
our method is due to the additional computation for geome-
try smoothness terms, which reduces artifacts and enhances
rendering quality. Compared to TiNeuVox, our method has
a reduction in memory consumption and a clear improve-
ment in rendering quality since Tensor4D enables the effi-
cient decomposition of 4D fields at higher spatial resolu-
tions (5123 vs. 2563).
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Table 1. Quantitative comparisons on monocular synthetic datasets.

Method
Lego Standup Jumpingjacks

MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓
D-NeRF [40] 7.83e-3 21.26 0.869 1.72e-1 4.63e-4 34.38 0.989 2.18e-2 5.46e-4 33.37 0.987 4.84e-2
NeRF-T 3.89e-3 24.32 0.904 1.55e-1 6.82e-4 31.44 0.968 2.36e-2 5.99e-4 32.27 0.979 5.37e-2
TiNeuVox [12] 3.15e-3 25.14 0.924 8.37e-2 2.90e-4 36.18 0.986 2.02e-2 3.89e-4 34.76 0.983 3.33e-2
Ours-NeRF-T 3.10e-3 25.13 0.922 1.24e-1 5.92e-4 32.38 0.977 2.29e-2 5.62e-4 32.73 0.980 5.16e-2
Ours-D-NeRF 4.61e-3 23.37 0.890 1.19e-1 2.82e-4 35.93 0.981 2.07e-2 4.22e-4 34.10 0.982 3.41e-2
Ours 2.26e-3 26.71 0.953 3.49e-2 2.50e-4 36.32 0.983 1.74e-2 3.91e-4 34.43 0.982 3.18e-2

Table 2. Quantitative comparisons on the six camera-view real-world datasets.

Method
Sequence1-thz Earphone Sequence3-yxd

MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓
D-NeRF [40] 3.13e-3 25.15 0.910 0.185 8.16e-3 20.92 0.854 0.256 4.84e-3 23.22 0.937 0.147
TiNeuVox [12] 5.72e-3 22.79 0.832 0.209 1.49e-2 18.55 0.707 0.319 8.18e-3 21.19 0.816 0.233
Neus-T [59] 4.95e-3 23.07 0.887 0.130 3.75e-3 24.22 0.877 0.184 2.20e-3 26.59 0.945 0.099
Ours-NeRF-T 5.85e-3 22.46 0.842 0.191 1.27e-2 19.13 0.838 0.218 5.02e-3 23.06 0.914 0.141
Ours-D-NeRF 4.74e-3 23.27 0.864 0.176 8.17e-3 21.07 0.883 0.198 4.06e-3 23.98 0.926 0.130
Ours 1.53e-3 28.27 0.942 0.084 3.20e-3 25.00 0.903 0.153 1.31e-3 28.83 0.962 0.072

Table 3. Training time and memory report in monocular cases.

Method
Lego

PSNR Time Iterations #Params
TiNeuVox 25.14 34min 50k 102M
D-NeRF 21.26 45h 800k 4.8M
Ours-D-NeRF 23.37 95min 50k 20M
NeRF-T 24.32 38h 800k 4.4M
Ours-NeRF-T 25.13 73min 50k 43M
Ours(6-planes) 26.34 135min 50k 17M
Ours 26.71 144min 50k 20M

Table 4. Training time and memory report in multi-view cases.

Method
Sequence1-thz

PSNR Time Iterations #Params
TiNeuVox 22.79 30min 50k 102M
D-NeRF 25.15 37h 800k 4.8M
Neus-T 23.07 45h 800k 5.0M
Ours-NeRF-T 22.46 68min 50k 43M
Ours(6-planes) 27.86 105min 50k 32M
Ours 28.27 117min 50K 43M

Table 5. Ablation study of hierarchical decomposition and
smoothness terms.

Method
Lego Standup

PSNR SSIM PSNR SSIM
Ours(w/o regular) 26.49 0.946 35.91 0.977
Ours(6-planes) 26.44 0.944 35.79 0.978
Ours 26.71 0.953 36.32 0.983

Sequence-thz Sequence-earphone
PSNR SSIM PSNR SSIM

Ours(w/o regular) 27.92 0.932 24.75 0.885
Ours(6-planes) 27.74 0.934 24.39 0.889
Ours 28.27 0.942 25.00 0.903

5.2. Ablation study

Regularization. We quantitatively ablate the regulariza-
tion terms in our method. We implement two strong base-
lines “Ours-NeRF-T” and “Ours-D-NeRF”, in which we di-
rectly apply our Tensor4D decomposition for NeRF-T and
D-NeRF without the regularization terms. The results are
reported in Tab. 1 and Tab. 2. Benefiting from our 4D de-
composition, they achieve better performance than the orig-
inal NeRF-T and D-NeRF. However, their rendering quality
is still worse than our full method with regularization. In

addition, We ablate for TV regular smoothness terms (Ours
vs. Ours(w/o regular)) and the results are reported in Tab. 5,
which further validates the effectiveness of our smoothness
terms for rendering quality enhancement.
Hierachical Decomposition We quantitatively ablate our
hierarchical decomposition with 6-plane decomposition. As
shown in Tab 5, our method achieves superior performance
in both multi-view and monocular cases, which validates
the effectiveness of our hierarchical decomposition.

6. Discussion
Limitations. Since our method needs to decompose the 4D
fields to several 2D feature planes, a pre-set bounding box
of the scene is necessary. Therefore, it is difficult for our
method to reconstruct backgrounds or objects which are out
of the bounding box. Another limitation is our strong regu-
larization terms. Though these terms benefit the robustness
of our reconstruction under sparse views, they also limit our
ability to handle challenging cases such as fluid and fog.
Conclusion. We presented Tensor4D, a new method for
learning high-quality neural representation for dynamic
scenes from sparse-view videos or even a monocular video.
To capture the spatio-temporal information in a compact
and memory-efficient manner, we propose propose a novel
hierarchical tri-projection decomposition method that mod-
els a 4D tensor with nine 2D feature planes. With proper de-
sign of training losses and regularization, our method pro-
vides an efficient yet effective solution to model the radi-
ance fields of dynamic scenes. We believe our work can
inspire future research towards low-cost, portable and im-
mersive telepresence systems.
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