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Abstract

3D scene flow estimation aims to estimate point-wise
motions between two consecutive frames of point clouds.
Superpoints, i.e., points with similar geometric features,
are usually employed to capture similar motions of local
regions in 3D scenes for scene flow estimation. However,
in existing methods, superpoints are generated with the
offline clustering methods, which cannot characterize local
regions with similar motions for complex 3D scenes well,
leading to inaccurate scene flow estimation. To this end,
we propose an iterative end-to-end superpoint based scene
flow estimation framework, where the superpoints can be
dynamically updated to guide the point-level flow predic-
tion. Specifically, our framework consists of a flow guided
superpoint generation module and a superpoint guided flow
refinement module. In our superpoint generation module,
we utilize the bidirectional flow information at the previ-
ous iteration to obtain the matching points of points and
superpoint centers for soft point-to-superpoint association
construction, in which the superpoints are generated for
pairwise point clouds. With the generated superpoints,
we first reconstruct the flow for each point by adaptively
aggregating the superpoint-level flow, and then encode
the consistency between the reconstructed flow of pairwise
point clouds. Finally, we feed the consistency encod-
ing along with the reconstructed flow into GRU to refine
point-level flow. Extensive experiments on several different
datasets show that our method can achieve promising
performance. Code is available at https://github.
com/supersyq/SPFlowNet.

1. Introduction
Scene flow estimation is one of the vital components

of numerous applications such as 3D reconstruction [10],
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Figure 1. Comparison with other clustering-based methods.
(a) Other clustering based methods utilize offline clustering
algorithms to split the point clouds into some fixed superpoints
for subsequent flow refinement, which is not learnable. (b)
Our method embeds the differentiable clustering (superpoint
generation) into our pipeline and generates dynamic superpoints at
each iteration. We visualize part of the scene in FlyingThings3D
[38] for better visualization. Different colors indicate different
superpoints and red lines indicate the ground truth flow.

autonomous driving [37], and motion segmentation [2].
Estimating scene flow from stereo videos and RGB-D
images has been studied for many years [17, 19]. Recently,
with the rapid development of 3D sensors, estimating scene
flow from two consecutive point clouds has receiving more
and more attention. However, due to the irregularity and
sparsity of point clouds, scene flow estimation from point
clouds is still a challenging problem in real scenes.

In recent years, many 3D scene flow estimation methods
have been proposed [11, 34, 37, 56, 57, 59]. Most of
these methods [34, 56] rely on dense ground truth scene
flow as supervision for model training. However, col-
lecting point-wise scene flow annotations is expensive and
time-consuming. To avoid the expensive point-level an-
notations, some efforts have been dedicated to weakly-
supervised and self-supervised scene flow estimation [9,
23, 46, 60]. For example, both Rigid3DSceneFlow [9]
and LiDARSceneFlow [7] propose a weakly-supervised
scene flow estimation framework, which only take the ego-
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motion and background masks as inputs. Especially, they
utilize the DBSCAN clustering algorithm [8] to segment
the foreground points into local regions with flow rigid-
ity constraints. In addition, RigidFlow [31] first utilizes
the off-line oversegmentation method [32] to decompose
the source point clouds into some fixed supervoxels, and
then estimates the rigid transformations for supervoxels as
pseudo scene flow labels for model training. In summary,
these clustering based methods utilize offline clustering
algorithms with hand-crafted features (i.e., coordinates and
normals) to generate the superpoints and use the consistent
flow constraints on these fixed superpoints for scene flow
estimation. However, for some complex scenes, the offline
clustering methods may cluster points with different flow
patterns into the same superpoints. Figure 1(a) shows that
[32] falsely clusters points with the entirely different flow
into the same superpoint colored in purple (highlighted
by the dotted circle). Thus, applying flow constraints to
the incorrect and fixed superpoints for flow estimation will
mislead the model to generate false flow results.

To address this issue, we propose an iterative end-to-
end superpoint guided scene flow estimation framework
(dubbed as “SPFlowNet”), which consists of an online su-
perpoint generation module and a flow refinement module.
Our pipeline jointly optimizes the flow guided superpoint
generation and superpoint guided flow refinement for more
accurate flow prediction (Figure 1(b)). Specifically, we
first utilize farthest point sampling (FPS) to obtain the
initial superpoint centers, including the coordinate, flow,
and feature information. Then, we use the superpoint-level
and point-level flow information in the previous iteration to
obtain the matching points of points and superpoint centers.
With the pairs of points and superpoint centers, we can learn
the soft point-to-superpoint association map. And we utilize
the association map to adaptively aggregate the coordinates,
features, and flow values of points for superpoint center
updating. Next, based on the updated superpoint-wise
flow values, we reconstruct the flow of each point via
the generated association map. Furthermore, we encode
the consistency between the reconstructed flow of pairwise
point clouds. Finally, we feed the reconstructed flow along
with the consistency encoding into a gated recurrent unit
to refine the point-level flow. Extensive experiments on
several benchmarks show that our approach achieves state-
of-the-art performance.

Our main contributions are summarized as follows:

• We propose a novel end-to-end self-supervised scene
flow estimation framework, which iteratively gener-
ates dynamic superpoints with similar flow patterns
and refines the point-level flow with the superpoints.

• Different from other offline clustering based methods,
we embed the online clustering into our model to

dynamically segment point clouds with the guidance
from pseudo flow labels generated at the last iteration.

• A superpoint guided flow refinement layer is intro-
duced to refine the point-wise flow with superpoint-
level flow information, where the superpoint-wise flow
patterns are adaptively aggregated into the point-level
with the learned association map.

• Our self-supervised scene flow estimation method out-
performs state-of-the-art methods by a large margin.

2. Related Work

Supervised scene flow estimation on point clouds. The
scene flow describes the 3D displacements of points be-
tween two temporal frames [52]. Estimating scene flow
from stereo videos and RGB-D images has been investi-
gated for many years [16, 19, 22, 50]. Recently, with the
development of 3D sensor, directly estimating scene flow
on point clouds has drawn the interest of many researchers.
There are some supervised scene flow estimation methods
[3, 25, 53, 55, 58, 59]. FlowNet3D [34] is the first end-to-
end scene flow estimation framework on point clouds with
a flow embedding layer to capture the local correlation be-
tween source and target point clouds and a set upconv layer
to propagate the flow embedding from the coarse scale to
the finer scale for flow regression. Except for FlowNet3D,
some other methods also involve multiscale analysis, such
as [6, 12, 54–56]. Among them, Bi-PointFlowNet [6]
propagates the features of two frames bidirectionally at
different scales to obtain bidirectional correlations, which
achieves promising performance. To explicitly encode
the rigid motion, HCRF-Flow [29] uses [32] to segment
the scenes into supervoxels and takes supervoxels as rigid
objects for flow refinement with conditional random fields.
Nevertheless, the above methods build local correlations
within a limited search area, which fail to accurately esti-
mate the large displacements. Therefore, FLOT [45] and
SCTN [27] adopt optimal transport to build global corre-
lation. In contrast, CamLiFlow [33] takes two consecutive
synchronized camera and Lidar frames as inputs to estimate
the optical flow and scene flow simultaneously and builds
multiple bidirectional connections between its 2D and 3D
branches to fuse the information of two modalities. Unlike
other methods that focus on a pair of point clouds, SPCM-
Net [14], MeteorNet [35], and [18] take a sequence of
point clouds as input. Specifically, SPCM-Net computes
spatiotemporal cost volumes between pairwise two frames
and utilizes an order-invariant recurrent unit to aggregate
the correlations across time. Although these supervised
scene flow estimation methods achieve adorable perfor-
mance, they need dense supervision for model training,
while acquiring point-wise annotations is expensive.
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Self-supervised scene flow estimation on point clouds. To
address this drawback, there are some self-supervised and
weakly-supervised methods [15,28,36,37,42,61]. The self-
supervised methods [41,44,51] utilize the cycle-consistency
loss and nearest neighbor loss for model training. Besides,
PointPWC-Net [60] combines the nearest neighbor loss
with a flow smoothness loss and a Laplacian regularization
loss as the self-supervised loss. [30] generates pseudo labels
by optimal transport and refines the generated pseudo labels
with the random walk. The generated pseudo labels are
used for unsupervised model optimization. The follow-
up RigidFlow [31] utilizes optimization-based point cloud
oversegmentation method [32] to split point clouds into a
set of supervoxels and then calculates the rigid transforma-
tion as pseudo flow labels. Rigid3DSceneFlow [9] and Li-
DARSceneFlow [7] get rid of the requirement for expensive
point-wise flow supervision with binary background masks
as well as ego-motion and utilize the DBSCAN clustering
algorithm [8] to segment the foreground points for flow
rigidity constraints. LiDARSceneFlow expands [9] with
a Gated Recurrent Unit (GRU) for flow refinement. The
previous methods based on offline clustering mainly em-
ploy hand-crafted features (i.e., coordinates and normals)
to offline cluster superpoints, which may cluster points
with different motion patterns into the same clusters and
further lead to worse results with rigidity constraints on
the incorrect clusters. Our method attempts to dynamically
cluster point clouds into superpoints and then refines the
point-wise flow with superpoint-level flow information. In
this way, our model can jointly optimize the superpoint
generation and flow refinement for more accurate results.
Additionally, other self-supervised methods [1, 11, 24] also
achieve promising performance.
Point cloud oversegmentation. Point cloud oversegmen-
tation semantically clusters points into superpoints. Re-
cently, some optimization-based superpoint oversegmenta-
tion methods are proposed [13, 32]. Among them, [32]
converts the point cloud oversegmentation into a subset
selection problem and develops a heuristic algorithm to
solve it. In contrast, SPNet [21] is the first end-to-end
superpoint generation network. Due to low computational
cost, superpoints are used for many down-stream tasks,
such as point cloud segmentation [4,5,20,48]. In this paper,
we introduce superpoints into scene flow estimation based
on SPNet. Different from that SPNet focuses on generating
superpoints in a single point cloud, our model utilizes the
bidirectional flow information at the previous iteration to
guide superpoint generation for pairwise point clouds.

3. Method
In this section, we illustrate our superpoint guided scene

flow estimation (SPFlowNet) framework in detail. As
shown in Figure 2, SPFlowNet consists of a flow guided

superpoint generation module and a superpoint guided flow
refinement module. It takes two consecutive point clouds
P = {pi ∈ R3 | i = 1, 2, . . . , n} and Q = {qj ∈
R3 | j = 1, 2, . . . ,m} as inputs and outputs the flow
Ft = {Fp,t,Fq,t} at the t-th iteration for point clouds P
and Q, respectively. Note that the iteration subscript t = 0
means that our model is in the initialization stage.

3.1. Initialization

Initial flow. Firstly, we utilize the feature encoder used
in FLOT [45] to extract the features for point clouds P
and Q. The local features of P and Q can be denoted as
X ∈ Rn×d and Y ∈ Rm×d, where d is the dimension
of the feature. Then, we calculate the global correlation
W ∈ Rn×m between the point clouds P and Q, where W
can be formulated as the dot product between their features.
Next, we apply the Sinkhorn algorithm [47] to it for the final
correlation map W. The initial flow fp,0i ∈ Fp,0 for each
point pi ∈ P can be defined as

fp,0i =

∑m
j=1 wi,jqj∑m
j=1 wi,j

− pi (1)

Similarly, we can obtain the initial flow Fq,0 for point
clouds Q by taking the same operations as P on Q.
Initial superpoint center. We obtain L (L � n and
L � m) initial superpoint centers SP0 = {SPp,0,SPq,0}
for point clouds P and Q by employing the FPS algorithm
in the coordinate space. SPp,0 and SPq,0 denote the initial
superpoint centers for pairwise point clouds P and Q, re-
spectively. Each superpoint center includes the coordinate,
flow, and descriptor information, denoted by SC0, SF0,
and SD0, respectively.

3.2. Flow Guided Superpoint Generation

The scene flow estimation methods [9,31] usually exploit
the offline clustering methods [8, 32] to decompose the
point clouds into a collection of clusters and employ the
flow rigidity constraints on the fixed clusters. However, the
offline clustering methods usually generate false clusters,
where the points with different flow patterns exist in the
same cluster, as shown in Figure 1(a). Therefore, an online
flow guided superpoint generation module is embedded in
our framework, in which the point clouds are dynamically
divided into superpoints. Due to the joint end-to-end
optimization with the consequent flow refinement module,
our model can relieve the above problem to some extent.
Point-to-Superpoint association calculation. Our method
attempts to generate superpoints that satisfy the following
requirements: (1) The points of the same superpoint are
with similar flow patterns; (2) They are also close to
the superpoint centers in the coordinate space; (3) Their
features are semantically similar with each other. Thus, we

5273



Initialization

Source 𝐏

Target 𝐐

Superpoint

Generation

Superpoints

Flow

Flow

𝐅p,0

𝐒𝐏𝑝,0

𝐒𝐏𝑞,0

𝐒𝐏𝑝,𝑡

𝐒𝐏𝑞,𝑡

𝐅𝑝,𝑡

𝐅𝑞,𝑡

𝐒𝐏/𝐅𝑝,𝑡−1

𝐒𝐏/𝐅𝑞,𝑡−1

Superpoint Guided Flow Refinement

𝐒𝐅𝑝,𝑡

𝐒𝐅𝑝,𝑡

Superpoint-level

backward 

interpolation

-

-

GRU

GRU

Point-level 

𝐅𝑝,𝑡

𝐅𝑞,𝑡

𝐀𝑝,𝑡

𝐀𝑞,𝑡 consistency encoding

𝐒𝐏𝑝,𝑡
Superpoint

Center

Updating 

𝐏

𝐅𝑝,𝑡−1

𝐒𝐏𝑝,𝑡−1

Warping

Superpoint-level

Point-level

C
𝐒𝐅𝑝,𝑡−1

Warping

C

෡𝐏C𝐏

෡𝐗C𝐗

෢𝐒𝑫𝑝

Association

Calculation 
𝐒𝐃𝑝

෢𝐒𝑪𝑝𝐒𝐂𝑝Search 

in 

Flow Guided Superpoint Generation

𝐀𝑝,𝑡

Initialization
Superpoint

Generation

Flow

Refinement

Flow

Refinement

𝐅𝒒,0

C Concatenation- Subtraction Matrix Product Superpoint-level Flow: Nearest Neighbor Initial Superpoint Centers Initial Flow

Figure 2. An overview of SPFlowNet. Given two consecutive point clouds P and Q, we first calculate the initial flow F0 = {Fp,0,Fq,0}
and the initial superpoint centers SP0 = {SPp,0,SPq,0} at the initialization stage (t = 0). Then, our model iteratively performs the
flow guided superpoint generation module and the superpoint guided flow refinement module for scene flow estimation. In the end, we can
obtain final flow results after several iterations. Specifically, at the t-th iteration, the flow guided superpoint generation module clusters
points into dynamic superpoints SPt = {SPp,t,SPq,t} with the pseudo superpoint-level and point-level flow labels generated at the
previous iteration. With the generated superpoints, the superpoint guided flow refinement module feeds the superpoint-level flow and
consistency encoding into GRU to obtain the updated point-level flow Fp,t and Fq,t.

follow SPNet [21] to build the soft association map between
points and superpoint centers by adaptively learning the
bilateral weights from both the coordinate and feature
spaces. Different from SPNet, we introduce the previously
iterated flow information at both point level and superpoint
level to obtain the corresponding point/superpoint center
via the bidirectional warping operation (source → target
and target → source). Thus, we employ pairs of points
and superpoint centers in the source and target point clouds
to learn the similarity across the source and target while
SPNet does not consider the pairs of corresponding points
to learn the similarity. Note that following SPNet, we only
calculate the association weights between each point and its
K-nearest superpoint centers (K � L) in the coordinate
space, which is more efficient.

We take the source point cloud P as an example to
illustrate the point-to-superpoint association map calcula-
tion. Specifically, for the i-th point in source point cloud
P, we use the Euclidean distance in the coordinate space
to select the attended K superpoint centers Ni, where
Ni = {scp,t−1i,k ∈ R3, sfp,t−1i,k ∈ R3, sdp,t−1

i,k ∈ Rd}Kk=0

includes the coordinate, flow, and feature information of
the K-nearest superpoint centers. At the t-th iteration, the
association ap,ti,k ∈ Ap,t between the i-th point and the k-th

superpoint center in source point cloud P is defined as

ap,ti,k = MLP (ui,k) + MLP (gi,k)

ui,k =
(
xi||x̂t−1

i

)
−
(
sdp,t−1

i,k ||ŝd
p,t−1
i,k

)
gi,k =

(
pi||p̂t−1

i

)
−
(
scp,t−1i,k ||ŝcp,t−1i,k

) (2)

where || is the concatenation, ui,k ∈ R1×(2∗d) and gi,k ∈
R1×(2∗3) represent the differences between the i-th point
and the k-th superpoint center in feature and coordinate
spaces, respectively. Besides, MLP(·) denotes a multi-layer
perceptron followed by a sum-pooling operation, which is
used to map the above difference information to association
weights in both coordinate and feature spaces.

In Equation (2), we also utilize the feature and coordi-
nate information of their corresponding points generated by
the predicted point-level and superpoint-level flow in the
previous iteration. The corresponding point (p̂t−1

i , x̂t−1
i )

and superpoint center (ŝcp,t−1i,k , ŝd
p,t−1
i,k ) for point pi and

superpoint center scp,t−1i,k are defined as

p̂t−1
i = pi + fp,t−1i , ŝcp,t−1i,k = scp,t−1i,k + sfp,t−1i,k

x̂t−1
i = YNN(p̂t−1

i ,Q), ŝd
p,t−1
i,k = YNN(ŝcp,t−1

i,k ,Q)

(3)
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where NN(·,Q) is used to obtain the index of the nearest
matching point in target point cloud Q.

Next, we assign each point pi ∈ P a probability vector
over its K-nearest superpoint centers by

ap,ti,k = softmax
([
ap,ti,1, ..., a

p,t
i,K)

])
k

(4)

Similarly, we can obtain the association map Aq,t between
the target point cloud Q and its superpoint centers.
Superpoint center updating. With the generated associ-
ation map At, we can assign each point to its K-nearest
superpoint centers with the learned weights. For each
superpoint center, we adaptively aggregate the coordinate,
flow, and feature information of the points belonging to it to
update this superpoint center via the normalized association
map. Specifically, given the local feature X, flow Fp,t−1 =
{fp,t−1i |i = 1, . . . , n} at the iteration t − 1 and the
association map Ap,t at the current t-th iteration of the
source point cloud P, the updated l-th superpoint center in
source point clouds can be formulated as

scp,tl =
1

r

∑n

i=1
1 {l ∈ Ni} ap,ti,l pi

sfp,tl =
1

r

∑n

i=1
1 {l ∈ Ni} ap,ti,l f

p,t−1
i

sdp,t
l =

1

r

∑n

i=1
1 {l ∈ Ni} ap,ti,l xi

(5)

where 1 {l ∈ Ni} is an indicator function that equals to
one if the l-th superpoint center belongs to Ni, and zero
otherwise. Besides, r =

∑n
i=1 1 {l ∈ Ni} ap,ti,l is the

normalization factor. Similarly, we update the superpoint
centers in target point cloud Q. For brevity, we only
visualize the pipeline of flow guided superpoint generation
for source point cloud P in Figure 2.

3.3. Superpoint Guided Flow Refinement

Inspired by RAFT [49], many scene flow estimation
methods [11, 26, 59] utilize a Gate Recurrent Unit (GRU)
to iteratively update the predicted flow.
Gated recurrent unit. Given the hidden state ht−1 at the
iteration t − 1 and the current iteration information vt, the
calculations of GRU can be written as

zt = σ
(
SetConvz

(
ht−1||vt

))
rt = σ

(
SetConvr

(
ht−1||vt

))
ĥt = tanh

(
SetConvh

((
rt � ht−1) ||vt

))
ht =

(
1− zt

)
� ht−1 + zt � ĥt

(6)

where � is the Hadamard product, || is the concatenation,
and σ(·) is the sigmoid function. The SetConv layers are
adopted from [26, 45].

The existing GRU-based methods usually concatenate
the feature, flow, and flow embedding of each point as

current iteration information vt, and regress the flow from
the new hidden state ht. Although these methods achieve
promising results, most of them only involve point-level
flow information. In contrast, [7] converts GRU output
into rigid flow according to pre-clustered local regions, it
is limited by pre-clustered regions. Our method adaptively
learns the flow association at the superpoint level and does
not rely on rigid object assumption. Specifically, we encode
the superpoint-level flow information into the current itera-
tion information vt to guide the new hidden state ht gen-
eration. Moreover, we utilize the consistency between the
reconstructed flow values from the generated superpoints
of pairwise point clouds to encode the confidence into the
current iteration information vt. Therefore, the current
iteration information in our model simultaneously considers
the superpoint-level flow information and its confidence.
Superpoint-level flow reconstruction. With the updated
superpoint-level flow SFp,t and SFq,t for superpoint cen-
ters in both point clouds P and Q, here we map the
superpoint-level flow of K-nearest superpoint centers back
onto each point in original point clouds via the learned
association map At as follows

F̃p,t
i =

∑K

k=1
ap,ti,ksf

p,t
k , F̃q,t

i =
∑K

k=1
aq,ti,ksf

q,t
k (7)

where F̃p,t
i and F̃q,t

i are the reconstructed superpoint-
level flow for point clouds P and Q, respectively. In
this way, the reconstructed flow of each point in original
point clouds adaptively aggregates the superpoint-level flow
values of its K-nearest superpoint centers. Since the
superpoint-level flow values capture the flow patterns of
the generated superpoints, we aim to utilize the superpoint-
level flow pattern to guide the point-level flow refinement.
Consistency encoding. We do a backward interpolation Ω
used in [43] to propagate the reconstructed superpoint-level
flow in the source point clouds to the target point clouds
and vice versa. Next, we utilize the consistency between
the interpolated flow and reconstructed flow to encode the
confidence of the superpoint-level flow by

Cp,t = π
(
F̃p,t − Ω(F̃q,t)

)
,Cq,t = τ

(
F̃q,t − Ω(F̃p,t)

)
(8)

where π and τ are the MLP layers with a sigmoid function.
Besides, we send the reconstructed superpoint-level flow

F̃p,t into a flow embedding layer used in [26] to obtain the
correlation feature Fp,t

c and a Linear layer to encode the
flow feature Fp,t

e . With the confidence Cp,t, the current
iteration information vt for source point cloud P can be
defined as

vt = SetConvc

(
Fp,t

c Cp,t
)

+ SetConve

(
Fp,t

e Cp,t
)

(9)

where the SetConv layers are adopted from [26, 45].
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We send vt into GRU to obtain the new hidden state
ht. Finally, given the new hidden state ht, we use a flow
regressor to obtain the residual flow 4Fp,t. Therefore, the
updated flow for source point cloud P at the iteration t can
be formulated as Fp,t = F̃p,t−1 +4Fp,t. Similarly, we can
obtain the updated flow Fq,t for target point cloud Q.

3.4. Self-Supervised Loss Functions

At each iteration, we can obtain the estimated flow Ft =
{Fp,t,Fq,t} for pairwise point clouds P and Q. Without
the ground truth scene flow, we utilize the following loss
functions for model training. For simplicity, we omit the
iteration subscript.
Chamfer loss. Following [26, 60], we warp the source
P with the predicted flow Fp and minimize the Chamfer
Distance between the warped source P ′ and target Q by

Lch(P′,Q) =
∑
qj∈Q

min
p′i∈P′

‖qj − p′i‖2+

∑
p′i∈P′

min
qj∈Q

‖p′i − qj‖2 (10)

Smoothness loss. Following [26, 60], we also constrain the
predicted scene flow values within a small local region to
be similar. The smoothness loss is defined as

Ls =
∑
pi∈P

1

|N ′i |
∑

pj∈N ′i

‖fpi − fpj ‖2 (11)

where N ′i is the neighborhood around pi ∈ P .
Consistency loss. We enforce the backward-interpolated
flow of the target point clouds to be consistent with the
predicted flow of the source point clouds and vice versa.

Lc = ‖Fp − Ω (Fq) ‖2 + ‖Fq − Ω (Fp) ‖2 (12)

where Ω is backward interpolation.
The combined loss for self-supervised training can be

written as

L = Lch + αLs + βLc (13)

where α and β are the regularization parameters.

4. Experiment
4.1. Experimental Setups

Datasets. To validate the effectiveness of our proposed
scene flow estimation framework, we conduct extensive
experiments on two benchmarks, the FlyingThings3D [38]
and the KITTI Scene Flow [39, 40]. There are two versions
of datasets. The first version of the datasets is prepared
by HPLFlowNet [12]. We denote these datasets without
occluded points FT3Ds and KITTIs, respectively. FT3Ds

contains 19640 training examples and 3824 pairs in the test
set. We only use one-quarter of the training data (4910
pairs). KITTIs is a real-world scene flow dataset with
200 pairs for which 142 are used for testing without any
fine-tuning. The second version of the datasets is prepared
by FlowNet3D [34]. This version of datasets includes the
occluded points, which are denoted FT3Do and KITTIo,
respectively. FT3Do contains 19999 training examples and
2003 pairs in the test set. KITTIo consists of 150 test
examples. Besides, following Self-Point-Flow [30], we also
split the KITTIo dataset into KITTIf with 100 pairs and
KITTIt with 50 pairs for evaluation. Moreover, [30] also
extracts another self-supervised training dataset with 6026
pairs from the original KITTI dataset, denoted as KITTIr.
Implementation details. Our model is implemented with
Pytorch and all experiments are executed on a NVIDIA
TITAN RTX GPU. For the experiments on point clouds
without occlusions, we train our model on synthetic FT3Ds

training data and evaluate it on both FT3Ds test data and
KITTIs dataset. we feed randomly sampled 8192 points as
inputs to our model, just like [31, 45] and other compared
methods, and train it with a batch size of 2. Besides, we set
the superpoint number and iteration number to 128 and 3,
respectively. For occluded experiments, like [31], we also
train our model on KITTIr dataset and test it on KITTIo
and KITTIt. The size of the input point clouds is set to
2048. Here, we set the batch size, iteration number, and
superpoint number to 4, 3, and 30, respectively. The initial
learning rate used in all experiments is 0.001 and our model
is optimized with the ADAM optimizer. We multiply the
learning rate by 0.7 at epochs 40, 55, and 70 and train our
model for 100 epochs.
Evaluation metrics. We test our model with four eval-
uation metrics used in [12, 34], including End Point Er-
ror (EPE), Accuracy Strict (AS), Accuracy Relax (AR),
and Outliers (Out). We denote the estimated scene flow
and ground truth scene flow as F and Fgt, respectively.
EPE(m): ||F− Fgt||2 averaged over all points. AS(%): the
percentage of points whose EPE <0.05m or relative error
<5%. AR(%): the percentage of points whose EPE <0.1m
or relative error <10%. Out(%): the percentage of points
whose EPE >0.3m or relative error >10%.

4.2. Results

Performance on point clouds without occlusions. We
train our self-supervised model on FT3Ds training data and
evaluate it on both FT3Ds test data and KITTIs dataset.
And we compare our model with the recent state-of-the-art
self-supervised scene flow estimation methods, including
Ego-Motion [51], PointPWC-Net [60], SLIM [2], Self-
Point-Flow [30], FlowStep3D [26], RCP [11], PDF-Flow
[15], and RigidFlow [31]. The results are reported in Table
1. From the results, it can be found that our model can

5276



outperform all compared self-supervised methods in terms
of the four metrics on the FT3Ds test data. Especially, our
model brings 8.72% gains for metric AS. For the KITTIs
dataset, our model brings substantial improvements on all
metrics. To be specific, our model outperforms the second
best method RCP [11] by 8.68% and 6.58% on metrics AS
and AR, respectively. Besides, it is worth noting that our
model can even achieve an EPE metric of 3.62cm, which is
much lower than the EPE (6.19cm) of recent RigidFlow.

We also compare our model with some supervised meth-
ods, such as FlowNet3D [34] and FLOT [45], etc. As shown
in Table 1, our self-supervised model achieves comparable
performance with supervised HPLFlowNet [12] on FT3Ds

dataset. Without any fine-tuning on KITTIs dataset, our
model can even outperform the supervised methods listed
in Table 1, which proves that our model has better general-
ization ability. For real scenes, most local regions are with
similar flow patterns. Thanks to dynamically clustering
mechanism, our model clusters points with similar flow
pattern into the same clusters and encodes the superpoint-
level flow into the GRU for flow refinement, thereby leading
to satisfactory performance on real scenes.

Performance on point clouds with occlusions. Following
the experimental settings used in Self-Point-Flow [30] and
RigidFlow [31], we train our model on KITTIr dataset and
evaluate our model on both KITTIo and KITTIt datasets.
The results on KITTIo and KITTIt are shown in Tables 2
and 3, respectively. Although our model is not designed to
deal with occluded cases, our model can also achieve the
best performance on KITTIo dataset. This is due to that
although there is no correspondence of the occluded points,
our model employs the superpoint-level flow to guide the
flow refinement rather than point-level flow information,
which can alleviate the occluded problem to some extent.
Due to the lack of point-level flow annotations for the real
scenes, the supervised FLOT and FlowNet3D are trained
on synthetic FT3Do dataset. The other two self-supervised
methods [30, 31] and our model can be trained directly on
unlabeled outdoor KITTIr dataset. As shown in Table
2, our model can outperform all self-supervised methods
including Self-Point-Flow and RigidFlow. To be specific,
our model brings 12.7% gains on metric AS. Besides, it is
worth noting that the Self-Point-Flow [30] needs additional
normal and color information for pseudo label generation.
Our model only needs the coordinate information of the
consecutive frames of point clouds as inputs. For the
KITTIt dataset, we compare our model with JGF [41] and
WWL [44]. These two methods use the pre-trained model
of FlowNet3D on FT3Do as the baseline and perform self-
supervised fine-tuning on KITTIf , and then test their model
on KITTIt dataset. Our model and RigidFlow [31] get rid
of the pre-trained model on synthetic FT3Do and only need
to be trained on the unlabeled KITTIr in a self-supervised

Methods Sup. EPE ↓ AS ↑ AR ↑ Out ↓

FT3Ds

FlowNet3D [34] Full. 0.1136 41.25 77.06 60.16
HPLFlowNet [12] Full. 0.0804 61.44 85.55 42.87
PointPWC-Net [60] Full. 0.0588 73.79 92.76 34.24
Ego-Motion [51] Self. 0.1696 25.32 55.01 80.46
PoinPWC-Net [60] Self. 0.1246 30.68 65.52 70.32
Self-Point-Flow [30] Self. 0.1009 42.31 77.47 60.58
FlowStep3D [26] Self. 0.0852 53.63 82.62 41.98
PDF-Flow [15] Self. 0.075 58.9 86.2 47.0
RCP [11] Self. 0.0765 58.58 86.02 41.42
RigidFlow [31] Self. 0.0692 59.62 87.10 46.42
SPFlowNet (ours) Self. 0.0606 68.34 90.74 38.76

KITTIs

FlowNet3D [34] Full. 0.1767 37.38 66.77 52.71
HPLFlowNet [12] Full. 0.1169 47.83 77.76 41.03
PointPWC-Net [60] Full. 0.0694 72.81 88.84 26.48
FLOT [45] Full. 0.0560 75.50 90.80 24.20
Ego-Motion [51] Self. 0.4154 22.09 37.21 80.96
PoinPWC-Net [60] Self. 0.2549 23.79 49.57 68.63
SLIM [2] Self. 0.1207 51.78 79.56 40.24
FlowStep3D [26] Self. 0.1021 70.80 83.94 24.56
PDF-Flow [15] Self. 0.092 74.7 87.0 28.3
Self-Point-Flow [30] Self. 0.1120 52.76 79.36 40.86
RigidFlow [31] Self. 0.0619 72.37 89.23 26.18
RCP [11] Self. 0.0763 78.56 89.21 18.49
SPFlowNet (ours) Self. 0.0362 87.24 95.79 17.71

Table 1. Comparison results on the FT3Ds and KITTIs datasets.
Our model is trained on FT3Ds training part and evaluated on
FT3Ds test set and KITTIs dataset. Full. means the fully-
supervised training manner. Self. represents the self-supervised
training manner. Note that the best and the second-best results are
emboldened and underlined, respectively.

Methods Sup. T. data EPE ↓ AS ↑ AR ↑ Out ↓
FlowNet3D [34] Full. Fo 0.173 27.6 60.9 64.9
FLOT [45] Full. Fo 0.107 45.1 74.0 46.3
Self-Point-Flow [30] Self. Kr 0.105 41.7 72.5 50.1
RigidFlow [31] Self. Kr 0.102 48.4 75.6 44.2
SPFlowNet (ours) Self. Kr 0.086 61.1 82.4 39.1

Table 2. Comparison results on KITTIo dataset. Our model is
trained on KITTIr and evaluated on KITTIo dataset. T. data:
training data. Fo: FT3Do. Kr:KITTIr.

manner. As shown in Table 3, our model can obtain 9.92%
improvements on metric AR.

4.3. Ablation Study

The effectiveness of key components. We conduct exper-
iments to verify the effectiveness of key components in our
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Methods Pre-T. T. data EPE ↓ AS ↑ AR ↑
TGF [41] X Fo + Kf 0.218 10.17 34.38
WWL [44] X Fo + Kf 0.169 21.71 47.75
RigidFlow [31] Kr 0.117 38.75 69.73
SPFlowNet (ours) Kr 0.089 53.28 79.65

Table 3. Comparison results on KITTIt dataset. Our model is
trained on KITTIr and evaluated on KITTIt dataset.

Methods EPE ↓ AS ↑ AR ↑ Out ↓
w/o superpoint 0.119 55.4 72.9 45.2
w/ SPNet 0.090 60.0 80.7 40.2
w/ FGSG (ours) 0.086 61.1 82.4 39.1

w/o cons. encoding 0.103 57.7 76.1 44.3
w/o cons. loss 0.094 59.0 80.0 40.7
SPFlowNet (ours) 0.086 61.1 82.4 39.1

Table 4. Comparison results on the KITTIo dataset. All models
are trained on KITTIr and evaluated on KITTIo dataset.

model. Firstly, we remove the superpoint generation and
superpoint guided flow refinement modules in our model.
This variant takes a GRU without superpoint guidance for
flow refinement (abbr. as “w/o superpoint”). Secondly,
we adopt the SPNet [21] for superpoint generation with-
out flow guidance (abbr. as “w/ SPNet”). The model
“w/ FGSG (ours)” represents our model with flow guided
superpoint generation module. The results of the above
three models are listed in the top part of Table 4. From
the results of the variant “w/o superpoint” and the other two
models with superpoints, it can be found that introducing
superpoints into scene flow estimation is effective. Besides,
our proposed flow guided superpoint generation module
can achieve better results than SPNet, which shows that
flow guidance is crucial when there is no ground truth
superpoint labels. Besides, we remove the consistency
encoding from our model (abbr. as “w/o cons. encoding”).
Table 4 shows that the performance drops a lot without
the superpoint consistency encoding, which demonstrates
that the consistency between the reconstructed superpoint-
level flow of pairwise point clouds is important. Finally,
we also remove the consistency loss and only utilize the
Chamfer loss and smoothness loss for model training (abbr.
as “w/o cons. loss”). The results of our model without
consistency loss are worse than with it. According to the
above comparisons, it can be observed that our model is
less effective without any key components.
Choices of the superpoint number L. In our superpoint
generation layer, we generate L superpoints. We conduct
the ablation study to choose a suitable superpoint number.
We plot the results of the metrics AS and AR with different

Figure 3. The ablation study results (AS and AR) of different
hyper-parameters L, K, and T on the KITTIo dataset, where L ∈
{10, 20, 30, 40, 50} and K,T ∈ {1, 2, 3, 4, 5}.

L ∈ {10, 20, 30, 40, 50} in Figure 3. It can be observed that
choosing L = 30 achieves the best results.
Impact of theK-nearest superpoint centers. To prevent a
point from being clustered to a distant superpoint, we only
calculate the association map between each point and its
K-nearest superpoint centers. Here we explore the impact
on the performance of different K. We fix other super-
parameters and choice K ∈ {1, 2, 3, 4, 5}. The accuracy
results are visualized in Figure 3. Figure 3 shows that our
model achieves the best performance with K = 2.
Number of iterations T . Our model iteratively generates
superpoints and conducts the superpoint guided flow refine-
ment. We plot the accuracy results of our model after each
iteration. From Figure 3, it can be found that T = 3 can
obtain state-of-the-art performance. Although T = 4, 5
can achieve slightly high accuracy, it increases the inference
time. Therefore, for a good trade-off between the accuracy
and efficiency, we choose T = 3.

5. Conclusion
We proposed a novel end-to-end superpoint guided scene

flow estimation framework. Different from other offline
clustering based scene flow estimation methods, our method
can simultaneously optimize the flow guided superpoint
generation and superpoint guided flow refinement. Thanks
to the joint end-to-end optimization, our model can gradu-
ally generate more accurate flow results. Extensive experi-
ments on the synthetic and real LiDAR scenes demonstrate
that our self-supervised model can achieve outstanding
performance in the scene flow estimation task.
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