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Abstract

To obtain clean images with salient structures from noisy
observations, a growing trend in current denoising studies
is to seek the help of additional guidance images with high
signal-to-noise ratios, which are often acquired in differ-
ent spectral bands such as near infrared. Although previ-
ous guided denoising methods basically require the input
images to be well-aligned, a more common way to capture
the paired noisy target and guidance images is to exploit a
stereo camera system. However, current studies on cross-
spectral stereo matching cannot fully guarantee the pixel-
level registration accuracy, and rarely consider the case of
noise contamination. In this work, for the first time, we
propose a guided denoising framework for cross-spectral
stereo images. Instead of aligning the input images via con-
ventional stereo matching, we aggregate structures from the
guidance image to estimate a clean structure map for the
noisy target image, which is then used to regress the final de-
noising result with a spatially variant linear representation
model. Based on this, we design a neural network, called
as SANet, to complete the entire guided denoising process.
Experimental results show that, our SANet can effectively
transfer structures from an unaligned guidance image to the
restoration result, and outperforms state-of-the-art denois-
ers on various stereo image datasets. Besides, our struc-
ture aggregation strategy also shows its potential to han-
dle other unaligned guided restoration tasks such as super-
resolution and deblurring. The source code is available at
https://github.com/lustrouselixir/SANet.

1. Introduction

Due to the ill-posed nature of image denoising, even the
state-of-the-art single-image denoisers still suffer from the
problem of over-smoothing edges and details, especially at
high noise levels [5, 26, 35, 41]. Recently, multi-modal im-
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Figure 1. The overall framework of our SANet. It consists of
a structure aggregation module and a guided denoising module.
The structure aggregation module estimates a structure map for
the target image, based on which the guided denoising module
regresses the final denoising result. Compared with the state-of-
the-art single image denoiser MPRNet [41], our SANet can restore
salient structures according to the unaligned guidance image.

age processing has attracted increasing attention in image
restoration since it’s promising to recover salient structures
based on a guidance image [8, 13, 27, 30, 37, 39]. To en-
sure that the target image keeps the original ambience and
the guidance image is nearly noise-free, the auxiliary guid-
ance image is often captured in a different spectral band.
In actual applications, near-infrared (NIR) is a popular op-
tion [15, 17, 23, 44]. Many smartphones and surveillance
systems have already been equipped with NIR cameras. Ex-
tra NIR light sources are usually required to capture clean
NIR images with salient structures in a short exposure time
without affecting the imaging process of the visible light.

Current guided image restoration methods [8, 13, 27, 30,
37] basically assume the target and guidance images to be
well-aligned at the pixel level. In [44], the authors apply a
beam splitter to obtain registered images from two cameras,
while the work [23] uses a motorized rotator with different
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filters to separate the visible and NIR information from the
mixed signals. However, these special designs are too com-
plex to be directly deployed into portable devices. A more
common way to record information from different spectra
is to use a stereo camera system, making it essential to con-
duct guided denoising for unaligned cross-spectral images.

One straightforward solution is to register the input im-
age pairs through stereo matching. However, current cross-
modal stereo matching methods rarely consider the case of
noise contamination and precise disparity estimation is in-
tractable. Obtaining a large number of ground-truth dispar-
ities for supervised training is also a quite heavy work. In
addition, as stated in [38], even an accurate pixel-level reg-
istration result may be a sub-optimal representation for a vi-
sion task due to the occlusion problem. Therefore, to handle
guided denoising of unaligned images, we do not consider
stereo matching as an essential step.

The guided image filtering theory [13,27] actually intro-
duces an inspirational idea, that the target image can be re-
gressed by a spatially variant linear representation model of
the guidance image as long as they are structurally aligned.
The pixel and gradient intensities of the guidance image are
not crucial factors affecting the accuracy of guided denois-
ing. Inspired by this, in this work, we propose a guided
denoising framework for cross-spectral stereo image pairs.
Instead of warping the guidance image based on the one-to-
one pixel correspondence constructed by stereo matching,
we estimate a structure map for the target image by aggre-
gating non-local information from the guidance image.

Here, we assume that the input paired images have been
rectified, so that they only have horizontal disparities. To re-
store a target pixel, we extract features around pixels within
the range of the maximum disparity in the guidance image.
Based on the structural correlation between these candidate
pixels and the noisy target one, we further fuse them to esti-
mate the structures around this target pixel. The restoration
result can then be computed with a spatially variant linear
model to adjust the pixel and structural intensities.

Based on the above analysis, we design a convolutional
neural network, called as SANet, to handle guided denois-
ing for cross-spectral stereo image pairs. Its overall frame-
work is shown in Fig. 1. A structure aggregation module ex-
tracts non-local features from the guidance image and com-
putes their perceptual correlation with the noisy target ones
to estimate a clean structure map. Then, a guided denoising
module regresses the denoising result from the estimated
structure map with a spatially variant linear representation
model. In the training stage, we don’t require ground-truth
disparity information to optimize the network. Due to the
redundancy of image structures, the occluded contents can
also be properly estimated with high probability according
to their adjacent information.

In summary, the main contributions of this work are as

follows: (1) For the first time, we propose a guided denois-
ing framework for cross-spectral stereo image pairs, which
aims to recover salient structures of the target noisy im-
age from an unaligned guidance image. (2) We introduce
a noise-robust structure aggregation strategy to estimate a
clean structure map for the noisy target image without con-
ventional stereo matching, based on which we restore the
final denoising result. (3) Experimental results show that
our algorithm outperforms state-of-the-art denoising meth-
ods on various datasets, and our structural aggregation strat-
egy also has the potential to handle other unaligned guided
restoration tasks such as super-resolution and deblurring.

2. Related Work
2.1. Single-Image Denoising

Single-image denoising aims to estimate the latent clean
image from one single noisy observation. Traditional al-
gorithms can be categorized into filtering-based ones [3, 7]
and optimization-based ones. The optimization-based al-
gorithms model denoising with objective functions regu-
larized by image priors such as sparsity [9, 36] and low-
rankness [10,21], which often require a long inference time.

Currently, the deep learning theory has greatly improved
both denoising accuracy and efficiency. DnCNN [42] out-
performs traditional Gaussian denoisers using a simple net-
work with batch normalization and residual learning. To
handle blind denoising, CBDNet [11] trains a noise estima-
tion sub-network. More recently, MIRNet [40] aggregates
contextual information using parallel multi-resolution con-
volution streams and attention mechanism. MPRNet [41]
designs a multi-stage network architecture to progressively
learn the restoration function. In [4], HINet shows the con-
tributions of instance normalization in image restoration.
Built on the Locally-enhanced Window Transformer block,
Uformer [35] introduces a U-shaped Transformer to han-
dle both local context and long-range dependencies more
efficiently. However, despite their strong abilities to re-
move noise, the single-image denoisers still inevitably over-
smooth edges and textures, especially at high noise levels.

2.2. Guided Image Restoration

Current studies on guided image restoration basically as-
sume that the degraded target image and the guidance im-
age are well-aligned. The pioneering work, guided image
filtering [13] shows that the target image can be linearly
represented by the guidance image in local windows. The
work [39] uses a scale map to accomplish adaptive smooth-
ing and edge preservation at the same time.

The deep learning theory has also been introduced into
joint restoration tasks. SVLRM [27] and UMGF [31] re-
store the target image by learning a spatially variant repre-
sentation model of the guidance image, while FGDNet [30]
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exploits frequency decomposition to well balance noise re-
moval and structure preservation. Representing the com-
mon and unique features of images, CUNet [8] can handle
both guided restoration and guided fusion tasks. In [37],
guided denoising is modeled as as an optimization problem
regularized by a deep implicit prior.

However, few studies are conducted under unaligned sit-
uations. In [32], the authors perform patch-wise guided fil-
tering using a set of translated guidance images, but it can-
not handle stereo image pairs as the misalignment involves
not only translation but also rotation. Besides, the iterative
optimization process can be computationally expensive in
the case of large displacement, and the denoising ability of
patch-wise guided filtering is limited. UGSR [12] super-
resolves thermal images guided by unaligned RGB images.
To our best knowledge, there is still no effective solution
for unaligned guided image denoising, especially when the
image pairs are captured by stereo cameras.

2.3. Cross-Modal Stereo Matching

Traditional cross-modal stereo matching algorithms fo-
cus on exploring similarity metrics across different modal-
ities. Based on normalized cross-correlation, RSNCC [29]
can deal with structure divergence caused by inconsistent
shadows and reflections on the object surfaces. DASC [18]
describes image structures according to the self-correlation
of patches in a local support window. Further, the work [1]
uses neural networks to measure the similarity of cross-
modal patches. To refine the depth information recorded by
the RGB-D cameras, the work [28] focuses on stereo match-
ing between RGB images and depth maps. In [45], the au-
thors conduct stereo matching with material-aware confi-
dence. Its spectral translation network is specially designed
for RGB-NIR stereo images. In comparison, our proposed
SANet can deal with more general cross-spectral situations.
The work [20] transforms images across different spectral
bands through adversarial learning. However, it does not
consider the case of noise contamination.

3. Method
3.1. Model Formulation

Denote X, G ∈ RH×W as a pair of images captured
in different spectral bands. X is our desired target image
but corrupted by additive noise N ∈ RH×W . We only have
access to its noisy observation Y = X+N. G is the clean
guidance image. If they are well-aligned, as stated in [27],
the clean target image can be estimated by a spatially variant
linear representation of the guidance image, computed by

X̂(i, j) = A(i, j) ·G(i, j) +B(i, j). (1)

Here, (i, j) are the pixel coordinates, A, B ∈ RH×W are
the linear coefficient matrices.

However, if the input paired images are not well-aligned,
for instance, captured by a cross-spectral stereo camera sys-
tem, this linear representation model may lead to image dis-
tortions due to their structural inconsistencies. To address
this, stereo matching is a direct solution, but it’s hard to con-
struct accurate one-to-one correspondences of pixels across
different modalities, especially in the presence of noise.

In fact, the guided filtering theory implies that, the struc-
tures of the guidance image can be properly transferred to
the restoration target as long as they are structurally aligned.
That is, if we expect to align the guidance image with the
target one, it doesn’t necessarily need to retain the original
pixel and gradient intensities, nor to satisfy the one-to-one
correspondence of pixels constrained by stereo matching.

Motivated by this, in this work, we propose to aggregate
structural information from the guidance image to estimate
a structure map for the noisy target image. We assume that
the noisy target Y and the guidance G are captured in the
left and the right views, respectively. The stereo image pairs
are rectified so they only have horizontal disparities. De-
note D as the maximum disparity value. That is, for a pixel
Y(i, j) in the target image, its correspondent pixel in the
guidance image is G(i− r, j), 0 ≤ r ≤ D.

To restore a target pixel, instead of matching only one
single pixel in the guidance image, we aggregate structures
around all pixels within the range of the maximum dispar-
ity. These candidate pixels in the guidance image are then
weighted averaged to generate the desired structures that are
consistent with the noisy target. Hence, our guided denois-
ing model for stereo images can be formulated as

X̂(i, j) =

D∑
d=0

Wd(i, j) ·G(i− d, j) +B(i, j), (2)

where Wd and B are the weight matrix and the bias term,
respectively. Further, to enable the aggregating process to
focus more on structural correspondence than structural in-
tensities, we split W into two components, i.e., a percep-
tual weight WP and a scale weight WS . The perceptual
weight aims to regress the target structures by aggregating
information from candidate pixels, which we also refer to
as a structure aggregator. The scale weight is used to adjust
the structural intensity to match the target image. Therefore,
Eq. (2) can be re-written as

X̂(i, j) = WS(i, j) ·
D∑

d=0

WP
d (i, j)G(i− d, j) +B(i, j)

= WS(i, j) ·U(i, j) +B(i, j)

,

(3)
where U is our estimated structure map. In other words, the
denoising result can be estimated using a spatially variant
linear representation of this structure map.

In the actual implementation, we circularly translate the
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Figure 2. The network architecture of the structure aggregation module. First, two separate encoders extract feature maps from the input
noisy target and the guidance images. Then, the feature maps of the guidance image are circularly shifted to compute the feature-wise
cross-correlation with the target image. Finally, a decoder is used to generate the perceptual weight from the correlation map to estimate
the structural map for the target image.

guidance image to the right for D times. Stacking the
original and the translated guidance images together in the
channel direction, we can obtain a guidance tensor GR ∈
RH×W×(D+1) with D+1 channels. We re-write Eq. (3) as

X̂ = WS ⊙U+B = WS ⊙ S
(
WP ⊙GR

)
+B, (4)

where WS ,U,B ∈ RH×W , and WP ∈ RH×W×(D+1).
S(·) is the channel-wise summation function and ⊙ is the
element-wise product operator. Further, to strike a good bal-
ance between structure restoration and noise removal, fol-
lowing the work [30], we construct the spatially variant rep-
resentation model in the frequency domain.

In this work, we design a convolutional neural network,
called as SANet, to accomplish the entire denoising process.
The overall architecture of our proposed SANet is shown in
Fig. 1. It consists of a structure aggregation module and a
guided denoising module. We will give a detailed introduc-
tion of them in the following subsections.

3.2. Structure Aggregation Module

Compared with conventional stereo matching that aims
to construct positional correspondences, we focus on learn-
ing structural correlations across different modalities to esti-
mate the structure map for guided denoising. Therefore, in-
stead of cost aggregation and disparity estimation, the struc-
ture aggregation module predicts a perceptual weight WP

to fuse the candidate pixels of the guidance image within the
range of the maximum disparity based on their feature-wise
correlation with the target pixel.

Its architecture is shown in Fig. 2. First, two identical
encoders extract two feature maps, FY and FG, from the
input images Y and G. The encoder contains 6 convolu-
tion layers with kernels of size 3 × 3. Each convolution is
followed by layer normalization [2] and GELU [14]. Fea-
ture maps produced by the 1st convolution layer have C1

channels. The 2nd∼5th layers produce feature maps with
C2 channels, while the 6th one generates FY and FG with

C3 channels. In this work, we set C1 = 48, C2 = 96, and
C3 = 24. The 2× 2 max-pooling operation with stride 2 is
used in the first two convolution layers for down-sampling.

To evaluate the feature-wise correlation between the tar-
get and the guidance images within the range of the maxi-
mum disparity, we circularly shift FG to the right for D/4
times. Stacking them with the original FG, we obtain a
feature tensor of size H/4 × W/4 × (D/4 + 1) × C3. It
is then used to compute the channel-wise cross-correlation
with the transposed FY via matrix multiplication. The size
of the correlation map is H/4×W/4× (D/4 + 1)× 1.

Then, the correlation map is fed into a decoder consisting
of 5 convolution layers to compute the perceptual weight
WP . Each convolution operation is also followed by layer
normalization and GELU. The feature maps computed in
the first 4 layers have C2 channels. They are up-sampled in
the 1st and the 4th convolution layers by bilinear interpo-
lation. A channel-wise Softmax is then computed over the
predicted WP . Finally, the structure map U is obtained by
computing the element-wise product of WP and the guid-
ance tensor GR followed by a channel-wise summation.

3.3. Guided Denoising Module

The guided denoising module aims to obtain the restora-
tion result X̂ using a spatially variant linear representation
of the structure map U. In this work, we follow the network
architecture of [30] with slight adjustments to learn the lin-
ear representation model in the frequency domain. As dis-
played in Fig. 1, the guided denoising module contains two
steps: noise map estimation and linear representation.
Noise map estimation gives an initial noise estimate ac-
cording to the noisy target image to improve the robustness
of guided denoising at different noise levels. It consists of
16 convolution layers. The first 15 layers produce feature
maps with 64 channels. Each 3×3 convolution operation is
followed by layer normalization and GELU except for the
last one that outputs a single-channel noise map N̂.
Linear representation aims to predict a scale weight and
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a bias term to regress the final denoising result. Here, the
scale weight adjusts the structure intensities of the struc-
ture map U, while the bias term ensures that the basic pixel
intensities of the denoising result are faithfully restored ac-
cording to the noisy target image. Motivated by [30], we
compute the bias term based on the frequency coefficients
of the noisy target and the estimated noise map.

First of all, we transform Y, N̂ and U into the frequency
domain using patch-wise 2D discrete cosine transform (2D-
DCT) and stack the frequency coefficients into three fre-
quency tensors of size H×W×k2, where k is the patch size.
The frequency tensors are separately fed into three identical
encoders to extract three feature maps, which are then con-
catenated and fed into three decoders to predict three weight
tensors of size H ×W × k2. The frequency coefficients of
the denoised image are computed by weighted averaging the
three frequency tensors, which are later transformed back to
the spatial domain with the inverse 2D-DCT. Here, the en-
coders and decoders share the same architectures as those
in the structure aggregation module except for the channel
numbers of the feature maps. The 1st and the 6th layers of
the encoder produce features with 96 channels, while the
2nd∼5th ones produce 128-channel feature maps. Each de-
coder predicts a k2-channel weight tensor to regress the fre-
quency coefficients of the target image. Feature maps ob-
tained by the first 4 layers of the decoder have 96 channels.

3.4. Loss Function

We use a structure aggregation loss Lsa and a guided de-
noising loss Lgd to separately optimize the structure aggre-
gation module and guided denoising module.
Structure aggregation loss. For structure aggregation, we
adopt the perceptual loss [16] constructed based on the pre-
trained VGG-16 network as Lsa to minimize the structural
distance between the estimated structure map U and the
ground-truth restoration target X.
Guided denoising loss. The guided denoising loss function
Lgd consists of a noise estimation loss and a linear repre-
sentation loss to ensure the overall denoising accuracy. We
implement them using the smooth L1 losses , formulated as

Lgd = L1,smooth

(
X, (Y − N̂)

)
+ L1,smooth

(
X, X̂

)
. (5)

4. Experiments

In this section, we evaluate the proposed SANet in two
scenarios, including RGB-NIR and synthetic cross-spectral
stereo image pairs. During noise removal, the network pro-
cesses one channel at a time. That is, for color images, their
R, G, and B channels are denoised separately. We adopt
peak signal-to-noise ratio (PSNR) and structural similar-
ity index measure (SSIM) to assess the denoising accuracy.
Learned perceptual image patch similarity (LPIPS) [43] is

Input cross‐spectral images

noisy target

guidance

w/o guidance image

w/o structure aggregation Full model

Figure 3. Visual comparison of denoising results obtained by our
SANet in three cases: (i) without guidance image, (ii) without
structure aggregation, (iii) full model.

Target image
clean noisy

Guidance image

DASC (clean target) DASC  (noisy target)

SANet (clean target) SANet (noisy target)

Figure 4. Visual comparison of the warped guidance images ob-
tained by DASC [18] and the structure maps estimated by our
SANet in the case of clean target image and noisy target image
(α = 0.02, σ = 0.2), respectively.

used to evaluate the visual quality. Higher PSNR and SSIM
and lower LPIPS values indicate better performance.

4.1. Experimental Settings

Datasets. For the task of NIR-guided RGB image de-
noising, the algorithms are evaluated on the PittsStereo-
RGBNIR Dataset [45] with 40000 paired training data and
2000 paired test data. The stereo image pairs in this set have
quite small disparities, and are acquired in similar scenes.

To further evaluate SANet in more challenging scenar-
ios including large disparities and different cross-spectral
cases, we also simulate cross-spectral image pairs from the
RGB stereo datasets, including the Flickr1024 [34] and the
KITTI Stereo 2015 Dataset [25]. The former consists of 800
paired images for training and 112 for evaluation, while the
latter contains 400 paired images for training and 400 for
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Methods PSNR ↑ SSIM ↑ LPIPS ↓
w/o structure aggregation 25.30 0.8345 0.2945

w/o guidance image 25.26 0.8313 0.2983

w/o noise estimation 25.48 0.8435 0.2690

full model 25.67 0.8477 0.2685

Table 1. Ablation studies on structure aggregation, guidance im-
age, and noise estimation under Gaussian noise (σ = 0.2).

Algorithms
α = 0, σ = 0.2 α = 0.02, σ = 0.2

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
MIRNet [40] 27.72 0.8391 0.4029 27.30 0.8327 0.4137

NBNet [5] 27.44 0.8340 0.4066 27.00 0.8274 0.4099

MPRNet [41] 27.74 0.8416 0.3861 27.34 0.8349 0.3967

HINet [4] 27.94 0.8448 0.3922 27.55 0.8386 0.4029

Uformer [35] 27.67 0.8383 0.3985 27.26 0.8319 0.4023

DGUNet [26] 27.79 0.8390 0.3825 27.39 0.8336 0.3913

FGDNet [30] 28.31 0.8540 0.3218 27.94 0.8493 0.3280

MNNet [37] 29.12 0.8742 0.2577 28.80 0.8699 0.2654

SANet (Ours) 29.32 0.8761 0.2565 28.98 0.8726 0.2606

Table 2. The average PSNR (dB), SSIM, and LPIPS values of
single-image [4,5,26,35,41,41] and guided [30,37] denoisers and
our SANet on the PittsStereo-RGBNIR Dataset under Gaussian
noise (σ = 0.2) and Poisson-Gaussian noise (α = 0.02, σ = 0.2).

evaluation. Specifically, we take the right-view images as
the guidance, and use their G, B, and R channels to guide
the denoising process of the R, G, and B channels of the
left-view noisy target images, respectively. Here, the net-
work processes one channel at a time. In this case, we can
ensure that the input images are from different spectra. For
clear illustration, we change the channel orders of the guid-
ance images to GBR for display in the following figures.
Training details. We train the network using the Adam op-
timizer [19] with parameters β1 = 0.9 and β2 = 0.999.
The weight decay is set to 1 × 10−8, and the batch size is
8. The training process contains two stages. The structure
aggregation module is optimized with the loss function Lsa

in the first stage. In the second stage, we only optimize
the guided denoising module using Lgd. Each optimization
process takes 2×105 iterations with the initial learning rate
1 × 10−4 gradually reduced to 1 × 10−6 using the cosine
annealing schedule [22]. In this work, we deal with Poisson
noise and Gaussian noise, the two main noise types in mod-
ern camera systems. The noise levels are indicated by α and
σ, respectively. In each iteration, we randomly crop patches
of size 128× 400 from the source paired images as training
data. The noisy target patches are simulated with random
α ranging from 0 to 0.02 and σ ranging from 0 to 0.2. For
synthetic cross-spectral cases, the target and the guidance
images are randomly extracted from two different channels
of the RGB stereo images in the training stage. The maxi-

Algorithms
α = 0, σ = 0.2 α = 0.02, σ = 0.2

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
MIRNet [40] 25.26 0.8324 0.3061 24.88 0.8244 0.3158

NBNet [5] 24.86 0.8216 0.3207 24.47 0.8141 0.3258

MPRNet [41] 25.33 0.8370 0.2968 24.95 0.8287 0.3058

HINet [4] 25.53 0.8426 0.2941 25.16 0.8347 0.3020

Uformer [35] 25.15 0.8302 0.3052 24.76 0.8225 0.3102

DGUNet [26] 25.32 0.8294 0.2953 24.96 0.8229 0.3043

FGDNet [30] 24.97 0.8185 0.3107 24.54 0.8102 0.3189

MNNet [37] 25.12 0.8269 0.3181 24.73 0.8173 0.3259

SANet (Ours) 25.67 0.8477 0.2685 25.30 0.8411 0.2736

Table 3. The average PSNR (dB), SSIM, and LPIPS values of
single-image [4,5,26,35,41,41] and guided [30,37] denoisers and
our SANet on the Flickr1024 Dataset under Gaussian noise (σ =
0.2) and Poisson-Gaussian noise (α = 0.02, σ = 0.2).

Algorithms
α = 0, σ = 0.2 α = 0.02, σ = 0.2

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
MIRNet [40] 26.72 0.8619 0.3276 26.30 0.8553 0.3375

NBNet [5] 26.52 0.8570 0.3366 26.09 0.8501 0.3423

MPRNet [41] 26.59 0.8580 0.3308 26.18 0.8509 0.3407

HINet [4] 26.92 0.8668 0.3131 26.52 0.8607 0.3224

Uformer [35] 26.68 0.8609 0.3270 26.27 0.8546 0.3313

DGUNet [26] 26.55 0.8577 0.3287 26.12 0.8505 0.3415

FGDNet [30] 26.77 0.8623 0.3111 26.34 0.8559 0.3198

MNNet [37] 27.33 0.8742 0.2884 26.89 0.8680 0.2973

SANet (Ours) 27.88 0.8899 0.2439 27.47 0.8851 0.2513

Table 4. The average PSNR (dB), SSIM, and LPIPS values of
single-image [4, 5, 26, 35, 41, 41] and guided [30, 37] denoisers
and our SANet on the KITTI Stereo 2015 Dataset under Gaussian
noise (σ = 0.2) and Poisson-Gaussian noise (α = 0.02, σ = 0.2).

mum disparity D is set to 128. The patch size of 2D-DCT
in guided denoising is set to k = 9. All experiments are
conducted using one Nvidia Quadro RTX8000 GPU.

4.2. Ablation Studies

In this section, we validate the influence of guidance
image, structure aggregation, and noise estimation on the
denoising performance of our algorithm on the Flickr1024
Dataset under Gaussian noise with σ = 0.2. In the case
of evaluating our SANet without guidance image, for a fair
comparison, we use the noisy target image to guide its own
denoising process to retain the original network architec-
ture. As shown in Table 1, the denoising accuracy decreases
when any of the three components is deactivated. Without
guidance image, SANet is equivalent to a single-image de-
noiser and thus cannot preserve fine structures during noise
removal. Without structure aggregation, the structures of
the guidance image cannot be properly transferred to the de-
noising result. A visual comparison of the ablation results
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Noisy target image Guidance image MPRNet (CVPR 2021) Uformer (CVPR 2022)

DGUNet (CVPR 2022) SANet (Ours) Ground truthFGDNet (TMM 2022) MNNet (IF 2022)

MIRNet (ECCV 2020)

Figure 5. Denoising results on the Flickr1024 Dataset under Gaussian noise (σ = 0.2) obtained by the comparative denoising methods and
our SANet.

Noisy target image (RGB) Guidance image (NIR) MPRNet (CVPR 2021) Uformer (CVPR 2022)

SANet (Ours)

PSNR=33.52dB
SSIM=0.9704
LPIPS=0.1516

DGUNet (CVPR 2022)

PSNR=32.08dB
SSIM=0.9540
LPIPS=0.1996

Ground truth

PSNR=31.95dB
SSIM=0.9533
LPIPS=0.2047

FGDNet (TMM 2022)

PSNR=31.32dB
SSIM=0.9457
LPIPS=0.2250

MNNet (IF 2022)

PSNR=31.71dB
SSIM=0.9526
LPIPS=0.2031

PSNR=31.98dB
SSIM=0.9536
LPIPS=0.2063

MIRNet (ECCV 2020)

PSNR=32.11dB
SSIM=0.9556
LPIPS=0.2052

Figure 6. Denoising results of our captured RGB-NIR stereo image pairs under Gaussian noise (σ = 0.2) obtained by the comparative
denoising methods and our SANet.

is displayed in Fig. 3.

4.3. Evaluation and Comparison

To show the robustness of our structure aggregation strat-
egy in the case of noise contamination, we compare our es-
timated structure map to the warped guidance image ob-
tained by stereo matching using DASC [18]. As shown in
Fig. 4, except in those occluded regions, DASC can achieve
plausible matching result when the target image is clean.
However, its matching accuracy is severely decreased in the
presence of noise, based on which it’s difficult to transfer
structures to the final restoration target. More detailed re-
sults and the evaluation of other cross-spectral stereo match-
ing methods are displayed in the supplementary materials.

In comparison, our proposed structure aggregation pro-
cess can estimate an accurate structure map for the target
image whether it is corrupted by noise or not. When there
occur structural inconsistencies such as occlusion, it can
predict the occluded structures as much as possible based
on the adjacent information. As shown in Fig. 4, even the
missing contents on the left side of the guidance image can
also be properly completed after structure aggregation.

Further, we quantitatively evaluate our SANet and com-

pare it to the state-of-the-art single-image denoisers includ-
ing MIRNet [40], NBNet [5], MPRNet [41], HINet [4],
Uformer [35], and DGUNet [26]. To show the superiority
of SANet in handling unaligned situations, we also com-
pare it with two latest guided denoisers FGDNet [30] and
MNNet [37], which are designed for aligned situations. All
competing methods are re-trained using the same training
set as ours for fair comparisons. For single-image denois-
ers, we also use an additional dataset of 3859 images [33] to
optimize the networks. Each channel of the color image is
processed separately for both comparative and our models.

Tab. 2 lists the average PSNR, SSIM and LPIPS values
on the RGB-NIR image pairs from the PittsStereo-RGBNIR
test dataset. Our SANet achieves the highest denoising ac-
curacy. Since image pairs from this dataset have quite small
disparities, image structures are likely to remain consis-
tent in some regions due to their continuity and redundancy
natures in local areas. Therefore, the comparative guided
denoising models FGDNet and MNNet still achieve better
denoising results than the single-image ones. Tab. 3 and
Tab. 4 list the quantitative results on the synthetic cross-
spectral data generated from the Flickr1024 and the KITTI
Stereo 2015 Datasets, where the disparities of the input im-
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LR target image

4x bicubic 
up‐sampled

Blurry target image Guidance image Estimated structure map

Guidance image Estimated structure map SANet (Ours)SRDD (ECCV 2022)

MIMO (ICCV 2021) SANet (Ours)

Figure 7. Guided super-resolution (top row) and guided deblurring (bottom row) results of synthetic cross-spectral stereo image pairs on
the Flickr1024 Dataset. The low-resolution (LR) target image is generated with 4× bicubic down-sampling. The blurry target image is
generated with a Gaussian kernel of standard deviation 5.

MIRNet [40] NBNet [5] MPRNet [41] HINet [4] Uformer [35] DGUNet [26] FGDNet [30] MNNet [37] SANet (Ours)

Number of Parameters 31.79 M 10.45 M 15.73 M 88.67 M 20.60 M 17.20 M 1.63 M 0.76 M 4.64 M

FLOPs 61.56 G 6.63 G 31.25 G 38.32 G 10.24 G 61.12 G 6.60 G 11.86 G 25.26 G

Inference Time 71.55 ms 13.97 ms 47.22 ms 13.70 ms 29.10 ms 50.81 ms 7.37 ms 21.82 ms 23.87 ms

Table 5. Number of parameters, FLOPs and inference time for different denoising networks measured with input images of size 128×128.

age pairs are much larger. In this case, our SANet still out-
performs all the comparative methods. Fig. 5 shows that
both the single-image denoisers and the guided denoising
methods FGDNet and MNNet achieve similar results where
the image details are over-smoothed. In comparison, SANet
can restore fine structures according to the guidance image,
even in the case of large disparities. Actually, our struc-
ture aggregation strategy can also benefit other guided de-
noisers when tackling unaligned situations. Due to the page
limit, we present the results in the supplementary materials.
Fig. 6 displays the denoising results of our captured RGB-
NIR stereo paired images obtained by models trained on
the Flickr1024 Dataset. We can observe that SANet can be
easily generalized to new cross-spectral cases. Besides, as
listed in Tab. 5, SANet is also computationally efficient and
has a smaller model size than those single-image denoisers.

4.4. Applications to Other Restoration Tasks

Our structure aggregation strategy can also handle other
unaligned guided restoration tasks such as super-resolution
and defocus deblurring. To validate this, we conduct exper-
iments on the synthetic data from the Flickr1024 Dataset.

For guided super-resolution, we take the left-view image
as the target and generate its low-resolution (LR) observa-
tion with 4× bicubic down-sampling. For guided deblur-
ring, the left-view blurry target image is generated with a
Gaussian kernel of standard deviation 5. The right-view
image is taken as the guidance image whose channels are
also switched for cross-spectral simulation. We discard the
noise estimation part to predict the restored images.

In Fig. 7, two examples of a guided super-resolution re-
sult and a guided deblurring result obtained by our SANet

are displayed, respectively. We also compare them to a lat-
est single-image super-resolution model SRDD [24] and a
single-image deblurring model MIMO [6]. We can observe
that, compared with the single-image methods, even though
the edges and details of the input target images are seriously
distorted, our model can still estimate salient structure maps
according to the unaligned guidance image acquired from
different spectral bands. In a word, our structure aggrega-
tion is robust to various degradation factors, and thus has the
potential to handle a wider range of application scenarios.

5. Conclusions
In this work, for the first time, we propose a guided de-

noising framework for cross-spectral stereo image pairs. In-
stead of conducting conventional stereo matching to align
the guidance image with the noisy target one, we introduce
a structure aggregation strategy to estimate a clean structure
map from the unaligned guidance image, and then regress
the final denoising result using a spatially variant linear rep-
resentation model. Based on this, we further design a neu-
ral network, called as SANet, to complete the entire guided
denoising process. Experimental results show that, our al-
gorithm outperforms other state-of-the-art denoisers on var-
ious stereo datasets in both accuracy and visual quality. In
addition, our structure aggregation strategy also shows its
potential to handle other guided restoration tasks such as
super-resolution and deblurring.
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