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Figure 1. Leveraging in-the-wild data for generative assets modeling embodies a scalable approach for simulation. GINA-3D uses real-world
driving data to perform various synthesis tasks for realistic 3D implicit neural assets. Left: Multi-sensor observations in the wild. Middle:
Asset reconstruction and conditional synthesis. Right: Scene composition with background neural fields [1].

Abstract
Modeling the 3D world from sensor data for simula-

tion is a scalable way of developing testing and valida-
tion environments for robotic learning problems such as
autonomous driving. However, manually creating or re-
creating real-world-like environments is difficult, expensive,
and not scalable. Recent generative model techniques have
shown promising progress to address such challenges by
learning 3D assets using only plentiful 2D images – but still
suffer limitations as they leverage either human-curated im-
age datasets or renderings from manually-created synthetic
3D environments. In this paper, we introduce GINA-3D, a
generative model that uses real-world driving data from cam-
era and LiDAR sensors to create realistic 3D implicit neural
assets of diverse vehicles and pedestrians. Compared to the
existing image datasets, the real-world driving setting poses
new challenges due to occlusions, lighting-variations and
long-tail distributions. GINA-3D tackles these challenges by
decoupling representation learning and generative model-
ing into two stages with a learned tri-plane latent structure,
inspired by recent advances in generative modeling of im-
ages. To evaluate our approach, we construct a large-scale
object-centric dataset containing over 520K images of ve-
hicles and pedestrians from the Waymo Open Dataset, and
a new set of 80K images of long-tail instances such as con-
struction equipment, garbage trucks, and cable cars. We
compare our model with existing approaches and demon-
strate that it achieves state-of-the-art performance in quality
and diversity for both generated images and geometries.

∗Work done during an internship at Waymo. † Work done at Waymo.

1. Introduction
Learning to perceive, reason, and interact with the 3D

world has been a longstanding challenge in the computer
vision and robotics community for decades [2–9]. Mod-
ern robotic systems [10–16] deployed in the wild are often
equipped with multiple sensors (e.g. cameras, LiDARs, and
Radars) that perceive the 3D environments, followed by an
intelligent unit for reasoning and interacting with the com-
plex scene dynamics. End-to-end testing and validating these
intelligent agents in the real-world environments are diffi-
cult and expensive, especially in safety critical and resource
constrained domains like autonomous driving.

On the other hand, the use of simulated data has pro-
liferated over the last few years to train and evaluate the
intelligent agents under controlled settings [17–27] in a safe,
scalable and verifiable manner. Such developments were
fueled by rapid advances in computer graphics, including
rendering frameworks [28–30], physical simulation [31, 32]
and large-scale open-sourced asset repositories [33–39]. A
key concern is to create realistic virtual worlds that align in
asset content, composition, and behavior with real distribu-
tions, so as to give the practitioner confidence that using such
simulations for development and verification can transfer to
performance in the real world [40–48]. However, manual
asset creation faces two major obstacles. First, manual cre-
ation of 3D assets requires dedicated efforts from engineers
and artists with 3D domain expertise, which is expensive
and difficult to scale [26]. Second, real-world distribution
contains diverse examples (including interesting rare cases)
and is also constantly evolving [49, 50].

Recent developments in the generative 3D modeling offer
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new perspectives to tackle these aforementioned obstacles,
as it allows producing additional realistic but previously
unseen examples. A sub-class of these approaches, gener-
ative 3D-aware image synthesis [51, 52], holds significant
promise since it enables 3D modeling from partial observa-
tions (e.g. image projections of the 3D object). Moreover,
many real-world robotic applications already capture, an-
notate and update multi-sensor observations at scale. Such
data thus offer an accurate, diverse, task-relevant, and up-
to-date representation of the real-world distribution, which
the generative model can potentially capture. However, ex-
isting works use either human-curated image datasets with
clean observations [53–58] or renderings from synthetic 3D
environments [33, 36]. Scaling generative 3D-aware image
synthesis models to the real world faces several challenges,
as many factors are entangled in the partial observations.
First, bridging the in-the-wild images from a simple prior
without 3D structures make the learning difficult. Second,
unconstrained occlusions entangle object-of-interest and its
surroundings in pixel space, which is hard to disentangle
in a purely unsupervised manner. Lastly, the above chal-
lenges are compounded by a lack of effort in constructing an
asset-centric benchmark for sensor data captured in the wild.

In this work, we introduce a 3D-aware generative trans-
former for implicit neural asset generation, named GINA-3D
(Generative Implicit Neural Assets). To tackle the real world
challenges, we propose a novel 3D-aware Encoder-Decoder
framework with a learned structured prior. Specifically, we
embed a tri-plane structure into the latent prior (or tri-plane
latents) of our generative model, where each entry is param-
eterized by a discrete representation from a learned code-
book [59,60]. The Encoder-Decoder framework is composed
of a transformation encoder and a decoder with neural ren-
dering components. To handle unconstrained occlusions, we
explicitly disentangle object pixels from its surrounding with
an occlusion-aware composition, using pseudo labels from
an off-the-shelf segmenation model [61]. Finally, the learned
prior of tri-plane latents from a discrete codebook can be
used to train conditional latents sampling models [62]. The
same codebook can be readily applied to various conditional
synthesis tasks, including object scale, class, semantics, and
time-of-day.

To evaluate our model, we construct a large-scale object-
centric benchmark from multi-sensor driving data captured
in the wild. We first extract over 520K images of diverse
variations for vehicles and pedestrians from Waymo Open
Dataset [14]. We then augment the benchmark with long-tail
instances from real-world driving scenes, including rare ob-
jects like construction equipment, cable cars, school buses
and garbage trucks. We demonstrate through extensive ex-
periments that GINA-3D outperforms the state-of-the-art
3D-aware generative models, measured by image quality,
geometry consistency, and geometry diversity. Moreover,

we showcase example applications of various conditional
synthesis tasks and shape editing results by leveraging the
learned 3D-aware codebook. To support future research
along this direction, we intend to release the benchmark to
support relevant research in the community.

2. Related Work
We discuss the relevant work on generative 3D-aware

image synthesis, 3D shape modeling, and applications in
autonomous driving.

Generative 3D-aware image synthesis. Learning gener-
ative 3D-aware representations from image collections has
been increasingly popular for the past decade [63–69]. Early
work explored image synthesis from disentangled factors
such as learned pose embedding [64,66,69] or compact scene
representations [65, 67]. Representing the 3D-structure as a
compressed embedding, this line of work approached image
synthesis by upsampling from the embedding space with a
stack of 2D deconvolutional layers. Driven by the progresses
in differentiable rendering, there have been efforts [70–73]
in baking explicit 3D structures into the generative architec-
tures. These efforts, however, are often confined to a coarse
3D discretization due to memory consumption. Moving be-
yond explicits, more recent work leverages neural radiance
fields to learn implicit 3D-aware structures [51, 52, 74–82]
for image synthesis. Schwarz et al. [74] introduced the Gen-
erative Radiance Fields (GRAF) that disentangles the 3D
shape, appearance and camera pose of a single object with-
out occlusions. Built on top of GRAF, Niemeyer et al. [51]
proposed the GIRAFFE model, which handles scene involv-
ing multiple objects by using the compositional 3D scene
structure. Notably, the query operation in the volumetric ren-
dering becomes computationally heavy at higher resolutions.
To tackle this, Chan et al. [52] introduced hybrid explicit-
implicit 3D representations with tri-plane features (EG3D),
which showcases image synthesis at higher resolutions. Con-
currently, [83] and [84] pioneer high-resolution unbounded
3D scene generation on ImageNet using tri-plane represen-
tations, where [84] uses a vector-quantized framework and
[83] uses a GAN framework. Our work is designed for ap-
plications in autonomous driving sensor simulation with an
emphasis on object-centric modeling.

Generative 3D shape modeling. Generative modeling of
complete 3D shapes has also been extensively studied, in-
cluding efforts on synthesizing 3D voxel grids [85–93],
point clouds [94–96], surface meshes [97–103], shape primi-
tives [104, 105], and implicit functions or hybrid representa-
tions [103, 106–112] using various deep generative models.
Shen et al. [111] introduced a differentiable explicit sur-
face extraction method called Deep Marching Tetrahedra
(DMTet) that learns to reconstruct 3D surface meshes with
arbitrary topology directly. Built on top of the EG3D [52]
tri-plane features for image synthesis, Gao et al. [103] pro-
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posed an extension that is capable of generating textured
surface meshes using DMTet for geometry generation and
tri-plane features for texture synthesis. The existing efforts
assume access to accurate multi-view silhouettes (often from
complete ground-truth 3D shapes) , which does not reflect
the real challenges present in data captured in the wild.

Assets modeling in driving simulation. Simulated en-
vironment modeling has drawn great attention in the au-
tonomous driving domain. In a nutshell, the problem can
be decomposed into asset creation (e.g., dynamic objects
and background), scene generation, and rendering. Early
work leverages artist-created objects and background assets
to build virtual driving environments [18, 20, 113] using
classic graphics rendering pipelines. While being able to
generate virtual scenes with varying configurations, these
methods produce scenes with limited diversity and a sig-
nificant reality gap. Many recent works explored different
aspects of data-driven simulation, including image synthe-
sis [114–117], assets modeling [47, 48, 118–121], scene gen-
eration [49, 122, 123], and scene rendering [1, 124–126]. In
particular, Chen et al. [48] and Zakharov et al. [119] per-
formed explicit texture warping or implicit rendering from a
single-view observation for each vehicle object. Therefore,
their asset reconstruction quality is sensitive to occlusions
and bounded by the view angle from a single observation.
Building upon these efforts, more recent work including
Muller et al. [121] and Kundu et al. [125] approached ob-
ject completion with global or instance-specific latent codes,
representing each object asset under the Normalized Object
Coordinate Space (NOCS). In comparison, the latent codes
in our proposed model have 3D tri-plane structures which
offers several benefits in learning and applications. More
importantly, we can generate previously unseen 3D assets,
which is essentially different from object reconstruction.

3. Generative Implicit Neural Assets
We propose GINA-3D, a scalable framework to acquire

3D assets from in-the-wild data (Sec. 3.1). Core to our frame-
work is a novel 3D-aware Encoder-Decoder model with a
learned structure prior (Sec. 3.2). The learned structure prior
can facilitate various downstream applications with an itera-
tive latents sampling model (Sec. 3.3) per application.

3.1. Background.
Given a collection of images containing 3D objects cap-

tured in the wild X = {x} (x is an image data sample),
3D-aware image synthesis [51, 52, 63–79, 81] aims to learn a
distribution of 3D objects. The core idea is to represent each
3D object as a hidden variable h within a generative model
and further leverage a neural rendering module NR to synthe-
size a sample image at viewpoint v through x = NR(h,v).
To model the hidden 3D structure h, the formulation in-
troduces a low-dimensional space where latent variables z

(typically a Gaussian) can sample from and connect h and z
by a generator h = fθ(z), parameterized by θ.

Pr(x, z|v) = Pr(x|z,v) · Pr(z) (1)

The probabilistic formulation is shown in Fig. 2-a, and Eq. 1.
Here, Pr(x|z,v) is the conditional probability of the image
given the latent variables and viewpoint, where Pr(z) and
Pr(v) are the prior distributions. As the latent variable z
models the 3D objects, one can sample and extract assets for
downstream applications. The assets can be either injected
into neural representations of scenes [1,125], or transformed
into explicit 3D structures such as textured meshes for tradi-
tional renders [20] or geometry-aware compositing [48,124].
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Figure 2. Probabilistic Views.

The challenges in the wild.
While human-curated image
datasets [53–58] or syntheti-
cally generated images with
clean background [33,36,68,
103] fit into the formulation
in Eq. 1, real-world distribu-
tions have unconstrained occlusions due to complex object-
scene entanglement. For example, a moving vehicle can be
easily occluded by another object (e.g. traffic cones and cars)
in an urban driving environment, which further entangle ob-
ject and scene in the pixel space. Moreover, environmental
lighting and object diversity lead to a more complex under-
lying distribution.

As illustrated Fig. 2-b and Eq. 2, these challenges yield
a new probabilistic formulation that the hidden structure
h, surrounding scene S and viewpoint v jointly contribute
to the occlusion (m) and the visible pixels on the object x
through x = NR(h,v)�m(S,v,h).

Pr(x, z|v,S) = Pr(x|z,v,S) · Pr(z) (2)

Prior art such as GIRAFFE [51] tackles the challenges with
two assumptions: (1) the scene is composed of a limited
number of same-class foreground objects and a background
backdrop S; and (2) the real data distribution can be bridged
using an one-pass generator fθ(x; z,S,v) (θ is the learned
parametrization) conditioned on independently sampled ob-
jects z, scene background S and the camera viewpoint v (e.g.
Multi-variate Gaussian distributions with diagonal variance)
through adversarial training. Unfortunately, the first assump-
tion barely holds for in-the-wild images with unconstrained
foreground occlusions. As shown in Niemeyer et al. [51],
the second assumption can already introduce artifacts due to
disentanglement failures.
Our proposal. We focus on interpreting the visible pixels
of the object of interest, as synthesizing objects and scene
jointly with a generative model is very challenging. We
leverage an auxiliary encoder Eφ(x) that approximates the
posterior Pr(z|x) in training the generative model to recon-
struct the input. This way, we bypass the need to model com-
plex scene and occlusions explicitly, since paired input and
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output are now available for supervising the auto-encoding
style training. Specifically, given an image x and the corre-
sponding occlusion mask m, our objective is to reconstruct
the visible pixels of the object on the image through x̂�m
where we have the reconstruction x̂ = NR(Gθ(z),v) and
latent z = Eφ(x), respectively. In practice, we use an off-
the-shelf model to obtain the pseudo-labeled object mask as
the supervision through x�m. At the inference time, we can
discard the auxiliary encoder Eφ as our goal is to generate
assets from a learned latent distribution (tri-plane latents in
our case). To facilitate this, we leverage the vector-quantized
formulation [59, 60] to learn a codebook K := {zn}Kn=1 of
size K and the mapping from a continuous-valued vector
to a discrete codebook entry, where each entry follows a
K-way categorical distribution.

3.2. 3D Triplane Latents Learning
We explain in details the Encoder-Decoder training frame-

work to learn tri-plane latents z (Fig. 3-left). The framework
consists of a 2D-to-3D encoder Eφ, learnable codebook
quantization K and a 3D-to-2D decoder Gθ.

Eφ: 2D-to-3D Encoder. We adopt Vision Transformer
(ViT) [127] as our image feature extractor that maps 16× 16
non-overlapping image patches into image tokens of dimen-
sion Dimg. Since the goal is to infer the latent 3D-structure
from a 2D image observation, we associate each image token
with tokens in the tri-plane latents using cross-attention mod-
ules, which have previously shown strong performance in
cross-domain and 2D-to-3D information passing [128–131].
The cross-attention module uses a learnable tri-plane posi-
tional encoding as query, and image patch tokens as key
and value. The module produces tri-plane embeddings
e3D = Eφ(x) ∈ RNZ×NZ×3×Dtok , where Dtok = 32 and
NZ = 16 indicates the dimension of each 3D token and the
spatial resolution, respectively.

K: Codebook Quantization for tri-plane latents. Given
the continuous tri-plane embedding e3D, we project it to our
K-way categorical prior K through vector quantization. We
apply quantization q(·) of each spatial code e3D

ijk ∈ RDtok

on the tri-plane embeddings onto its closest entry zn in the
codebook, which gives tri-plane latents z = q(e3D).

zijh :=
(
argmin
zn,n∈K

‖e3D
ijk − zn‖

)
∈ RDtok (3)

Gθ: 3D-to-2D Decoder with neural rendering. Our de-
coder takes the tri-plane latents z as the input and outputs a
high-dimensional feature maps h ∈ RNH×NH×3×DH used
for rendering, where NH = 256 and DH = 32 indicates
spatial resolution of the tri-plane feature maps and the fea-
ture dimension, respectively. We adopt a token Transformer
followed by a Style-based generator [132] as our 3D decoder.
The token transformer first produces high-dimensional in-
termediate features ẑ ∈ RNZ×NZ×3×DH with an extra CLS

token using self-attention modules, which are then feed to
the Style-based generator for upsampling. We use 4 blocks
of weight-modulated convolutional layers, each guided by a
mapping network conditioned on the CLS token.

Given the feature maps, we use a shallow MLP that takes
a 3D point p and the hidden feature tri-linearly interpolated
at the query location h(p) as input, following [52, 133, 134].
It outputs a density value σ and a view-independent color
value c. We perform volume-rendering with the neural radi-
ance field formulation [135].
Training. Our framework builds upon the vector-
quantized formulations [59,60,62,136–140] where we focus
on token learning in the first stage. Specifically, we extend
the VQ-GAN training losses, where the encoder Eφ, de-
coder Gθ and codebook K are trained jointly with an image
discriminator D. As illustrated in Eq. 4, we encourage our
Encoder-Decoder model to reconstruct the real image x with
L2 reconstruction, LPIPS [141], and adversarial loss.

LRGB = ‖(x̂− x)�m‖2 + fLPIPS(x̂�m,x�m)

LGAN = [logD(x) + log(1−D(x̂))] (4)

To regularize the codebook learning, we apply the latent
embedding supervision with a commitment term in Eq. 5,
where sg[·] denotes the stop-gradient operation.

LVQ = ‖sg[e3D]− z‖22 + λcommit‖sg[z]− e3D‖22 (5)

We additionally regularize the 3D density field in a weakly
supervised manner using the rendered aggregated density
(alpha value) xα, encouraging object pixels to have alpha
value 1. To make the loss occlusion aware, we further require
a pixel lies on the non-object region to have zero density,
inspired by Müller et al. [121]. This is achieved by restricting
the non-object region to cover sky or road class on the
pseudo-labeled segmentations (denoted as msky,road).

Lα = ‖(xα − 1)�m‖2 + ‖xalpha �msky,road‖2 (6)

To summarize, we optimize the total objective L∗ in Eq. 7.

L∗ = arg min
φ,θ,Z

max
D

Ex

[
LVQ + LRGB + Lα + LGAN

]
(7)

3.3. Iterative Latents Sampling for Neural Assets
Once the first stage training is finished, we can now rep-

resent neural assets using the learned tri-plane latents and
reconstruct a collection of assets from image inputs. To
generate previously unseen assets with various conditions,
we further learn to sample the tri-plane latents in the sec-
ond stage, following the prior works in Generative Trans-
formers [59, 60, 62, 138]. More precisely, we transform the
quantized embedding z ∈ RNZ×NZ×3×Dtok into a discrete
sequence s ∈ {1, ...,K}NZ×NZ×3, where each element
corresponds to the index we select from the codebook K
through sijk = n : zijk = zn. Following the recent work
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Figure 3. We introduce GINA-3D, a 3D-aware generative transformer for implicit neural asset generation. GINA-3D follows a two-stage
pipeline, where we learn discrete 3D triplane latents in stage 1 (Sec. 3.2) and iterative latents sampling in stage 2 (Sec. 3.3). In stage 1,
an input image is first encoded into continuous tri-plane latents e3D using a Transformer-based 2D-to-3D Encoder Eφ. Then, a learnable
codebook K quantize the latents into discrete latents z. Finally, a 3D-to-2D Decoder Gθ maps z back to image, using a sequence of
Transformer, Style-based Generator and volume rendering. The rendered image is supervised via an occlusion-aware reconstruction loss.
In stage 2, we learn iterative latents sampling using MaskGIT [62]. Optional conditional information can be used to perform conditional
synthesis. The sampled latents can then be decoded into neural assets using the decoder Gθ learned in stage 1.

MaskGIT [62], we use a bidirectional transformer as our
latent generator Mψ(z) that we learn to iteratively sample
the latent sequence (Fig. 3-right). During training, we learn
to predict randomly masked latents sM̄ by minimizing the
negative log-likelihood of the masked ones.

Lmask = −Es[
∑

∀ijk:sijk=[MASK]

log Pr(sijk|sM̄ )] (8)

At inference time, we iteratively generate and refine latents.
Starting from all latents as [MASK], we iteratively predict all
latents simultaneously but only keep the most confident ones
in each step. The remaining ones are assigned as [MASK]
and the refinement continues. Finally, the sequence s can be
readily mapped back to neural assets by indexing the code-
book K to generate tri-plane latents z and decoding using
Gθ. This iterative approach can be applied to asset variations
by selectively masking out tokens of a given instance.

3.4. Expanding Supervision and Conditioning

The two-stage training of GINA-3D is flexible in supervi-
sion and conditioning. When we have additional information,
we can incorporate it in stage 1 as auxiliary supervision for
token learning, or in stage 2 for conditional synthesis.
Unit box vs. Scaled box. Object scale information can
serve as an additional input to the tri-linear interpolation on
the tri-plane feature maps by rescaling the feature maps to
span object bounding box (instead of a unit box).
Semantic feature fields. Various recent works have
demonstrated the effectiveness of learning hybrid represen-

tations in the neural rendering [142–144] and 2D image syn-
thesis [145]. We can naturally incorporate semantic feature
fields in our formulation by computing additional channels
in our neural rendering MLP. We precompute DINO-ViT fea-
tures [146] for each image and learn a semantic feature field
to build part correspondence among generated instances.

LiDAR depth supervision. When LiDAR point cloud is
available in the data, it can be used as the additional super-
vision through a reconstruction term between the rendered
depth and LiDAR depth.

Conditional synthesis. Last but not the least, additional
information support various applications in conditional syn-
thesis. Denoted as C, it can be fed into our latent prior as
Mψ(sijk|sM̄ , C). For example, object scale, object class,
time-of-day and object semantic embeddings can also serve
as c for control over the generation process.

4. Experiments
4.1. Object-centric Benchmark

We select the Waymo Open Dataset (WOD) [14] as it
is one of the largest and most diverse autonomous driv-
ing datasets, containing rich geometric and semantic labels
such as object bounding boxes and per-pixel instance masks.

Images Unique Instances
WOD-Vehicle 391K 21.0K
WOD-Pedestrian 133K 6.7K
Longtail-Vehicle 80K 3.7K

Table 1. Statistics of our object-centric benchmark.
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Image Geometry

Quality Semantic Diversity Quality Mesh Diversity

Method FID↓ Mask FOU↓ COV↑ MMD↓ Cons.↓ Mesh FOU↓ COV↑ MMD↓

GIRAFFE [51] 105.3 43.66 8.24 2.35 15.87 N/A N/A N/A
EG3D [52] 137.6 7.40 6.26 2.37 2.38 25.7 3.12 4.70

tri-plane z scaled box LiDAR

G
IN

A
-3

D × × × 147.9 1.85 4.78 2.00 1.55 N/A 1.95 2.43
X × × 79.0 1.82 19.67 1.52 1.27 11.7 5.75 2.21
X X × 60.5 1.77 20.68 1.53 1.06 2.33 8.69 2.26
X X X 59.5 1.80 25.00 1.46 0.98 4.57 11.42 2.17

Table 2. Quantitative evaluation on the realism and diversity of generated image and geometry (metrics details in Sec. 4.3).

Specifically, the dataset includes 1,150 driving scenes cap-
tured mostly in downtown San Francisco and Phoenix, each
consisting of 200 frames of multi-sensor observations. To
construct an object-centric benchmark, we propose a coarse-
to-fine procedure to extract collections of single-view 2D
photographs by leveraging 3D object boxes, camera-LiDAR
synchronization, and fine-grained 2D panoptic labels. First,
we leverage the 3D box annotations to exclude objects be-
yond certain distances to the surveying vehicle in each data
frame (e.g., 40m for pedestrians and 60m for vehicles, re-
spectively). At a given frame, we project 3D point clouds
within each 3D bounding box to the most visible camera
and extract the centering patch to build our single-view 2D
image collections. Furthermore, we train a Vip-Deeplab
model [61, 147] using the 2D panoptic segmentations on the
labeled subset and create per-pixel pseudo-labels for each
camera image on the entire dataset. This allows us to differ-
entiate pixels belonging to the object of interest, background,
and occluder (e.g., standing pole in front of a person). We
further exclude certain patches where objects are heavily
occluded using the 2D panoptic predictions. Even with the
filtering criterion applied, we believe that the resulting bench-
mark is still very challenging due to occlusions, intra-class
variations (e.g., truck and sedan), partial observations (e.g.,
we do not have full 360 degree observations of a single
vehicle), and imperfect segmentation. We use the sensor
calibrations to compute ray directions for each 2D pixel,
taking into account the camera rolling shutter. We repeat the
same process to extract vehicles and pedestrians from WOD,
and additional longtail vehicles from our Longtail dataset.
The proposed object-centric benchmark is one of the largest
datasets for generative modeling to date, including diverse
and longtail examples in the wild. We intend to release the
benchmark to push the frontier of research in this area.
4.2. Implementation Details
GINA-3D. Our encoder takes in images at resolution of
2562 and renders at 1282 during training. Our tri-plane
latents have a resolution of 162 with a codebook containing
2048 entries and lookup dimension of 32. We trained our
models on 8 Tesla V100 GPUs using Adam optimizer [148],

(b) WOD-Pedestrian(a) WOD-Vehicle (c) Longtail-Vehicle

Figure 4. Image samples from our object-centric benchmark.

with batch size 32 and 64 in each stage, respectively. We
trained stage 1 for 150K steps and stage 2 for 80K steps.

Baselines. We compare against two state-of-the-art meth-
ods in the domain, GIRAFFE [51] and EG3D [52], which
we train on our dataset at the resolution of 1282. We noticed
that GIRAFFE model trained on full pixels fails to disentan-
gle viewpoints, occlusions and identities. This makes the
extraction of the foreground pixels difficult, as the render
mask is only defined at the low dimensional resolution 162.
We instead report the numbers using a model trained by
whitening out non-object regions. For EG3D, we observed
that training EG3D with unmasked image leads to training
collapse, due to the absence of foreground and background
modeling. Thus, we trained EG3D under the same setting.

4.3. Evaluations on WOD-Vehicle
We conduct quantitative evaluations in Table. 2 and visu-

alize qualitative results of different model in Fig. 5.

Image Evaluation. For image quality, we calculate
Fréchet Inception Distance (FID) [149] between 50K gen-
erated images and all available validation images. To better
reflect the metric on object completeness, we filter images
where its object segmentation mask take up at least 50% of
the projected 3D bounding box (Fig.5-right). We addition-
ally measure the completeness of the generated images by
Mask Floater-Over-Union (Mask FOU), which is defined as
the percentage of unconnected pixels over the rendered ob-
ject region. To measure the semantic diversity, we compute
the Coverage (COV) score and Minimum Matching Distance
(MMD) [94] using the CLIP [150] embeddings. COV mea-
sures the fraction of CLIP embeddings in the validation set
that has matches in the generated set, and MMD measures
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WOD-Vehicle validation samplesGINA-3D (Ours)

GIRAFFE
(view, view+45°)

Trained On Full Images Trained On Masked Images GIRAFFE EG3D

Figure 5. Qualitative comparison between GIRAFFE, EG3D and ours with images rendered from a horizontal 30◦ viewpoint. Both baselines
fail to disentangle real-world sensor data. GIRAFFE fails to disentangle rotation in object representation, while both baselines fail to
disentangle occlusion and produce incomplete shape. We show samples from occlusion-filtered WOD-Vehicle validation set on the right.

(c) GINA-3D on Longtail-Vehicle(b) GINA-3D + DINO (d) WOD-Ped

(a) GINA-3D on WOD-Vehicle

Figure 6. Generation from GINA-3D variants. (a) GINA-3D trained on WOD-Vehicle. (b) GINA-3D with additional DINO feature field
generation. (c) GINA-3D trained on Longtail-Vehicle. (d) GINA-3D trained on WOD-Pedestrain.

the distance between each generated embedding to the clos-
est one in the validation. Our model demonstrates significant
improvements in FID, image completeness and semantic
diversity. Without explicit disentanglement, baselines can
hardly handle the real distributions, resulting in artifacts of
incomplete shapes (Fig. 5).

Geometry Evaluation. To measure the underlying volume
rendering consistency, we follow Or et al. [79] and compute
the alignment errors between the volume-rendered depth
from two viewpoints. We extract the mesh using march-
ing cubes [151] with a density threshold of 10 following
EG3D [52]. We measure the completeness by Mesh Floater-
Over-Union (Mesh FOU), which is defined as the percentage
of the surface area on unconnected mesh pieces over the
entire mesh. Since we do not have ground-truth meshes in
the real world data, we approximate mesh diversity by mea-
suring between generated meshes and aggregated LiDAR
point clouds within a bounding box from the validation set.
We measure mesh diversity using the aforementioned COV
and MMD with a new distance metric. To account for the
incompleteness of LiDAR point clouds, we use a one-way
Chamfer distance, which is defined as the mean distance be-

tween validation point clouds and their nearest neighbor from
a given generated mesh. Our model demonstrates signifi-
cant improvements in volume rendering consistency, shape
completeness and shape diversity.

Augmentation and Ablation. GINA-3D can naturally
incorporate additional supervisions when available. We
present variations of GINA-3D trained with object scale,
LiDAR and DINO [146] supervision. With object scale in-
formation available, we normalize tri-plane feature maps
with the scale on each dimension. The model trained with
rescaled tri-plane resolution yields significant performance
boost in both quality and diversity over unit bounding cube,
as latents are better utilized. Moreover, we observe that by
adding auxiliary L2 depth supervision from LiDAR, most
metrics are improved except Mask and Mesh FOU. While Li-
DAR provides strong signal to underlying geometry, it also
introduces inconsistency on transparent surfaces. We hy-
pothesize that such challenge leads to slightly more floaters,
which we leave as future directions to explore. Alternatively,
we can learn additional neural semantic fields through 2D-to-
3D feature lifting [142]. By only changing the final layer of
the NR MLP, we can learn an additional view-consistent and
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Figure 7. GINA-3D unifies a wide range of asset synthesis tasks, all obtained with the same stage 1 decoder and variations of stage 2 training.
Top row: Conditional synthesis using discrete conditions (object classes and time-of-day). 2nd row: Conditional synthesis using continuous
conditions (semantic token and object scale). 3rd row: Image-conditioned assets variations by randomizing tri-plane latents.

instance-invariant semantic feature field (Fig. 6-b), which
can enable future applications of language-conditioned and
part-based editing [8] Finally, we perform ablation studies
on the key design of tri-plane latents. If we remove the tri-
plane structure and use a MLP-only NR, the model fails to
capture the diversity of real-world data and results in mode
collapse, which generates always a mean car shape.

4.4. Applications
Generating long-tail instance. Our data-driven framework
is scalable to new data. We provide results on GINA-3D
trained on Longtail-Vehicle and WOD-Ped dataset in Fig. 6-
c,d respectively. Without finetuning the architecture on the
newly collected data, GINA-3D can readily learn to generate
long-tail objects from noisy segmentation masks. As shown
in Fig. 6-c, generation results range from trams, truck to
construction equipment of various shapes. GINA-3D can
also be applied to other categories (e.g. pedestrian, Fig.6-d).
Results show moderate shape and texture diversity.
Conditional synthesis. As described in Sec. 3.4, the flexibil-
ity of the two-stage approach makes it a promising candidate
for conditional asset synthesis. Specifically, we freeze the
stage 1 model, and train variations of MaskGIT by passing
in different conditions. We provide results for three kinds of
conditional synthesis tasks in Fig. 7, namely discrete embed-
dings (object class, time-of-day), continuous embeddings,
and image-conditioned generation. For image-conditioned
asset reconstruction and variations, we first infer the latents
using the encoder model and then sample asset variations
by controlling masking ratio of the reconstructed tri-plane
latents. The more tokens are masked, the wider the variation
range becomes. We provide more details for conditional
synthesis in the supplementary material.

4.5. Limitations
Misaligned 3D bounding boxes. As in our WOD-Ped re-
sults, misaligned boxes lead to mismatch in pixel space, re-
sulting in blurrier results. Latest methods in ray-based [130]

or patch-based [81] learning are promising directions.
Few-shot and transfer learning. Though our data-driven
approach achieves reasonable performance by training on
Longtail-Vehicle alone, the comparative scarcity of data
leads to lower diversity. How to enable few-shot learning or
transfer learning remains an open question.
Transcient effects. Direction-dependent effect can be incor-
porated in our pipeline. We believe modeling material [152]
together with LiDAR is an interesting direction.

5. Conclusion
In this work, we presented GINA-3D, a scalable learn-

ing framework to synthesize 3D assets from robotic sensors
deployed in the wild. Core to our framework is a deep
encoder-decoder backbone that learns discrete tri-plane la-
tent variables from partially-observed 2D input pixels. Our
backbone is composed of an encoder with cross-attentions, a
decoder with tri-plane feature maps, and a neural volumetric
rendering module. We further introduce a latent transformer
to generate tri-plane latents with various conditions includ-
ing bounding box size, time of the day, and semantic features.
To evaluate our framework, we have established a large-scale
object-centric benchmark containing diverse vehicles and
pedestrians. Experimental results have demonstrated strong
performance on image quality, geometry consistency and
geometry diversity over existing methods. To faciliate future
research on generative neural assets from in-the-wild data,
we intend to release our benchmark to the public.
Acknowledgements: We based our MaskGIT implemen-
tation on Chang et al. [62]. We thank Huiwen Chang for
helpful MaskGIT pointers. We acknowledge the helpful
discussions and support from Qichi Yang and James Guo.
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