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Abstract

Category-agnostic pose estimation (CAPE) aims to pre-
dict keypoints for arbitrary categories given support im-
ages with keypoint annotations. Existing approaches match
the keypoints across the image for localization. However,
such a one-stage matching paradigm shows inferior ac-
curacy: the prediction heavily relies on the matching re-
sults, which can be noisy due to the open set nature in
CAPE. For example, two mirror-symmetric keypoints (e.g.,
left and right eyes) in the query image can both trigger
high similarity on certain support keypoints (eyes), which
leads to duplicated or opposite predictions. To calibrate
the inaccurate matching results, we introduce a two-stage
framework, where matched keypoints from the first stage
are viewed as similarity-aware position proposals. Then,
the model learns to fetch relevant features to correct the
initial proposals in the second stage. We instantiate the
framework with a transformer model tailored for CAPE.
The transformer encoder incorporates specific designs to
improve the representation and similarity modeling in the
first matching stage. In the second stage, similarity-aware
proposals are packed as queries in the decoder for refine-
ment via cross-attention. Our method surpasses the previ-
ous best approach by large margins on CAPE benchmark
MP-100 on both accuracy and efficiency. Code available at
github.com/flyinglynx/CapeFormer

1. Introduction

Humans can quickly grasp the essentials of a keypoint
for arbitrary objects (e.g., the nose of an animal) and
then pinpoint the same keypoint on another object in the
same category. However, most pose estimation models are
still category-specific, which cannot be applied to a new
category unless they are trained with sufficient category-
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Figure 1. Comparison with existing methods. (a) Compared
with previous one-stage matching paradigm that entirely relies
on keypoint matching, we propose a novel two-stage framework,
which learns to correct unreliable matching results in the second
stage. (b) The proposed approach attains better accuracy and effi-
ciency compared with the previous best approach.

specific data. Recently, category-agnostic pose estimation
(CAPE) [40] is proposed to address such a generic pose
estimation problem. CAPE aims to localize instance key-
points for arbitrary categories given one or few support im-
ages with keypoint annotations (support keypoints).

Unlike category-specific pose estimation models that
learn to recognize specific keypoints for a fixed category,
CAPE models learn to represent and compare keypoints for
open-world categories. As shown in Fig. 1 (a), existing
CAPE approaches [40] match the support keypoints across
the query image in an embedding space. Then, the match-
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ing results are used as clues for keypoint localization. Al-
though a sophisticated feature embedding pipeline is elabo-
rated [40], we find that such a one-stage pipeline shows in-
ferior accuracy and efficiency for CAPE tasks. Specifically,
the prediction heavily relies on matching results. However,
due to the open set nature in CAPE, the similarity results
often contain some noises: 1) insufficient similarity when
support and query instances differ significantly in poses,
textures, or styles; 2) false positive similarity is triggered
when points in the query image share similar appearance
with support keypoints. For example, one-stage matching
paradigm has difficulties distinguishing the left and right of
keypoints due to similar visual characteristics. Thus, the left
eye in support keypoints can be indiscriminately predicted
to the right eye in the query image.

In this paper, we remedy these issues from two aspects.
First, to refine the matching results, we introduce a two-
stage framework for CAPE, where matched keypoints in the
first stage are viewed as similarity-aware position proposals.
The model learns to refine the proposals in the second stage.
In addition, to construct a robust matching process, we also
improve the representation quality and similarity metrics.

Specifically, we instantiate the two-stage framework
with a transformer, termed CAPE transformer (Cape-
Former). The transformer encoder encodes the support key-
points and query images in the first stage, with specific de-
signs to improve the representation quality. We first design
a query-support joint refine encoder to mutually transfer in-
formation among support keypoints and the query images,
thus narrowing the gap between the support and query in-
stances (poses or styles). Then, we add a support keypoint
identifier to alleviate the ambiguity between two support
keypoints when they are geometrically close or with simi-
lar appearance. After the feature encoding, similarity-aware
position proposals are generated for the second stage. We
directly match the support keypoint with query image fea-
tures using a learnable inner-product [34]. The similarity
peaks are selected as the similarity-aware position propos-
als for support keypoints. In the second stage, the position
proposals are packed with support keypoint features as the
queries in the transformer decoder. In each decoder layer,
queries extract relevant features with cross-attention, which
are used as clues to update the proposals.

We evaluate our method on a category-agnostic pose es-
timation benchmark MP-100 [40]. Our method outperforms
the previous best approach POMNet [40] by large margins,
with an improvement of 5.6% and 8.6% under 1-shot and
5-shot settings, respectively. When training and test cate-
gories almost have no properties in common, a more signif-
icant improvement (up to 10.5%) can be obtained compared
with POMNet. Note that, our method is trained end-to-end
and shows better efficiency compared with previous best ap-
proach, as in Fig. 1 (b).

Our contributions can be summarized as follows:

• We propose a two-stage framework for category-
agnostic pose estimation tackling the noisy matching
results.

• We instantiate the two-stage framework with a trans-
former model, termed CapeFormer, with specific de-
signs to enhance the representation and similarity
modeling in the matching pipeline.

• CapeFormer outperforms the previous best approach
significantly in both accuracy and efficiency.

2. Related Work
2.1. Pose Estimation

Pose estimation aims to localize the semantic keypoints
of instances. Most pose estimation approaches are targeted
for one specific category, e.g., human [1, 19, 45, 46], ani-
mals [3, 17, 20], or vehicles [29, 36]. According to how
points are localized, pose estimation methods can be cat-
egorized into regression-based [18,21,28,37,38], heatmap-
based [4, 44], offset-based [12] and query-based [33] ones.
In this work, we address category-agnostic pose estima-
tion, which has not been well-studied yet. Compared with
category-specific pose estimation, category-agnostic pose
estimation focuses on constructing a generic representation
and similarity metrics: keypoints are predicted by compar-
ing the support keypoints and the query images in the em-
bedding space.

2.2. Category-Agnostic Vision Models

Category-agnostic vision models aim to build a generic
model that can be applied to any categories on a particu-
lar task, e.g., object detection [14], segmentation [43], ob-
ject counting and localization [24, 34]. This setting is also
known as the few-shot learning. Recently, POMNet [40]
first proposes the category-agnostic pose estimation task
and elaborates a dataset MP-100. Most category-agnostic
models can be classified into meta-learning and metric-
learning approaches. Meta-learning approaches [11] aim to
initialize the model with a set of optimal parameters, where
the model can quickly fit the new tasks by learning from
a few support samples. Metric learning-based approaches
match the support samples with query images in an embed-
ding space. Then, the matching results are used as clues
for subsequent tasks. For pose estimation, POMNet [40]
encodes query images and support keypoints with a trans-
former. Then, a regression head directly infers the similar-
ity from the concatenated support keypoint and query im-
age features. We find that simply using matching results for
point localization is challenging. Hence, we extend such a
matching paradigm with a two-stage framework to correct
the unreliable matching results for accurate predictions.
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Figure 2. Illustration of the proposed CapeFormer. CapeFormer consists of a matching stage where similarity-aware position proposals
are generated, and a refine stage that further calibrates the proposals. A support identifier and query-support joint refine encoder are
proposed to improve the representation quality.

2.3. Semantic Correspondence

Semantic correspondence (SC) [8, 15] aims to match the
points that have identical semantic meaning with a dense
correspondence field. Hence, SC models can be directly ap-
plied on the CAPE: localize the corresponding points for the
support keypoints with the estimated correspondence field.
Typical SC models first match each pair of pixels and use
the matching score to construct correspondence. Similar to
our two-stage design that alleviates the noise on similarity
matching, a series of SC models refine the matching scores
with geometry constraints [26], high-dimensional convolu-
tions [31], and attention mechanism [6, 7]. However, we
find directly applying SC models for CAPE is inefficient
and yields inferior performance. Besides, most techniques
for the matching refine in SC are based on the dense match-
ing volume, which is not available in CAPE, as only the
sparse support keypoints are matched.

3. CAPE Transformer
Class-agnostic pose estimation (CAPE) aims to estimate

instance keypoints given one or a few support images with
keypoint annotations. Specifically, we denote the query im-
age as Iq and the support image as Is, which has K pre-
defined support keypoints. The CAPE model will infer the
positions of the corresponding K keypoints in the query im-
ages. For simplicity, we use the 1-shot setting for illustra-
tion (the number of support images equals one).

3.1. Two-Stage Framework for CAPE
Different from the previous one-stage paradigm, Cape-

Former features a two-stage framework. As in Fig. 2, the
first stage consists of the input embedding, a support-query
joint refine encoder, and a similarity-aware proposal gen-
erator. A proposal refine decoder forms the second stage.

The input embedding encodes the query image and support
keypoints into the embedding space (Sec. 3.2). We denote
the features for the query image and support keypoints as
Fq and Fs, which are further refined with the query-support
joint refine encoder (Sec. 3.3). The proposal generator mea-
sures the similarity between Fs and Fq and the similarity
peaks are selected as the similarity-aware position propos-
als (Sec. 3.4). Then, in the second stage, the similarity-
aware proposals are gradually refined into the final predic-
tions (Sec. 3.5).

3.2. Input Embedding
The input embedding is illustrated in Fig. 3. We first

project the support and query image into feature maps with
a shared backbone. The flattened feature map of the query
image is used as its representation, denoted by Fq ∈ Rc×n,
where n equals the number of pixels in the feature map
and c denotes the embedded dimension. To obtain the fea-
tures of the support keypoint, we conduct a “soft” ROI pool-
ing [30] on the support image feature map. K soft masks are
generated by placing a Gaussian kernel centered at support
keypoints, and then multiplied with the support feature map.
The summation of masked support feature map is adopted
as the support keypoint feature Fs ∈ RK×c. For multiple
support images, e.g., 5-shot settings, the support keypoint
features from different images are averaged.
Support keypoint identifier. When encoding support key-
points, each support keypoint’s positional and context in-
formation is discarded during ROI pooling. Hence, when
two support keypoints are geometrically close or with sim-
ilar appearance (e.g., left and right eyes), they can be indis-
tinguishable in the embedding space. Such ambiguity can
lead to inaccurate predictions that are duplicated or mirror-
symmetric to the ground truth.
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Figure 3. Illustration of the input embedding and the support-
query joint refine encoder.

To alleviate such ambiguity, we propose a simple but ef-
fective support keypoint identifier that gives an “identity”
to each support keypoint. The implementation is embar-
rassingly simple: K embedding vectors are generated via
sinusoidal encoding, denoted by Is ∈ RK×c. This iden-
tifier is added to Fs ahead of attention calculation, which
will be discussed later in this section. Such a simple mod-
ification can lead to over 3% improvement with negligible
computation overhead.

3.3. Query-Support Refine Encoder

Directly matching the support keypoints with the query
image right after the input embedding is challenging, as in-
stances in the support and query images can be different,
such as different colors, textures, and poses. Thus, the tar-
get and support keypoints may not possess sufficient simi-
larity in the embedding space [10, 34]. An intuitive way to
alleviate this is to fuse relevant query and support features.
Hence, the query and support features can be pulled closer
in the embedding space.

To this end, we implement information fusion and trans-
fer among support and query with self-attention. As illus-
trated in Fig. 3, the inputs of the lth encoder layer are query
and support features, denoted as F l

q and F l
s. We augment

the F l
q with positional embedding as in DETR [5], and add

the support keypoint identifier into the F l
s. The augmented

F l
q and F l

s are concatenated into a feature sequence with the
length of n+K. The sequence is then fed into the standard
multi-head self-attention layer [39]. The output sequence
from the self-attention layer is processed by a feed forward
network (FFN). Then, the sequence are re-split to the sup-
port keypoint and query image features, which are used as
the inputs for the next encoder layer.

3.4. Similarity-Aware Proposal Generator

The similarity-aware proposal generator matches the
support keypoint features with the query features to ob-
tain the similarity maps, whose peaks are selected as the
similarity-aware proposals. Previous state-of-the-art ap-
proach POMNet [40] measures similarity implicitly: a re-
gression head directly infers similarity maps (heatmaps)
from the concatenation of support keypoint and query fea-
tures. However, regressing similarity without explicit sim-
ilarity modeling has the risk of overfitting in class-agnostic
setting [34]. Moreover, considerable computation overhead
is introduced. For example, given 100 support keypoint fea-
tures with 256 channels as in our case, the similarity maps
are obtained by forwarding 512-channel feature maps with
an FCN for 100 times.

To embrace both efficiency and generality, we use a
learnable inner-product [34] to model similarity explicitly.
Specifically, we first calculate a channel attention weight
a ∈ RK×c conditioned on Fs ∈ RK×c. Then, the similar-
ity map M is obtained as:

M = (WqFq)(a ◦WsFs)
T , (1)

where Wq and Ws are two learnable projection matrices in
Rc×c and ◦ denotes the Hadamard product. Then, similar-
ity maps M ∈ Rn×K are reshaped into 2D with the shape
of H × W . The channel attention helps stressing the key
patterns during inner product computation [34].

The maximums from the similarity maps are selected
as the similarity-aware position proposals for support key-
points. To reduce the round-off errors on the down-scaled
resolutions, instead of directly selecting the maximums, we
first generate a 3 × 3 local window around the similarity
peaks and normalize this local window with softmax.
Then, we take the expectation of the coordinates in each
local window as the proposal, which can be formulated as:

xk =
∑

i,j∈Wk

i · exp (Mk,ij)∑
i,j∈W exp (Mij)

, (2)

yk =
∑

i,j∈Wk

j · exp (Mk,ij)∑
i,j∈W exp (Mij)

, (3)

where Wk denotes the local window for the kth support
keypoint and i, j indexes the horizontal and vertical coor-
dinates. Here we denote the similarity-aware position pro-
posals for all the support keypoints as P ∈ RK×2.

3.5. Proposal Refine Decoder

As mentioned in Sec. 1, due to the unreliable matching
process, directly using the matched keypoints from the first
stage as predictions is prone to error. Intuitively, each sup-
port keypoint can be corrected by jointly considering other
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support keypoint predictions and keypoint-related informa-
tion in the query image. Hence, we devise the second stage
to unleash the potential of correcting the raw similarity-
aware position proposals.

Specifically, as shown in Fig. 4, we design a proposal
refine decoder, where the support keypoint embedding to-
gether with the keypoint positions are fed into the decoder
layer. Each layer consists of two steps: 1) self-attention
among support keypoints makes each proposal aware of
other keypoints’ positions and contents; 2) cross-attention
that helps extract relevant content from the query feature
for each support keypoint. By integrating these two atten-
tion mechanisms, the decoder can further refine the position
proposals and produce more accurate predictions.
Self-attention among support keypoints. Self-attention
enables interactions among the support keypoints, which
makes each proposal aware of other keypoints’ positions
and contents. To prepare the inputs for the self-attention
layer, the support keypoint positions are first converted into
sinusoidal positional encoding El

s ∈ RK×c. Then, the sup-
port keypoint identifier Is and position embedding El

s are
added into F l

s forming the query and key for the first self-
attention layer. The support keypoint feature F l

s is directly
used as the value. The multi-head self-attention layer is fol-
lowed by a transformer-style feed-forward network (FFN)
with residual connection and layer normalization [2]. We
denote the support feature processed by the FFN as F l′

s .
Cross-attention between support and query features.
Cross-attention helps extract relevant contents from the
query feature Fq for each support keypoint. As illustrated
in Fig. 4, we use the concatenation of F ′

s and the summation
of Is and El

s as the query for the cross-attention layer. Cor-
respondingly, query image features Fq and positional em-

bedding Pq are concatenated as the key, and Fq are used
as the value. Instead of addition, we concatenate the posi-
tional embedding and support identifier for key and value,
following DAB-DETR [23]. An FFN processes the output
from the cross-attention layer to form the support keypoint
features for the next decoder layer, i.e., F l+1

s .
Position update. We use the refined support feature F l+1

s

to update the keypoint positions P l to P l+1. An MLP takes
F l+1
s as input and infers the offset Ol+1 ∈ RK×2 point-

ing to the ground truth. Then, the keypoint positions are
updated by:

P l+1 = σ
(
Ol + σ−1

(
P l

))
, (4)

where σ and σ−1 denote the sigmoid and its inverse func-
tion. Note that the similarity-aware proposals are used as
the keypoint positions for the first decoder layer, i.e., P 1.
The updated keypoint positions from the last decoder layer
are used as the final prediction.

3.6. Supervision Signal

CapeFormer incorporates two supervision signals: the
similarity loss and the offset loss. The similarity loss facili-
tates the learning of representation and the similarity metric
in the first stage. The offset loss supervise the learning of
proposal refinement.
Similarity loss. The similarity loss is imposed on the sim-
ilarity maps M from the similarity-aware proposal gener-
ator. We simultaneously constrain the shape of similarity
map and the accuracy of similarity-aware proposals with a
heatmap term Lh and an expectation term Le.

For heatmap loss, we use sigmoid to normalize simi-
larity map M . Then, Lh are computed with ℓ2 loss as:

Lh =
1

K

K∑
i=1

1

H ·W
∥sigmoid (Mi)−Hi∥2 , (5)

where Hi denotes the ground truth heatmap for the ith key-
point. For Le, we first normalize the similarity map with
softmax and then take the expectation of the coordinates
as:

E (Pk) =

H∑
j=1

W∑
i=1

exp (Mk,ij)∑
exp (Mk)

· (i, j) , (6)

where E(Pk) denotes the coordinate expectation for the kth

keypoint. H and W denote the height and width for simi-
larity map. Then we use ℓ1 loss to calculate Le as:

Le =
1

K

K∑
i=1

∣∣∣E (Pi)− P̂i

∣∣∣
1
, (7)

where P̂i denotes the ground truth coordinate of the ith

point.
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Table 1. Results on the MP-100 dataset. Performance (PCK) under 1-shot and 5-shot settings. The proposed CapeFormer achieves the
best PCK on all the splits under 1-shot and 5-shot settings.

Method
1-shot 5-shot

Split 1 Split 2 Split 3 Split 4 Split 5 Average Split 1 Split 2 Split 3 Split 4 Split 5 Average

ProtoNet [35] 46.05 40.84 49.13 43.34 44.54 44.78 60.31 53.51 61.92 58.44 58.61 58.56
MAML [11] 68.14 54.72 64.19 63.24 57.20 61.50 70.03 55.98 63.21 64.79 58.47 62.50

Fine-tune [27] 70.60 57.04 66.06 65.00 59.20 63.58 71.67 57.84 66.76 66.53 60.24 64.61
POMNet [40] 84.23 78.25 78.17 78.68 79.17 79.70 84.72 79.61 78.00 80.38 80.85 80.71
CapeFormer 89.45 84.88 83.59 83.53 85.09 85.31 91.94 88.92 89.40 88.01 88.25 89.30

Offset regression loss. Supposing a total of L decoder lay-
ers are used, we define the offset regression loss Lo as:

Lo =
1

L

L∑
l=1

K∑
i=1

∣∣∣Pi
l+1 − P̂i

∣∣∣
1
. (8)

The overall training loss is calculated as λh·Lh+Le+Lo,
where λh is a pre-defined weight for the heatmap loss.

4. Experiments
4.1. Implementation Details

Network architecture. We use the ResNet-50 [13] pre-
trained from ImageNet [9] as the backbone following POM-
Net [40]. Different from POMNet, the backbone is shared
by query and support images in our cases for efficiency.
Both the query-support joint refine encoder and the proposal
refine decoder have three layers. Refer to supplementary for
more details on network architectures.
Training strategy. We use Adam [16] optimizer to train
the model for 200 epochs with the batch size of 16. The
learning rate is set as 1e−5 and decays by 10× on the 160th

and 180th epoch. The weight for heatmap loss is empiri-
cally set as 2.0 to make different loss terms lie in the same
magnitude. Data augmentation and pre-processing are kept
the same with POMNet [40] for fair comparisons.
Dataset and metric. We use MP-100 dataset [40] to train
and evaluate our method. Samples are collected from the
existing category-specific pose estimation datasets [22, 32,
41]. MP-100 dataset encompasses over 18k images from
100 different categories. Keypoint numbers of different cat-
egories vary from 8 to 68. To train and evaluate the model,
the samples are organized into five splits. On each split,
the training, validation, and test categories have no over-
laps, i.e., the categories for evaluation are not accessed dur-
ing training. We use the Probability of Correct Keypoint
(PCK) [42] as the quantitative metric. The threshold for
PCK is set to 0.2 following POMNet [40].

4.2. Results on MP-100

We compare our method with the previous best CAPE
method POMNet [40] and three baselines: ProtoNet [35],

Table 2. Cross super-category evaluation on MP-100 dataset.
Experiments are conducted under the 1-shot setting.

Method Human Body Human Face Vehicle Furniture

ProtoNet [35] 37.61 57.80 28.35 42.64
MAML [11] 51.93 25.72 17.68 20.09

Fine-tune [27] 52.11 25.53 17.46 20.76
POMNet [40] 73.82 79.63 34.92 47.27
CapeFormer 83.44 80.96 45.40 52.49

MAML [11], and Fine-tune [27]. PCKs of different ap-
proaches on the MP-100 dataset under 1-shot and 5-shot set-
tings are reported in Table 1, where we can see our method
significantly outperforms POMNet [40], and improves the
average PCK by 5.6% under the 1-shot setting and 8.6%
under the 5-shot setting.

1-shot CapeFormer can surpass other methods with five
support images, demonstrating the robustness of the pro-
posed two-stage framework when the support information is
limited. When increasing the shots from one to five, Cape-
Former obtains a significant improvement of 4.0% on PCK.
For POMNet, the improvement from 1-shot to 5-shot is
1.0%. This shows that CapeFormer can better utilize the ad-
ditional information when more support samples are avail-
able. Note that we use the same way as POMNet [40] to
encode the support keypoint features for fair comparisons.
We also include a comparison with the semantic correspon-
dence approaches in the supplementary.

4.3. Cross Super-Category Pose Estimation

In the MP-100 dataset, training, validation, and test cat-
egories do not overlap. However, some categories may still
share similar characteristics, such as the faces of different
animals. To better evaluate the generalization ability on
significantly different categories, we conduct a cross-super-
category evaluation following POMNet [40]. Four super-
categories: human face, human body, vehicle, and furniture,
are collected from the MP-100 dataset as the test categories,
while the other categories are used as the training samples.

As in Table 2, CapeFormer achieves the state-of-the-
art performance. The advantages on the human body and
vehicle are particularly remarkable, with an improvement
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Support One-Stage CapeFormer Support One-Stage CapeFormer

Figure 5. Qualitative results of our method. We visualize the keypoint predictions under 1-shot setting. The left column denotes the
support image with corresponding keypoints. The middle column denotes the results without proposal refine decoder, and the right column
are results from the full method.

of 9.62% and 10.48% on PCK, respectively. Compared
with the standard setting, the improvement in cross super-
category setting is more significant, which further demon-
strates the generalization ability and robustness of the pro-
posed method. The improvement of the human face is lim-
ited (1.36%). A plausible reason is that the human face has
much more keypoints (68) than the training categories (the
largest keypoint number in training is 38). Such discrep-
ancy renders great difficulties for generalization: the key-
points are densely arranged, and the training data does not
contain such a fine-grained matching case.

4.4. Ablation Study

In this section, we first ablate the two-stage framework
and the proposed modules in Table 3. Then, we validate
some detailed design choices, including the implementa-
tion of training loss and support keypoint identifier. We
perform experiments on the test set of MP-100 split1 un-
der the 1-shot setting following [40]. We set some variants
of the encoder for ablations on network components. (i)
DETR [5] encoder removes the query-support interactions,
i.e., the information fusion among support keypoints and
query images is disabled; (ii) QSR denotes the proposed
query-support joint refine encoder.
Two-stage framework. First we focus on the effectiveness
of the second stage. Comparing No. 3 and No. 5 in Ta-
ble 3, the decoder brings an improvement of 4.13% on PCK,
demonstrating the necessity of the second stage.

We compare one-stage and two-stage paradigms qualita-

Table 3. Ablation study on different components in Cape-
Former. Support ID stands for the support keypoint identifier in
Sec. 3.2. QSR denotes our query-support joint refine encoder.

Support ID Encoder Decoder Paradigm PCK

No.1 −− DETR −− one-stage 80.32
No.2 −− QSR −− one-stage 82.86
No.3 ✓ QSR −− one-stage 85.32
No.4 −− QSR ✓ two-stage 85.81
No.5 ✓ QSR ✓ two-stage 89.45

tively in Fig. 5. “One-Stage” denotes the direct matching
results from No. 3 setting in Table 3, here and after. The
direct matching results are prone to error when query and
support instances are different, e.g., the dog on the right part
of the first row. We also visualize how the decoder corrects
the predictions in Fig. 6. For the alpaca face, the inner left
canthus (red point) is close to the annotation of the right in-
ner canthus (yellow point) due to the occlusion. Hence, the
similarity-aware position proposal for the left inner canthus
is wrongly generated at the right inner canthus. The decoder
gradually pushes it to the correct position.

Representation. Here we analyze the effectiveness of
query-support joint refine encoder and the support keypoint
identifier. i) Comparing No.1 with No.2 in Table 3, the
QSR encoder brings an absolute improvement of 2.54% on
PCK over DETR encoder, which suggests the effectiveness
of support-query mutual information fusion. 2) Comparing
No.2 with No.3 in Table 3, introducing the support iden-
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Figure 6. The decoder can help correct unreliable proposals.
The left column shows the support keypoint (red point) and the
right column shows the refining process in the second stage. Note
that in the first row, the left inner canthus is invisible due to occlu-
sion, which looks to be on the right.

Table 4. Analysis of different
terms in the similarity loss.

Lh Le PCK

✓ −− 88.74
−− ✓ 89.41
✓ ✓ 89.45

Table 5. Comparison of different
support keypoint identifiers.

Type PCK

−− 85.81
Learnable 88.96

Fixed 89.45

tifier improves the PCK by 2.46%. Note that the No. 3
model excludes the decoder, which is one-stage. Its per-
formance can still achieve state-of-the-art on split1 test set,
which suggests that the support identifier and QSR decoder
significantly improve representation quality.

To intuitively show how the encoder and decoder work,
we visualize the encoder/decoder attention maps in Fig. 7.
The attention shows which location the support keypoint
will focus during the information fusion (first stage) and
the proposal correction (second stage). As can be observed,
in the encoder, the support keypoint attends to keypoints
with similar appearance, while in the decoder, the attention
becomes more focused on the corresponding keypoints for
proposal correction.
Loss function. We analyze the similarity loss in Table 4.
i) Only using the heatmap supervision (row 1) yields the
worst performance, indicating that the expectation of loss is
beneficial for precise localization. ii) As shown in row 3,
the combination of heatmap loss and expectation attains the
best performance, as both the shape of similarity map and
the proposal position can be supervised.
Support keypoint identifier. We compare two different
implementations of support keypoint identifier: learnable
embedding and fixed sinusoidal embedding in Table 5. Us-
ing fixed sinusoidal embedding improves PCK by 0.49%
compared with learnable embedding. The learnable embed-
ding is similar to the learnable query embedding in DETR-
based detection methods [5, 25], which can be viewed as a
learnable content embedding or anchors [23]. However, our

Figure 7. Visualization of attention map. We visualize the en-
coder and decoder attention for the support keypoint at the left
inner canthus. The support keypoint coarsely attends to keypoints
with similar appearance in the encoder while focusing more on the
corresponding keypoints for position update in the decoder.

Table 6. Inference and Training Efficiency. We test the effi-
ciency on RTX3090 under 1-shot setting.

Method Params (M) GFLOPs FPS Memory (GB)

POMNet [40] 48.21 38.01 6.80 13.8× 2
One-Stage 26.86 22.65 36.90 7.5

CapeFormer 31.14 23.68 26.09 7.8

support keypoint identifier is fixed and serves a different
purpose: distinguishing different support keypoints. Learn-
able support identifier deteriorates the performance as they
may overfit the training categories more easily.

4.5. Performance and Efficiency Trade-off

We evaluate the efficiency under 1-shot setting for POM-
Net and CapeFormer in Table 6. The training memory is
evaluated with a batchsize of 16. i) Comparing row 1 and 3,
CapeFormer significantly reduces the parameters (−35.4%)
and FLOPs (−37.7%) compared with POMNet due to the
shared backbone and efficient similarity metric. ii) Compar-
ing rows 2 and 3, the second stage only introduces limited
parameters and FLOPs, which shows a satisfying trade-off
between performance and efficiency. iii) CapeFormer is ef-
ficient for training, which consumes only 8GB memory on
a single GPU (almost 1/4 of POMNet).

5. Conclusion
In this work, we formulate a two-stage framework for

category-agnostic pose estimation (CAPE) and instantiate
it with a novel transformer model. Unlike previous one-
stage approaches that entirely rely on matching results, the
matching results in the first stage are viewed as similarity-
aware position proposals which are refined in the second
stage. We also propose specific designs to improve the rep-
resentation and similarity modeling. On the CAPE bench-
mark MP-100, our method outperforms the previous best
method by large margins on both accuracy and efficiency.
Acknowledgements. This work was supported in part by
the National Natural Science Foundation of China (Grant
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