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1ETH Zürich 2Microsoft

Input 2: RGB-D images

Input 1: scan

Built avatar Animation Zoom in

Figure 1. We propose X-Avatar, an animatible implicit human avatar model capable of capturing human body pose, hand pose, facial
expressions, and appearance. X-Avatar can be created from input 3D scans (top row) or RGB-D images (bottom row) and displays high-
quality geometry as well as appearance under animation. X-Avatar captures facial expressions and hand gestures (right), making it the first
implicit human avatar model to capture the richness of the human state in a unified model.

Abstract
We present X-Avatar, a novel avatar model that captures

the full expressiveness of digital humans to bring about life-
like experiences in telepresence, AR/VR and beyond. Our
method models bodies, hands, facial expressions and ap-
pearance in a holistic fashion and can be learned from ei-
ther full 3D scans or RGB-D data. To achieve this, we pro-
pose a part-aware learned forward skinning module that
can be driven by the parameter space of SMPL-X, allow-
ing for expressive animation of X-Avatars. To efficiently
learn the neural shape and deformation fields, we pro-
pose novel part-aware sampling and initialization strate-
gies. This leads to higher fidelity results, especially for
smaller body parts while maintaining efficient training de-
spite increased number of articulated bones. To capture the
appearance of the avatar with high-frequency details, we
extend the geometry and deformation fields with a texture
network that is conditioned on pose, facial expression, ge-
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ometry and the normals of the deformed surface. We show
experimentally that our method outperforms strong base-
lines both quantitatively and qualitatively on the animation
task. To facilitate future research on expressive avatars
we contribute a new dataset, called X-Humans, contain-
ing 233 sequences of high-quality textured scans from 20
participants, totalling 35,500 data frames. Project page:
https://ait.ethz.ch/X-Avatar.

1. Introduction

A significant part of human communication is non-
verbal in which body pose, appearance, facial expressions,
and hand gestures play an important role. Hence, it is clear
that the quest towards immersive, life-like remote telepres-
ence and other experiences in AR/VR, will require methods
to capture the richness of human expressiveness in its en-
tirety. Yet, it is not clear how to achieve this. Non-verbal
communication involves an intricate interplay of several ar-
ticulated body parts at different scales, which makes it dif-
ficult to capture and model algorithmically.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Parametric body models such as the SMPL family [35,
47, 49] have been instrumental in advancing the state-of-
the-art in modelling of digital humans in computer vision
and graphics. However, they rely on mesh-based represen-
tations and are limited to fixed topologies and in resolution
of the 3D mesh. These models are focused on minimally
clothed bodies and do not model garments or hair. Hence,
it is difficult to capture the full appearance of humans.

Neural implicit representations hold the potential to
overcome these limitations. Chen et al. [13] introduced a
method to articulate human avatars that are represented by
continuous implicit functions combined with learned for-
ward skinning. This approach has been shown to generalize
to arbitrary poses. While SNARF [13] only models the ma-
jor body bones, other works have focused on creating im-
plicit models of the face [22, 67], the hands [17], or how
to model humans that appear in garments [20] and how to
additionally capture appearance [50, 55]. Although neural
implicit avatars hold great promise, to date no model exists
that holistically captures the body and all the parts that are
important for human expressiveness jointly.

In this work, we introduce X-Avatar, an animatable, im-
plicit human avatar model that captures the shape, appear-
ance and deformations of complete humans and their hand
poses, facial expressions, and clothing. To this end we adopt
the full-body pose space of SMPL-X [47]. This causes two
key challenges for learning X-Avatars from data: (i) the
significantly increased number of involved articulated body
parts (9 used by [13] vs. 45 when including hands and face)
and (ii) the different scales at which they appear in obser-
vations. The hands and the face are much smaller in size
compared to the torso, arms and legs, yet they exhibit simi-
larly or even more complex articulations.

X-Avatar consists of a shape network that models the ge-
ometry in canonical space and a deformation network to es-
tablish correspondences between canonical and deformed
space via learned linear blend skinning (LBS). The param-
eters of the shape and deformation fields must be learned
only from posed observations. SNARF [13] solves this via
iterative correspondence search. This optimization prob-
lem is initialized by transforming a large number of can-
didate points via the bone transformations. Directly adopt-
ing SNARF and initializing root-finding with only the body
bones leads to poor results for the hands and face. Hence,
to account for the articulation of these smaller body parts,
their bone transformations must also be considered. How-
ever, correspondence search scales poorly with the num-
ber of bones, so naı̈vely adding them makes training slow.
Therefore, we introduce a part-aware initialization strategy
which is almost 3 times faster than the naı̈ve version while
outperforming it quantitatively. Furthermore, to counteract
the imbalance in scale between the body, hands, and face,
we propose a part-aware sampling strategy, which increases

the sampling rate for smaller body parts. This significantly
improves the fidelity of the final result. To model the ap-
pearance of X-Avatars, we extend the shape and deforma-
tion fields with an additional appearance network, condi-
tioned on pose, facial expression, geometry and the normals
in deformed space. All three neural fields are trained jointly.

X-Avatar can learn personalized avatars for multiple peo-
ple and from multiple input modalities. To demonstrate this,
we perform several experiments. First, we compare our
method to its most related work (SCANimate [50], SNARF
[13]) on the GRAB dataset [9, 54] on the animation task of
minimally clothed humans. Second, we contribute a novel
dataset consisting of 233 sequences of 20 clothed partici-
pants recorded in a high-quality volumetric capture stage
[16]. The dataset consists of subjects that perform diverse
body and hand poses (e.g., counting, pointing, dancing) and
facial expressions (e.g., laughing, screaming, frowning). On
this dataset we show that X-Avatar can learn from 3D scans
and (synthesized) RGB-D data. Our experiments show that
X-Avatar outperforms strong baselines both in quantitative
and qualitative measures in terms of animation quality. In
summary, we contribute:

• X-Avatar, the first expressive implicit human avatar
model that captures body pose, hand pose, facial ex-
pressions and appearance in a holistic fashion.

• Part-aware initialization and sampling strategies,
which together improve the quality of the results and
keep training efficient.

• X-Humans, a new dataset consisting of 233 sequences,
of high-quality textured scans showing 20 participants
with varied body and hand movements, and facial ex-
pressions, totalling 35,500 frames.

2. Related Work
Explicit Human Models Explicit models use a triangu-
lated 3D mesh to represent the underlying shape and are
controlled by a lower-dimensional set of parameters. Some
models focus on capturing a specific part of the human, e.g.,
the body [3, 35, 44], the hands [49], or the face [6, 34], while
others treat the human more holistically like we do in this
work, e.g. [28, 45, 47, 58, 63]. Explicit models are popu-
lar because the 3D mesh neatly fits into existing computer
graphics pipelines and because the low-dimensional param-
eter space lends itself well for learning. Only naturally
have such models thus been applied to tasks such as RGB-
based pose estimation [15, 21, 29–32, 51–53, 62, 65, 66],
RGB-D fitting [7, 14, 61], fitting to body-worn sensor data
[26, 56, 60], or 3D hand pose estimation [8, 25] with a re-
sounding success. Because the SMPL family does not na-
tively model clothing, researchers have investigated ways
to extend it, e.g. via fixed additive 3D offsets [1, 2, 23],
also dubbed SMPL+D, pose-dependent 3D offsets [37], by
modelling 3D garments and draping them over the SMPL
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mesh [5, 18] or via local small surface patches [36]. Ex-
plicit models have seen a trend towards unification to model
human expressiveness, e.g. SMPL-X [47] and Adam [28].
X-Avatar shares this goal, but for implicit models.

Implicit Human Models Explicit body models are lim-
ited by their fixed mesh topology and resolution, and thus
the expressive power required to model clothing and appear-
ance necessitates extending these models beyond their orig-
inal design. In contrast, using implicit functions to represent
3D geometry grants more flexibility. With implicit mod-
els, the shape is defined by neural fields, typically param-
eterized by MLPs that predict signed distance fields [46],
density [42], or occupancy [39] given a point in space. To
extend this idea to articulated shapes like the human body,
NASA [19] used per body-part occupancy networks [39].
This per-part formulation creates artifacts, especially for
unseen poses, which works such as [13, 40, 41] improve.
SNARF [13] does so via a forward warping field which
is compatible with the SMPL [35] skeleton, learns pose-
independent skinning and generalizes well to unseen poses
and people in clothing. Other works [50, 55] model appear-
ance and are learned from scans. [24, 57] create avatars
from RGB video and [20] does so from RGB-D video.

Moving beyond bodies, other work has investigated im-
plicit models for faces [22, 48, 59, 67] and hands [17]. Yet,
an implicit model that incorporates body, hands, face, and
clothing in a single model is missing. X-Avatar fills this
gap. We do so by adopting neural forward skinning [13]
driven by SMPL-X [47]. This seemingly simple change ne-
cessitates non-trivial improvements to the correspondence
search as otherwise the iterative root finding is too slow and
leads to poor results which we show empirically. We pro-
pose to do so by introducing part-aware initialization and
sampling strategies, which are incorporated into a single
model. Similar to [50], we obtain color with an MLP that is
fed with canonical points and conditioned on the predicted
geometry. Thanks to the part-aware sampling strategy, our
method produces higher quality results than [50] for the
hands and faces. Furthermore, in contrast to [13, 50, 55],
X-Avatars can be fit to 3D scans and RGB-D videos.

Human Datasets Publicly available datasets that show
the full range of human expressiveness and contain clothed
and textured ground-truth are rare. GRAB [54], a subset of
AMASS [38], contains minimally clothed SMPL-X regis-
trations. BUFF [64] and CAPE [37] do not model detailed
hand gestures and facial expressions. The CMU Panoptic
Studio [27] dataset was used to fit Adam [28] which does
model hands and faces, but is neither textured nor clothed.
Also, [27] does not contain 4D scans. To study X-Avatars
on real clothed humans, we thus contribute our own dataset,
X-Humans which contains 35,500 frames of high-quality,

textured scans of real clothed humans with corresponding
SMPL[-X] registrations.

3. Method
We introduce X-Avatar, a method for the modeling of

implicit human avatars with full body control including
body movements, hand gestures, and facial expressions. For
an overview, please refer to Fig. 2 and Fig. 3. Our model can
be learned from two types of inputs, i.e., 3D posed scans
and RGB-D images. We first recap the SMPL-X full body
model. Then we describe the X-Avatar formulation, train-
ing scheme, and our part-aware initialization and sampling
strategies. For simplicity, we discuss the scan-based version
without loss of generality and list the differences to depth-
based acquisition in the Supp. Mat.

3.1. Recap: SMPL-X Unified Human Body Model

Our goal is to create fully controllable human avatars.
We use the parameter space of SMPL-X [47], which it-
self extends SMPL to include fully articulated hands and
an expressive face. SMPL-X is defined by a function
M(θ,β,ψ) : R|θ| × R|β| × R|ψ| → R3N , parameterized
by the shape β, whole body pose θ and facial expressions
ψ. The pose can be further divided into the global pose
θg , head pose θf , articulated hand poses θh, and remain-
ing body poses θb. Here, |θg| = 3, |θb| = 63, |θh| = 90,
|θf | = 9, |β| = 10, |ψ| = 10, N = 10, 475.

3.2. Implicit Neural Avatar Representation

To deal with the varying topology of clothed humans
and to achieve higher geometric resolution and increased
fidelity of overall appearance, X-Avatar proposes a human
model defined by articulated neural implicit surfaces. We
define three neural fields: one to model the geometry via an
implicit occupancy network, one to model deformation via
learned forward linear blend skinning (LBS) with continu-
ous skinning weights, and one to model appearance as an
RGB color value.

Geometry We model the geometry of the human avatar
in the canonical space with an MLP that predicts the occu-
pancy value focc for any 3D point xc in this space. To cap-
ture local non-rigid deformations such as facial or garment
wrinkles, we condition the geometry network on the body
pose θb and facial expression coefficients ψ. We found em-
pirically that high-frequency details are preserved better if
positional encodings [43] are applied to the input. Hence,
the shape model focc is denoted by:

focc : R3 × R|θb| × R|ψ| → [0, 1]. (1)

The canonical shape is defined as the 0.5 level set of focc:

S = { xc | focc(xc,θb,ψ) = 0.5 }. (2)
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Figure 2. Method Overview. Given a posed scan with an SMPL-X registration, we first adaptively sample points xd in deformed space
per body part ℓ (face F , left hand LH , right hand RH , body B). A part-specific deformer network finds the corresponding candidate
points x̂ci (for 1 ⩽ i ⩽ |Gℓ|) in canonical space via iterative root finding. The deformers share the parameters of the skinning network,
but each deformer is initialized with only the bone transformations Gℓ (cf. Fig. 3). The final shape is obtained via an occupancy network
focc. We further model appearance via a texture network that takes as input the body pose θb, facial expression ψ, the last layer F of focc,
the canonical point x∗

c and the normals nd in deformed space. The normals correspond to the gradient ∇xdfocc(x
∗
c ,θb,ψ).

Initialization of root finding

minimize

s.t. Linear Blend Skinning

Skinning weights field

Deformer(        )

Figure 3. Part-specific Deformer. Each deformer shown in Fig. 2
is initialized with the bone transformations belonging to a specific
part Gℓ, ℓ ∈ {F,LH,RH,B}, but shares the parameters of fw.

Deformation To model skeletal deformation, we follow
previous work [13, 20, 33, 67] and represent the skinning
weight field in the canonical space by an MLP:

fw : R3 → Rnb × Rnh × Rnf , (3)

where nb, nh, nf denotes the number of body, finger, and
face bones respectively. Similar to [13], we assume a set of
bones G and require the weights w ∈ R|G| to fulfill wi ≥ 0
and

∑
i wi = 1. With the learned deformation field w and

given bone transformations B = {B1, ...,B|G|}, for each
point xc in the canonical space, its deformed counterpart is
then uniquely determined:

xd = dw(xc,B) =

|G|∑
i=1

wi(xc)Bi xc. (4)

Note that the canonical shape is a-priori unknown and
learned during training. Since the relationship between de-
formed and canonical points is only implicitly defined, we

follow [13] and employ correspondence search. We use
Broyden’s method [10] to find canonical correspondences
xc for each deformed query point xd iteratively as the roots
of dw(xc,B) − xd = 0. In cases of self-contact, multi-
ple valid solutions exist. Therefore the optimization is ini-
tialized multiple times by transforming deformed points xd

rigidly to the canonical space with each bone transforma-
tion. Finally, the set of valid correspondences Xc is deter-
mined via analysis of the local convergence.

Part-Aware Initialization At the core of our method lies
the problem of jointly learning the non-linear deformations
introduced by body poses and dexterous hand articulation
and facial expressions. The above method to attain multiple
correspondences scales poorly with the number of bones.
Therefore, naı̈vely adding finger and face bones of SMPL-
X to the initialization procedure, causes prohibitively slow
training. Yet our ablations show that these are required for
good animation quality (cf . Tab. 1). Hence, we propose a
part-aware initialization strategy, in which we first separate
all SMPL-X bones G into four groups GB , GLH , GRH ,
GF . For a given deformed point with part label ℓ, we then
initialize the states {x0

ci} and Jacobian matrices {J0
ci} as:

x0
ci = B−1

i ·xd, J0
ci =

∂dw(x,Bi)

∂x

∣∣∣∣
x=x0

ci

, i ∈ Gℓ. (5)

We explain how we obtain the label ℓ for each point fur-
ther below. The final occupancy prediction is determined
via the maximum over all valid candidates Xc = {x̂ci}|Gℓ|

i=1 :

o(xd,θb,ψ) = max
x̂c∈Xc

{focc(x̂c,θb,ψ)}. (6)
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The correspondence in canonical space is given by:

x∗
c = argmax

x̂c∈Xc

{focc(x̂c,θb,ψ)}. (7)

This part-aware initialization is based on the observation
that a point close to a certain body part is likely to be mostly
affected by the bones in that part. This scheme effectively
creates four deformer networks, as shown in Fig. 2. How-
ever, note that all deformers share the same skinning weight
network fw as highlighted in Fig. 3. The only difference
between them is how the iterative root finding is initialized.

Part-Aware Sampling Because hands and faces are com-
paratively small, while still exhibiting complex deforma-
tions, we found that a uniform sampling strategy for points
xd leads to poor results (cf. Tab. 1, Fig. 4). Hence, we fur-
ther propose a part-aware sampling strategy, to over-sample
points per area for small body parts. Assuming part labels
P = {F,LH,RH,B}, for each point pi in the 3D scan,
we first find the closest SMPL-X vertex vi and store its pre-
computed body part label ki ∈ P . Then, for each part ℓ ∈ P
we extract all points {pi | ki = ℓ} and re-sample the result-
ing mesh with a sampling rate specific to part ℓ to obtain Nℓ

many deformed points {xdi}Nℓ
i=1 for training.

LBS regularization To further account for the lower res-
olution and smaller scale of face and hands, we regularize
the LBS weights of these parts to be close to the weights
given by SMPL-X. A similar strategy has also been used
by [67]. Our ablations show that this greatly increases the
quality of the results (cf . Sec. 4.2).

Texture Similar to [50, 55] we introduce a third neu-
ral texture field to predict RGB values in canonical space.
Its output is the color value c(xc,nd,F ,θb,ψ). This is,
in addition to pose and facial expression, the color de-
pends on the last layer F of the geometry network and
the normals nd in deformed space. This conditions the
color prediction on the deformed geometry and local high-
frequency details, which has been shown to be helpful
[12, 67]. Following [67], the normals are obtained via
nd = ∇xd

focc(x
∗
c ,θb,ψ). Therefore, the texture model

fRGB is formulated as:

fRGB : R3 × R3 × R512 × R|θb| × R|ψ| → R3. (8)

We apply positional encoding to all inputs to obtain bet-
ter high-frequency details following best practices [42].

3.3. Training Process

Objective Function For each 3D scan, we minimize the
following objective:

L =Locc + LRGB + Lreg. (9)

Locc supervises the geometry and consists of two losses: the
binary cross entropy loss LBCE between the predicted oc-
cupancy o(xd,θb,ψ) and the ground-truth value oGT (xd),
and an L2 loss Ln on the normals:

Locc =λBCELBCE + λnLn

=λBCE

∑
xd∈Poff

CE(o(xd,θb,ψ), o
GT (xd))

+λn

∑
xd∈Pon

∥∥nd − nGT (xd)
∥∥
2
,

(10)

where Pon, Poff separately denote points on the scan surface
and points within a thin shell surrounding the surface [20].
LRGB supervises the point color:

LRGB = λRGB

∑
xd∈Pon

∥∥c(xc,nd,F ,θb,ψ)− cGT (xd)
∥∥
1
.

(11)
Finally, Lreg represents the regularization term, consist-

ing of the bone occupancy loss Lbone, joint LBS weights
loss Ljoint and surface LBS weights loss Lsurf:

Lreg =λboneLbone + λjointLjoint + λsurfLsurf

=λbone

∑
xc∈Pc

bone

CE(focc(xc,θb,ψ), 1)

+λjoint

∑
xc∈Pc

joint

∑
i∈N (i)

(wi(xc)− 0.5)2

+λsurf

∑
xc∈Pc

surf

∑
i∈G\GB

(wi(xc)− wGT
i (xc))

2,

(12)

where N (i) are the neighboring bones of joint i and wGT
i

are the skinning weights taken from SMPL-X. Lreg makes
use of the supervision from registered SMPL-X meshes.
For more details on the registration, please refer to the Supp.
Mat. Pc

bone, Pc
joint, Pc

surf refer to points sampled on the
SMPL-X bones, the SMPL-X joints and from the SMPL-
X mesh surface respectively. The first two terms follow the
definition of [13]. We add the last term to regularize the
LBS weights for fingers and face which have low resolution
and are more difficult to learn.

4. Experiments

We first introduce the datasets and metrics that we use for
our experiments in Sec. 4.1. Sec. 4.2 ablates all important
design choices. In Sec. 4.3 we briefly describe the state-of-
the-art methods to which we compare our method. Finally
we show and discuss the results in Sec. 4.4-4.6. We focus on
the challenging animation task, hence all the comparisons
are conducted on entirely unseen poses. For completeness,
we also report reconstruction results in the Supp. Mat.
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ID Method CD↓ CD-MAX ↓ NC ↑ IoU ↑
All Hands All Hands All Hands All Hands

A1 Ours (init w body bones) 5.42 5.05 57.54 25.10 0.940 0.824 0.964 0.812
A2 Ours (init w all bones) 4.55 4.35 44.86 20.71 0.945 0.845 0.974 0.811
A3 Ours (w/o part-aware sampling) 4.68 4.81 47.51 20.88 0.947 0.840 0.972 0.810
A4 Ours (w/o LBS reg.) 4.98 7.27 57.11 43.38 0.940 0.797 0.968 0.768
A Ours (complete) 4.46 4.15 44.36 20.61 0.948 0.853 0.973 0.829

Table 1. Ablation experiments for our major design choices. We compute the metrics on the entire body (All) and separately on the
hands (Hands) to better highlight the differences for the hands. All results are computed on a subset of X-Humans (Scans). Our final model
(A) only marginally outperforms A2, but is roughly 3 times faster to train. For qualitative comparisons please refer to Fig. 4 and Fig. 5.

Ours
(w/o LBS reg.)

Ours
(w/o part-aware sampling)

Ours
(init w body bones)

Ours
(complete)

GT

Figure 4. Effect of our design decisions on the resulting geometry. Notice how all baselines struggle to recover accurate hand geometry.

4.1. Datasets

GRAB [54] We use the GRAB subset of AMASS [38]
for training and evaluate our model on SMPL-X meshes of
minimally clothed humans. GRAB contains a diverse set of
hand poses and facial expressions with several subjects. We
pick the subject with the most pose variation and randomly
select 9 sequences for training and three for validation. This
results in 9,756 frames for training and 1,272 test frames.

X-Humans (Scans) Currently, there exists no publicly
available dataset containing textured 3D clothed scans of
humans with a large variation of body poses, hand gestures
and facial expressions. Therefore, we captured our own
dataset, for which we leveraged a high-quality, multi-view
volumetric capture stage [16]. We call the resulting dataset
X-Humans. It consists of 20 subjects (11 males, 9 females)
with various clothing types and hair style. The collection of
this dataset has been approved by an internal ethics com-
mittee. For each subject, we split the motion sequences
into a training and test set. In total, there are 29,036 poses
for training and 6,439 test poses. X-Humans also contains
ground-truth SMPL-X parameters, obtained via a custom
SMPL-X registration pipeline specifically designed to deal
with low-resolution body parts. More details on the regis-
tration process and contents of X-Humans are in Supp. Mat.

X-Humans (RGB-D) We take the textured and posed
scans from X-Humans and render them to obtain corre-
sponding synthetic RGB-D images. For every time step,
we render exactly one RGB-D image from a virtual camera,
while the camera gradually rotates around the participant
during the duration of the sequence. This is, the RGB-D
version of X-Humans contains the same amount of frames
as the scan version in both the training and test set.

Metrics We evaluate the geometric accuracy via volumet-
ric IoU, Chamfer distance (CD) (mm) and normal consis-
tency (NC) metrics, following the practice in PINA [20].
Because these metrics are dominated by large surface areas,
we always report the metrics for the entire body (All) and
the hands separately (Hands).

4.2. Ablation Study

Part-Aware Initialization The part-aware initialization
for correspondence search is critical to accelerate training
and to find good correspondences in small body parts. To
verify this, we compare with two variations adapted from
SNARF [13]. First, (A1) initiates the optimization states
only via the body’s bone transformations, while (A2) initial-
izes using all bones (body, hands, face). Results: A1 suffers
from strong artifacts for hands and the jaw (cf . Fig. 4 and
Tab. 1, A1). The final model is 3 times faster than A2 (0.7 it-
erations per second vs. 0.25), yet it still retains high fidelity
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Ours
(w/o part-aware sampling)

Ours
(complete)

GT

Figure 5. Effect of our part-aware sampling strategy on the
hand geometry and texture prediction of the face.

and even outperforms A2 by a small margin (cf . Tab. 1,
A2 and the Supp. Mat. for qualitative results). Thus we
conclude that part-based initialization of the deformer is an
efficient way to find accurate correspondences.

Part-Aware Sampling To verify the importance of part-
aware sampling, we compare our model to a uniform sam-
pling baseline (A3). Results: This component has two ef-
fects: a) it strongly improves the hand shape (cf . second
column of Fig. 4 and Tab. 1, A3) and b) it improves texture
details in the eye and mouth region (cf . Fig. 5).

LBS Weights Regularization for Hands and Face The
first column in Fig. 4 shows that without regularizing the
learned LBS weights with the SMPL-X weights, the learned
hand shape is poor. This is further substantiated by a 75%
increase in Chamfer distance for the hand region, compared
to our final method (cf . Tab. 1, A4).

4.3. Baselines

Scan-based methods We compare our 3D scan-based
method variant on both GRAB and X-Humans to SM-
PLX+D, SCANimate and SNARF baselines. All methods
learn avatars in a personalized fashion, the same as ours. We
adapt SMPLX+D from SMPL+D introduced in [4]. This
baseline uses an explicit body model, SMPL-X, and mod-
els clothing with additive vertex offsets. To compare with
SCANimate and SNARF, we use publicly available code.
For details on the baselines, we refer to the Supp. Mat.

RGB-D Video-based methods We compare our RGB-D
method variant on the X-Humans (RGB-D) dataset to PINA
[20], a SMPL-based implicit human avatar method learned
from RGB-D inputs. We assume that the ground truth pose
and shape are known. For a fair comparison, we do not
optimize these parameters in PINA.

SCANimate SNARF Ours GT
Figure 6. Qualitative results on GRAB dataset. Our method
recovers hand articulation and facial expression most accurately.

4.4. Results on GRAB Dataset

Tab. 2 summarizes results on the GRAB dataset. Over-
all, our method beats all baselines, especially for the hands,
where the margin is large. Fig. 6 visually shows that the
quality of the hands and face learned by our method is much
higher: SCANimate learns a mean hand and SNARF gener-
alizes badly to the unseen poses. Since GRAB meshes are
minimally clothed, we omit SMPLX+D from comparison.

Method CD↓ CD-MAX ↓ NC ↑ IoU ↑
All Hands All Hands All Hands All Hands

SCANimate [50] 2.60 8.39 54.75 54.22 0.967 0.760 0.941 0.569
SNARF [13] 1.37 5.13 33.86 33.51 0.977 0.818 0.967 0.739
Ours 0.94 0.79 21.43 4.79 0.985 0.957 0.991 0.895

Table 2. Quantitative results on GRAB dataset. Our method
outperforms all baselines, especially for the hand part (cf . Fig. 6).

4.5. Results on X-Humans (Scans)

Tab. 3 shows that our method also outperforms the base-
lines on X-Humans. Fig. 7 qualitatively shows differences.
SMPLX+D, limited by its fixed topology and low resolu-
tion, cannot model details like hair and wrinkles in clothing.
SCANimate and SNARF are SMPL-driven, so they either
learn a static or incomplete hand. Our method balances the
different body parts so that hands are well-structured, but
also the details on the face and body are maintained. Fig. 1
and Fig. 9 show more animation results.

Method CD↓ CD-MAX ↓ NC ↑ IoU ↑
All Hands All Hands All Hands All Hands

SMPLX+D 5.75 5.19 48.41 23.48 0.921 0.790 0.957 0.774
SCANimate [50] 6.54 9.78 59.71 48.32 0.925 0.726 0.919 0.557
SNARF [13] 5.05 7.23 55.06 37.15 0.934 0.788 0.937 0.608
Ours 4.43 5.14 47.56 22.15 0.939 0.793 0.965 0.776

Table 3. Quantitative results on X-Humans (Scans). We beat all
baselines both for the entire body (All) and hands only (Hands).

Method CD↓ CD-MAX ↓ NC ↑ IoU ↑
All Hands All Hands All Hands All Hands

PINA [20] 5.41 9.51 66.05 48.07 0.928 0.771 0.910 0.566
Ours 5.33 5.27 51.73 22.86 0.936 0.797 0.947 0.768

Table 4. Quantitative results on X-Humans (RGB-D). Our
method outperforms PINA in all metrics. Improvements are more
pronounced for hands (cf . Fig. 8 for visual comparison).
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SMPLX+D SCANimate SNARF Ours GT
Figure 7. Qualitative animation comparison on X-Humans (Scans). SMPLX+D fails to model face and garment details. SCANimate
and SNARF generate poor hands (static or incomplete). Our method produces the most plausible face and hands, and keeps the clothing
details comparable to strong baselines.

PINA GTOurs
Figure 8. X-Avatars created from RGB-D input compared to
PINA. Notice how we obtain better hand and face geometry.

4.6. Results on X-Humans (RGB-D)

Tab. 4 shows our model’s performance compared to
PINA [20]. Our method outperforms PINA on all metrics.
Fig. 8 further qualitatively shows that without utilizing the
hand and face information in the modelling process, the face
and hands produced by PINA are not consistent with the in-
put pose. Our model generates a) more realistic faces as
the shape network is conditioned on facial expression and
b) better hand poses because we initialize the root finding
with hand bone transformations.

5. Conclusion

Limitations X-Avatar struggles to model loose cloth-
ing that is far away from the body (e.g. skirts). Furthermore,
generalization capability beyond a single person is still lim-
ited, i.e. we train one model for each subject. The inference
speed (≈ 7 seconds per frame) is yet not optimal but a faster
version of SNARF [11] is a drop-in replacement for our de-
formers and will accelerate our method significantly.

Conclusion We propose X-Avatar, the first expressive
implicit human avatar model that captures body/hand poses,
facial expressions and appearance holistically. We have
demonstrated our method’s expressive power and the capa-
bility of creating it from multiple input modalities with the
aid of our newly introduced X-Humans dataset. We believe
that our method along with X-Humans will promote further
scientific research in creating expressive digital avatars.

Figure 9. Animation demonstration on X-Humans (Scans).
Our method can handle relatively complex clothing patterns, hair
styles, and varied facial expressions, hand, and body poses.
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