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Abstract

Video-based gait recognition has achieved impressive re-
sults in constrained scenarios. However, visual cameras
neglect human 3D structure information, which limits the
feasibility of gait recognition in the 3D wild world. In-
stead of extracting gait features from images, this work
explores precise 3D gait features from point clouds and
proposes a simple yet efficient 3D gait recognition frame-
work, termed LidarGait. Our proposed approach projects
sparse point clouds into depth maps to learn the represen-
tations with 3D geometry information, which outperforms
existing point-wise and camera-based methods by a sig-
nificant margin. Due to the lack of point cloud datasets,
we build the first large-scale LiDAR-based gait recognition
dataset, SUSTech1K, collected by a LiDAR sensor and an
RGB camera. The dataset contains 25,239 sequences from
1,050 subjects and covers many variations, including vis-
ibility, views, occlusions, clothing, carrying, and scenes.
Extensive experiments show that (1) 3D structure informa-
tion serves as a significant feature for gait recognition. (2)
LidarGait outperforms existing point-based and silhouette-
based methods by a significant margin, while it also offers
stable cross-view results. (3) The LiDAR sensor is superior
to the RGB camera for gait recognition in the outdoor en-
vironment. The source code and dataset have been made
available at https://lidargait.github.io.

1. Introduction
Gait is an essential biometric, which has the unique

advantage of human identification at a distance without
physical contact. Gait empowers real-world applications
such as human retrieval, forensic identification, and serv-
ing robots. Recently, great progress has been made to pro-
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Figure 1. Illustration of (a) camera-based and (b) LiDAR-based
gait recognition. Camera-based gait recognition commonly uses
silhouettes to learn shape information from a single view. LiDAR-
based gait recognition can use 3D structure, shape, and scale in-
formation to identify a subject.

mote gait recognition from in-the-lab setting [19, 42, 50]
to in-the-wild scenario [17, 52, 56, 58]. Despite these
studies have made significant contributions to recent ad-
vances [5, 7, 11, 30, 31, 38, 55], two inherent problems still
remain (1) lack of 3D geometry information, and (2) poor
feasibility in the real-world scenario.

Existing camera-based methods [18,53] are counterintu-
itive to human nature. When recognizing a subject [56, 57],
humans consider not only the 2D appearance character-
istics, but also 3D geometry structure information like
height, shape, and viewpoints. Differently, camera-based
gait recognition methods [5, 26, 31] either capture 2D rep-
resentations from a single viewpoint, as shown in Fig. 1a,
or exploit 3D representations from estimated 3D pose/mesh
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models [23, 27, 56], which is usually imprecise in various
challenging conditions of low resolution, poor illumination,
untrained posture, etc. Fortunately, 3D sensors provide pre-
cise 3D perception like human nature, e.g. recognizing a
subject from multiple views as illustrated in Fig. 1b.

Visual ambiguity is the alternative limitation of camera-
based approaches. To our knowledge, most existing gait
datasets [42,56,58] only consider camera-based modalities,
and fail to acknowledge the challenges of visual ambiguity
caused by poor illumination and complex backgrounds in
outdoor environments. These factors can significantly harm
the performance of upstream tasks like pedestrian detection
and segmentation, which in turn affects the accuracy of the
gait system in real-world applications. Thus, obtaining pre-
cise 3D information for gait description is highly desirable
to eliminate visual ambiguity in RGB images.

The remarkable success of 3D applications [6, 14, 33]
motivates us to endow gait recognition with precise 3D
structural information and accurate human perception, by
utilizing LiDAR sensors in challenging outdoor environ-
ments. In addition to improving gait recognition, LiDAR
sensors offer potential benefits in many scenarios, including
robotics, healthcare, social security, and surveillance. For
example, robots equipped with LiDAR-based gait recogni-
tion can function as 24×7 security guards, enhancing com-
munity safety. Vehicles fitted with LiDAR sensors can aid
in locating lost orders and children. Furthermore, LiDAR
is more privacy-preserving than cameras, making it suitable
for sensitive scenarios such as nursing homes and kinder-
gartens. Additionally, LiDAR has the potential to enhance
biometric security by protecting against Deepfake attacks
compared to cameras.

This paper introduces SUSTech1K, the first large-scale
LiDAR-based gait dataset to facilitate 3D gait recognition
with point clouds. The dataset is captured outdoors using
a Velodyne VLS128 LiDAR sensor and an RGB camera
mounted together on a robot. Compared to existing datasets
listed in Tab. 1, SUSTech1K offers several distinctive fea-
tures: (1) Precision. The SUSTech1K dataset provides 3D
point clouds as gait representations with high precision and
density, providing precise and robust 3D structure informa-
tion for recognition. (2) Scalability. The dataset captures
25,239 sequences from 1,050 subjects, providing scalabil-
ity for statistical evaluation. (3) Diversity. The dataset in-
cludes diverse and realistic challenges, such as illumination,
occlusion, dressing, carrying, and more, along with detailed
annotations, enabling the community to study the impact of
different factors on gait recognition. (4) Multimodality.
The dataset captures data streams from LiDAR and cam-
era sensors, opening up opportunities for exploring sensor
fusion approaches for robust gait recognition.

Given that 3D point clouds are formatted differently
from pixels in images and that point-based gait recogni-

tion has received little attention, we investigate four cutting-
edge methods [15, 36, 37, 54] from the study of point-
based object classification [36]. However, we observed
that all the implemented point-based methods performed
sub-optimally when compared to methods using camera-
based silhouettes. We believe the performance gap is pri-
marily due to the difference in feature granularity of the
task. The aforementioned point-based methods are primar-
ily designed for coarse-grained object classification, focus-
ing more on global context modeling. In contrast, gait
recognition requires extracting fine-grained local informa-
tion to achieve high accuracy.

To address this issue, we propose a simple yet effective
baseline method named the LidarGait. Specifically, Lidar-
Gait first projects 3D point clouds into depth images from
the LiDAR range view and then employs convolutional net-
works to extract gait features with 3D structural informa-
tion from the projection. This approach contrasts point-wise
methods that learn global context from sparse point clouds
with limited local connectivity. Using convolutional neu-
ral networks on projection, LidarGait can efficiently capture
the fine-grained and discriminative gait features from sparse
point clouds. Extensive experiments demonstrate that (1)
LidarGait is effective in maintaining 3D structural informa-
tion for gait recognition, and including 3D information can
significantly contributes to performance improvement, (2)
point-based gait recognition equipped with a LiDAR sensor
performs stably well on various challenges, convincingly
demonstrating its practical significance.

To summarize, our main contributions are as follows: (1)
We carry out one of the first studies of 3D gait recognition
with point clouds, bringing precise perception and 3D ge-
ometry of humans for better practicality in real-world sce-
narios. (2) We introduce SUSTech1K, the first large-scale
LiDAR-based gait recognition benchmark, which includes
a range of annotations covering occlusions, viewpoints, car-
rying, clothing, and distance. (3) We propose a novel point
cloud gait recognition framework, LidarGait, outperform-
ing camera-based methods by a large margin.

2. Related Work
Gait Recognition. According to the used representations,
gait recognition can be generally divided into 2D and 3D
representations-based methods [39].

The majority of 2D representations-based methods
study gait characteristics directly from images, termed
appearance-based [5,11,42,46] methods, which have made
surprising high performance based on silhouettes [16,25,26,
28,29] together with other gait templates [4,16,45]. The al-
ternative approaches learn human structure [23, 27, 44] and
dynamics [44] as gait representations, but they are heav-
ily constrained by model-based estimation models. 3D
representation-based methods are generally extracted by
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Table 1. Comparison of publicly available datasets for gait recognition.
Dataset Year Subject # Seq # View # Data Type 3D Multimodal Outdoor

CASIA-B [50] 2006 124 13,640 11 RGB, Silhouettes ✗ ✗ ✗

CASIA-C [43] 2006 153 1,530 1 Infrared, Silhouettes ✗ ✗ ✓

KY4D [20] 2010 42 168 16 Silhouettes, RGB, 3D Volumetrics ✓ ✗ ✗

TUM-GAID [17] 2012 305 3,370 1 Audio, Video, Depth ✓ ✓ ✓

SZTAKI-LGA [3] 2016 28 11 1 3D Point Cloud ✓ ✗ ✓

OU-MVLP [42] 2018 10,307 288,596 14 Silhouettes ✗ ✗ ✗

FVG [52] 2019 226 2,856 3 RGB ✗ ✗ ✓

PCG [49] 2020 30 60 1 3D Point Cloud ✓ ✗ ✗

GREW [58] 2021 26,345 128,671 882 Silhouettes, 2D/3D Skeleton, Flow ✗ ✗ ✗

Gait3D [56] 2022 4,000 25,309 39 Silhouettes, 2D/3D Skeleton, 3D Mesh ✓ ✗ ✓

OUMVLP-Mesh [24] 2022 10,307 288,596 14 3D Mesh ✓ ✗ ✗

SUSTech1K 2023 1,050 25,239 12 RGB, Silhouettes, 3D Point Cloud ✓ ✓ ✓

sensors [12, 17] or estimation models [25, 27]. The com-
monly used 3D sensors such as Kinect, provide 3D struc-
tured data, but they only facilitate in an indoor and close-
distance environment [12]. Meanwhile, multi-cameras re-
construction [2] and 3D estimation models [25, 27, 44, 53,
56] provide considerable 3D geometry, but the performance
is far behind the requirements of real-world applications as
reported in [58].

Gait Recognition Benchmark. There are three types of
publicly available datasets: in-the-lab [19, 42, 50], syn-
thetic [8], and in-the-wild datasets [17, 34, 56, 58]. The
in-the-lab datasets [19, 42, 46, 50], represented by CASIA
series [43, 46, 50] and OU-ISIR series [19, 42], advance the
investigation of the feasibility of gait recognition. The re-
cent synthetic datasets [8] are to overcome the difficulty
in data acquisition and annotation of gait, providing more
synthetic data with a variety of annotations but introduc-
ing cross-domain issue [26] at the same time. The in-
the-wild datasets [34, 56, 58] are to promote gait recogni-
tion research in the unconstrained environment. The recent
works [1, 3, 49] based on LiDAR sensor are closely related
to our work, while the main concern is that the existing
datasets include at most 30 subjects, which cannot guaran-
tee statistically reliable performance evaluation of LiDAR-
based gait recognition. Because of insufficient 3D represen-
tations for data-driven gait recognition, as shown in Tab. 1,
a dataset with accurate 3D representations is essential.

Point Cloud and 3D Object Classification. LiDAR,
which stands for Light Detection and Ranging, projects
laser pulses to the targets and then generate point cloud
sets. Each point represents a data point in Cartesian coor-
dinates (X,Y, Z). Point cloud data is sparsely distributed,
remaining a significant challenge in modeling correlation
and geometry. 3D object classification explore projection-
based [15, 41, 48], point-wise [36, 37, 54], and graph-wise
models [47, 48] to capture discriminative feature on point
cloud data for object classification. In this paper, we se-
lect many representative models of 3D object classification
and compare them with our proposed method to compre-
hensively study 3D point-based gait recognition.

Round-trip Path

One-way Path

5 m

5 m

LiDAR-Camera
Capture System

5 
m

Scene 2Scene 1 Scene 3

Figure 2. Data acquisition setup. Each participant is first in-
structed to normally walk along four round-trip paths and four
one-way paths, then walk again with a random variance along the
same paths.

3. The SUSTech1K Benchmark
The SUSTech1K dataset is captured by a mobile robot

equipped with a 128-beam LiDAR scanner and a monoc-
ular camera, providing synchronized multimodal data. It
includes 1,050 identities, 25,239 sequences, 763,416 point-
cloud frames, and 3,075,575 RGB images with correspond-
ing silhouettes. The SUSTech1K dataset is a synchro-
nized multimodal dataset, with timestamped frames for
each modality of frames. In addition, we protect the privacy
of the participants by blurring their faces and obtaining in-
formed consent. To the end, we manually annotate various
walking conditions in SUSTech1K.
Data Collection. The dataset was collected in July 2022
in three scenes on the SUSTech campus using an indus-
trial camera and a LiDAR sensor. The camera captured
RGB imagery streams at a resolution of 1, 280 × 980 and
30 frames per second (FPS), while the point cloud streams
were recorded at 10 FPS. We synchronized the LiDAR
and camera with the GPS clock and timestamped each
frame to enable collaboration between the two modalities
for a robust gait recognition system. The current indoor
datasets mainly focus on subject-centered gait recognition
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(a) Samples of 12 views in two conditions for a subject. (b) Diverse attributes in SUSTech1K.

Figure 3. (a) Each participant walks normally (top row), followed by walking with a random variance (bike for this subject) as shown in
the bottom row. (b) SUSTech1K collects data in point cloud and RGB modality with diverse realistic variances.

with a clean background, while other existing datasets fo-
cus on pedestrians from surveillance views. In contrast,
SUSTech1K was collected from a robot view. The exist-
ing gait datasets such as OUMVLP [42], and CASIA-E [40]
set the capture range to around 8 meters. Our experimental
setup is inherited from existing gait datasets at a compara-
tive distance as shown in Fig. 2. Each subject first walked
normally along the one-way paths and the round-trip paths,
and then walked again with an extra random attribute, such
as carrying any object, as shown in Fig. 3a. Each subject
can have a total of 48 gait sequences (= [4 × 2 (round-trip)
+ 4 × 1(one-way)] × 2 (twice) × 2 (modality)).
Variances. In practice, we instructed each subject to walk
with random attributes during their second round. The
SUSTech1K dataset preserves the variances found in ex-
isting datasets, such as Normal, Bag, Clothes Changing,
Views and Object Carrying, while also considering other
common but challenging variances encountered outdoors,
including Occlusion, Illumination, Uniform, and Umbrella.
By categorizing these walking sequences into different sub-
sets based on their variances, we can further explore the
impact of different variations on the gait recognition perfor-
mance of the two modalities.
Annotations and Representations. The continuous data
streams are first manually segmented into sequences based
on the predefined trajectories shown in Fig. 2. Each se-
quence is then labeled according to the aforementioned vari-
ances. Finally, the camera-based and lidar-based sequences
are processed separately to obtain gait representations.

For camera-based representations, we first applied hu-
man detection [13], tracking [51], and segmentation [32] on
the raw RGB imagery streams, to generate camera-based
gait representations with RGB images and corresponding
silhouettes. In cases where the tracking algorithm produced
inaccurate bounding boxes, we manually corrected them. It
should be noted that the performance of the segmentation
algorithm deteriorates in low-light conditions, resulting in
suboptimal performance.

For LiDAR-based representations, obtaining LiDAR-

based representations was relatively easy because there was
only one subject walking in the experimental area at a time.
To protect the privacy of uninvolved passers and to gen-
erate clean gait representations in the point cloud format,
we only release the area range to [−5,−12m] for the X
axis, [−3m, 3m] for the Y axis, and [−2m, 3m] for the Z
axis. Moreover, we applied noise removal [9] and ground
removal [21] on each frame to clean the lidar data.
Statistics. Fig. 4a indicates that the two modalities have
the same number of sequences, while the RGB modality
has three times more frames per sequence than the LiDAR
modality. The imagery gait representations provide more
details and dense information when the camera-based rep-
resentations are in the resolution of 128 × 128 as shown
in Fig. 4b. When we resize the imagery to the resolution
of 64 × 64, the ratio of pixels vs points is approximately
1:1, allowing for a more direct and fair comparison of the
two modalities. In the end, the distribution of attributes in
Fig. 4c, shows the diversity of the SUSTech1K dataset.
Evaluation Metrics. To establish a more challenging and
realistic setting, the SUSTech1K dataset is evaluated under
an open-set setting [35,42], where train and test set splits are
without sample overlapping. The evaluation protocol fol-
lows the cross-view recognition setting as commonly used
in CASIA-B [50] and OUMVLP [42], where probe sets of
the same view calculate the similarity to gallery sets of each
view. The probe sets are grouped into many subsets accord-
ing to the attributes to evaluate the impact of attributes, then
perform cross-view retrieval task. The prevailing Rank-1
accuracy and Rank-5 are adopted as the evaluation metric.

4. Gait Recognition with Point Clouds
4.1. Problem Setting

In this section, we introduce the problem setting of 3D
gait recognition with point clouds. Given a point cloud
dataset P = {Pj

i |i = 1, 2..., N ; j = 1, 2, ...,mi} with N
identities and mi sequence for each identity yi. Each point
cloud sequence Pj

i ∈ RT×N×C is with T frames and N
points for each frame, where C is the number of feature
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Figure 4. Statistics about SUSTech1K dataset. LiDAR modality and RGB modality are represented in blue and yellow, respectively. It
shows that SUSTech1K dataset is scalable, multimodal, and diverse for the study of 3D gait recognition. CR, BG, UB, UF, NT, NM, OC,
and CL denote attributes of Carrying, Bag, Umbrella, Uniform, Night, Occlusion, and Clothing, respectively. Best viewed in color.

channels. Our goal is to learn a network Nθ(·) that can pro-
duce the feature embedding F j

i to represent the associated
identity yi.

We propose the LidarGait, as shown in Fig. 5, to tackle
the 3D gait recognition task, formulated as:

F j
i = Nθ(G(Pj

i )) (1)

where the projection function G operates on point clouds
and generates depth images from the LiDAR front view.
The feature extractor Nθ is composed of two components.
1) a structural feature encoder S that captures spatially lo-
cal connectivity from projected front-view depth images. 2)
a temporal aggregation network T that models dynamical
conjunction along sequential input, which can be formu-
lated as:

Nθ(·) = T (S(G(P1
i ), · · · ,S(G(P

mi
i ))) (2)

LidarGait first receives sequential 3D point clouds and
then extracts spatial-temporal representation from projected
depth maps. To end, LidarGait is optimized by combining
triplet and cross-entropy loss.

4.2. LidarGait

Point-to-Depth Projection. The range-scanned point
clouds from a Velodyne VLS128 LiDAR scanner, can be
projected and discretized into a 2D point map, using the
following projection function [22]:

r = ⌊atan2(y, x)/∆θ⌋

c = ⌊arcsin(z/
√

x2 + y2 + z2)/∆ϕ⌋
(3)

where 3D point p = (x, y, z)⊤ is mapped to its correspond-
ing 2D pixel coordinates (r, c) in the projected depths im-
age. The ∆θ and ∆ϕ represent the average horizontal and
vertical angle resolution between consecutive beam emit-
ters. According to the configuration of the LiDAR, the ∆θ

and ∆ϕ are set to 0.192 and 0.2, respectively. The result-
ing 2D point map is similar to cylindrical images. Each
element in the map at position (r, c) is filled with d, where
d =

√
x2 + y2. In the rare case where multiple points are

projected to the same 2D position, only the point closest to
the observer is kept. If no 3D point is projected onto a par-
ticular 2D position, the corresponding element in the point
map is filled with 0. Then the depth projection is normalized
and converted to RGB images from the 1-channel images.
Structural Representation Learning. LidarGait extracts
abstract structural features from sequences of depth im-
ages using a convolutional network S. The S is a spatial
feature encoder that can use any existing silhouette-based
backbone. In this work, we use GaitBase [10] as our fea-
ture encoder S. As opposed to camera-based methods that
use silhouettes as input, point-wise methods [36,37,54] ex-
tract representation directly from point clouds. However,
point-wise methods underperform camera-based recogni-
tion methods as shown in Tab. 2, despite using the infor-
mative 3D structures of pedestrians. We attribute this per-
formance gap to the fact that current point-based models
are optimized for global feature modeling, which is suitable
for distinguishing objects with large inter-class differences.
However, gait recognition requires capturing fine-grained
features to distinguish individuals with small inter-class dis-
tances and large intra-class distances. To address this chal-
lenge, LidarGait utilizes convolutional networks to extract
gait representations from projection depths, which are bet-
ter at capturing such fine-grained features.
Temporal Fusion. To aggregate the features from the vari-
able length of depth sequences, we use Set Pooling [5] as
the temporal feature aggregator, which enables the model
to capture the final sequence-level gait representation.
MV-LidarGait. In addition to obtaining projected depths
from the perspective of the LiDAR sensor, point clouds can
also be projected from orthographic views as described in
SimpleView [15]. To verify whether the LiDAR range-
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Figure 5. The framework of LidarGait for 3D gait recognition with point clouds. LidarGait receives a sequence of point clouds, extracts
representations from range-view projection depths, and aggregates sequential features by set pooling.

view projection is adequate and to explore the effective-
ness of other projected views, we extend LidarGait to MV-
LidarGait, which projects point sets into two extra orthog-
onal views, as illustrated in Fig. 6. Each rendered view is
independently extracted by a feature encoder and fused in a
frame-by-frame manner.

4.3. Traning and Inference

The model is trained using a combined loss function
that includes the BA+ triplet loss [5] and the cross-entropy
loss [31], with weighted hyperparameters α and β, respec-
tively:

L = αLtri + βLce (4)

During inference, the similarity between each probe-
gallery pair is measured using the Euclidean distance.

5. Experiments
5.1. Experimental Setup

Evaluation Protocol. All experiments are conducted on the
SUSTech1K dataset, which is divided into three splits: a
training set with 250 identities and 6,011 sequences, a val-
idation set with 6,025 sequences from 250 unseen identi-
ties, and a test set with the remaining 550 identities and
13,203 sequences. The SUSTech1K dataset provides gait
sequences from multiple viewpoints, enabling the study
of cross-view gait recognition in both camera and LiDAR
modalities. The cross-view evaluation protocol [42, 50] in
CASIA-B and OUMVLP is adopted for SUSTech1K as
well. During the test, the sequences in normal conditions
are grouped into gallery sets, and the sequences in variant
conditions are taken as probe sets.
Evaluation on Each Condition. To investigate the impact
of various realistic factors on gait recognition in the wild,
including clothes changing, poor illumination, object carry-
ing, occlusion, and wearing uniforms, we group all probes
with the different covariates into multiple subsets for eval-
uation. For instance, the umbrella subset consists of probes

Bird-eye’s-view

Right-side-view

Lidar range-view

𝒮(!)

𝒮(!)

𝒮(!)

f!,#
.%

Figure 6. Illustraition of MV-LidarGait, which aggregates extra
depths projection from the right-side and bird-eye view.

with an umbrella to evaluate the effect of carrying an um-
brella, with the gallery set containing all sequences in nor-
mal conditions.

5.1.1 Comparative Methods

As detailed in Sec. 4.2, LidarGait utilizes the GaitBase
with set pooling to capture 3D gait features on range-view
depths. We evaluate LidarGait with the below methods.
Camera-based Methods. To evaluate the performance
of the camera-based modality, we implement four cutting-
edge methods: GaitSet [5], GaitBase [10], GaitPart [11],
and GaitGL [31]. The network parametric setting is identi-
cal to the configuration for CASIA-B, which has the equiv-
alent scale of the training set to SUSTech1K.
Lidar-based Methods. We implement four commonly
used approaches in point cloud classification including
PointNet [36], PointNet++ [37], PointTransformer [54], and
SimpleView [15]. Among them, the first three methods [36,
37, 54] are point-wise models, while SimpleView [15] is a
representative projection-based method.
Implementation Details. All the camera-based silhou-
ettes and LiDAR-based depth images are aligned using the
method introduced in [19] and then resized in the resolu-
tion of 64 × 64. For LiDAR modality methods, we use the
SGD optimizer with a weight decay of 0.0005 and an initial
learning rate of 0.1. The learning rate is reduced by a factor
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Table 2. Evaluation with different attributes on SUSTech1K valid + test set. The bolded and underlined values represent the first and
second-best results, respectively.

Model Publication Modality Probe Sequence (Rank-1 acc) Overall
Normal Bag Clothing Carrying Umbrella Uniform Occlusion Night Rank1 Rank5

GaitSet [5] AAAI2019

Camera

69.10 68.25 37.44 65.01 63.08 61.00 67.19 23.04 65.04 84.76
GaitPart [11] CVPR2019 62.20 62.81 33.08 59.53 57.25 54.85 57.20 21.75 59.19 80.79
GaitGL [31] ICCV2021 67.11 66.16 35.92 63.31 61.58 58.07 66.59 17.88 63.14 82.82
GaitBase [10] CVPR2023 81.46 77.48 49.60 75.77 75.55 76.66 81.40 25.92 76.12 89.39
PointNet [36] CVPR2017

LiDAR

43.59 37.27 25.72 28.78 19.85 30.05 44.29 27.35 31.33 59.75
PointNet++ [37] NIPS2017 55.90 52.22 41.60 49.60 47.84 45.91 54.16 52.49 50.78 82.38
PointTransformer [54] ICCV2021 53.19 48.08 32.05 43.20 39.06 41.75 47.87 47.12 44.37 76.70
SimpleView [15] ICML2021 72.33 68.75 57.15 63.26 49.20 62.52 79.72 66.54 64.83 85.77
LidarGait Ours LiDAR 91.80 88.64 74.56 89.03 67.50 80.86 94.53 90.41 86.77 96.08

of 0.1 at the 20,000th and 30,000th iterations, and the to-
tal number of iterations is set to 40,000. For methods using
camera modality, the Adam optimizer is used to prevent the
issue of gradient vanishing because of low-quality silhou-
ettes. The triplet and cross-entropy loss weights are set to
1 and 0.1, respectively. The batch size (p, k, l) is set to (8,
8, 10) and (8, 16, 30) for lidar-based methods and camera-
based methods, respectively, where p denotes the number of
IDs, k for the number of sequence of training samples per
ID, and l is the number of frame per sequence. All compar-
ison methods are trained using the same training strategy as
LidarGait. The OpenGait [10] codebase is used to conduct
all experiments1.

5.2. Comparative Results

Following the cross-view evaluation protocol [42, 50],
we evaluate all methods on each subset with different con-
ditions, and we report the cross-view accuracy matrix in
Fig. 7 for a detailed performance comparison between Li-
DAR and camera modality. We report the average of the
accuracy matrix in Tab. 2, obtaining the following obser-
vations: (1) LidarGait shows its superiority to all existing
point-based and camera-based methods, which is mainly
beneficial by integration with 3D geometry information. (2)
LidarGait achieves state-of-the-art results in all conditions
except the umbrella subset. It is mainly caused that um-
brellas are erased after segmentation on RGB images, while
the umbrellas are kept in point sets. (3) The methods using
silhouettes make a poor performance at night. Point-based
methods provide more promising results, and LidarGait out-
performs others by a large margin. (4) All silhouette-based
models [5, 10, 11, 31] achieve higher accuracy than point-
based models [36, 37, 54] in point cloud classification. This
concludes that it is necessary to design point-based models
for 3D gait recognition specifically. (5) The models utiliz-
ing the order of the frames in sequences, i.e. GaitPart, and
GaitGL, obtain lower results. While other set-based meth-
ods, i.e. GaitSet, and GaitBase, perform better accuracy. It
means that temporal cues may be impacted in the outdoor
scenes because of low-quality silhouettes.

1https://github.com/ShiqiYu/OpenGait
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Figure 7. Cross-view performance comparison between LiDAR
and camera for gait recognition. We report rank-1 accuracy (%) on
the cross-view protocol. * indicates viewpoint at a longer distance.
Best viewed in color and pdf.

Cross-view Gait Recognition. We conduct a detailed com-
parison of two modalities of cross-view gait recognition
in Fig. 7. The identical feature encoder, GaitBase, is uti-
lized for two modalities to make ablative results. We can
make the following observations: (1) the distance from sub-
jects to sensors indeed impacts the performance for both
two modalities. (2) Camera-based method achieves poor
performance when query sets are at views of 0◦, 90◦, 180◦

(see purple pixel in Fig. 7a). The same phenomenon can
be found on CASIA-B [5] and OUMVLP [42]. However,
LiDAR-based methods can perform stably in cross-view
settings, validating the effectiveness of 3D structure for
cross-view gait recognition.

5.3. Ablation Study

Effectiveness of 3D Geometry Information. To evaluate
the effectiveness of depth information for gait recognition,
we compare four types of data as input: (1) Camera sil-
houettes: the camera-based silhouettes are obtained by seg-
mentation results of RGB images. (2) LiDAR silhouettes:
LiDAR silhouettes are obtained by range-view projection of
point cloud sets. (3) LiDAR depth: the depth information is
added. From Fig. 8, we can observe that: (1) When depth
information is not included, the performance of LiDAR sil-
houettes is much lower than the accuracy of camera silhou-
ettes. This is because the camera has a much higher resolu-
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Figure 8. Ablation study on the effectiveness of depth information
for performance. Best viewed in color.

tion than Lidar, so the silhouettes from the camera can have
more details. (2) Though LiDAR generates point clouds in
sparse space, the depth of information makes a magnificent
improvement to the accuracy. Integrating depth information
can improve rank-1 accuracy from 64.70% to 86.77%, vali-
dating the necessity and effectiveness of 3D information for
gait recognition.
Effectiveness of Other Projected View. The right-side
view (RSV) is obtained by positioning a virtual camera or-
thogonal to the LiDAR range view (RV) on the right-hand
side. The Bird-eye’s view (BEV) projects point clouds onto
a plane above the point clouds of pedestrians. Based on the
results presented in Tab. 3, we have the following observa-
tions: (1) LidarGait achieves the best performance on the
range view projection when a single viewpoint is used as
input. (2) The right-side view also provides a reliable rep-
resentation, which performs comparably to camera-based
methods. (3) Although the accuracy of Bird’s-eye views is
only 26.33%, learning gait features from BEV images pro-
vides interesting evidence that gait recognition can poten-
tially be achieved at the Bird’s-eye view. (4) MV-LidarGait
can be improved (+0.73%) from LidarGait by combining
multiple viewpoints, with the improvement mainly coming
from the umbrella subset. (5) The integration of BEV does
not enhance the performance of MV-LidarGait, indicating
that BEV only provides redundant information already con-
tained in the other two viewpoints.

More experiments and exemplar data on SUSTech1K are
included in the supplementary material2.

6. Discussion
Ethical Discussion. The SUSTech1K dataset has been re-
viewed by the Southern University of Science and Tech-
nology Institutional Review Board (SUSTech IRB). All the
subjects involved in the dataset signed a written consent to
agree that their data can be collected, processed, used, and
shared for research purposes. The dataset can be distributed
only for non-commercial research purposes with the case-
by-case dataset access application. The human faces are
blurred from RGB images to protect sensitive privacy. The

2https://lidargait.github.io/

Table 3. Effectiveness of each projected view. MV-LidarGait
achieves the best performance.

Model Used views Normal Umbrella Overall
Rank1

LidarGait
BEV 39.92 12.12 26.33
RSV 70.61 47.02 62.67
RV 91.80 67.50 86.77

MV-LidarGait RV + RSV 91.29 70.91 87.50
RV + RSV + BEV 91.22 69.43 87.47

recorded data can only be used for 20 years since this paper
publishes. After this date, all data will be deleted and not
allowed to be used.

7. Conclusions and Future work
In this paper, we introduce the LiDAR sensor to provide

reliable anthropometric parameters for the human body, and
to perceive pedestrians in unconstrained scenes. First, we
proposed a novel multi-view projection network for point
cloud gait recognition, named LidarGait, to exploit 3D
human geometry from multi-view representations. More-
over, we build the first large-scale multimodal 3D point
cloud gait recognition dataset, termed SUSTech1K, to facil-
itate the research of gait recognition with point cloud data.
SUSTech1K contains 25,239 sequences with 1,050 subjects
and covers various visibility, views, occlusions, clothing,
carry, and scenes. Lastly, our proposed method achieves re-
markable results on the SUSTech1K dataset, showing the
superiority of LiDAR and the effectiveness of LidarGait.

LidarGait has obtained remarkable results in various sce-
narios, yet it does not perform well when subjects carry
umbrellas. The reason should be that the umbrellas are
wrongly included in the point cloud. Better performance
can be achieved if the umbrellas are removed from the point
clouds. Besides, LidarGait only takes one modality as input
currently. SUSTech1K dataset is a multimodal dataset with
synchronized RGB images and point clouds. Much better
results should be achieved if the two modalities are fused.
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