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Abstract

Current attention algorithms (e.g., self-attention) are
stimulus-driven and highlight all the salient objects in an
image. However, intelligent agents like humans often guide
their attention based on the high-level task at hand, fo-
cusing only on task-related objects. This ability of task-
guided top-down attention provides task-adaptive represen-
tation and helps the model generalize to various tasks. In
this paper, we consider top-down attention from a classic
Analysis-by-Synthesis (AbS) perspective of vision. Prior
work indicates a functional equivalence between visual at-
tention and sparse reconstruction; we show that an AbS
visual system that optimizes a similar sparse reconstruc-
tion objective modulated by a goal-directed top-down sig-
nal naturally simulates top-down attention. We further pro-
pose Analysis-by-Synthesis Vision Transformer (AbSViT),
which is a top-down modulated ViT model that variationally
approximates AbS, and achieves controllable top-down at-
tention. For real-world applications, AbSViT consistently
improves over baselines on Vision-Language tasks such
as VQA and zero-shot retrieval where language guides
the top-down attention. AbSViT can also serve as a gen-
eral backbone, improving performance on classification, se-
mantic segmentation, and model robustness. Project page:
https://sites.google.com/view/absvit.

1. Introduction
Human visual attention is often task-guided, i.e., we

tend to focus on different objects when processing different
tasks [7, 69]. For example, when we answer different ques-
tions about one image, we only attend to the objects that are
relevant to the question (Fig. 1 (b-c)). This stands in contrast
with the widely-used self-attention [17], which is completely
stimulus-driven, i.e., it highlights all the salient objects in the
image without task-guided selection (Fig. 1 (a)). While the
stimulus-driven bottom-up attention has shown promising
results in visual representation learning [6], current vision
transformers still lack the ability of task-guided top-down
attention, which provides task-adaptive representation and

Figure 1. Top-down vs. bottom-up attention. (a) Bottom-up
attention is stimulus-driven, i.e., any salient objects (dog and cat)
in the image may attract attention. (b-c) Top-down attention is
task-guided. For example, when the task is to answer a question
about a specific object, the attention will only center on that object
and ignore the others. In this way, a more focused representation
can be extracted for the current goal.

potentially improves task-specific performances [1, 64, 65].
Although some algorithms of top-down attention are pro-
posed in the literature [1, 9, 46, 64, 65], they are incompat-
ible with self-attention-based transformers and principled
and unified designs are still missing.

Previous work [5, 10, 34, 35, 50] has studied the mecha-
nism of top-down attention in human vision systems, hypoth-
esizing top-down attention is a result of the human visual sys-
tem performing Analysis by Synthesis (AbS). AbS [32, 68]
is a classic idea that suggests the human visual perception
depends on both the input image and a high-level prior about
the latent cause of the image, and different priors can lead
to different ways to perceive the same image (e.g., visual
illusion [33] and bistable perception [55]). This is formu-
lated as Bayesian inference maxz p(h|z)p(z), where h is
the input image, and z is the latent representation. It is hy-
pothesized that the high-level goal can be formulated as a
prior to direct the low-level recognition of different objects
through AbS, achieving top-down attention. Still, existing
works [10, 44, 67] are conceptual and hardly guide model
designs in practice.
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In this work, we present a novel perspective on how AbS
entails top-down attention, followed by a new Analysis-by-
Synthesis Vision Transformer (AbSViT) based on the find-
ings. We start from previous work [56], which shows that
visual attention (e.g., self-attention) is functionally equiva-
lent to sparse reconstruction which reconstructs the input
using a dictionary containing templates of separate objects
in the input. We show that AbS optimizes a similar sparse re-
construction objective modulated by a top-down signal. The
top-down signal depends on the prior and acts as a preference
on which object templates to choose to reconstruct the input.
Therefore, only the objects consistent with the high-level
prior are selected, equivalent to top-down attention.

Inspired by the connection, we propose AbSViT, a
ViT [17] model with prior-conditioned top-down modulation
trained to approximate AbS in a variational way. AbSViT
contains a feedforward (encoding) and a feedback (decod-
ing) pathway. The feedforward path is a regular ViT, and the
feedback path contains linear decoders for each layer. Each
inference starts with an initial feedforward run. The output
tokens are manipulated by the prior and fed back through the
decoders to each self-attention module as top-down input for
the final feedforward pass (Fig. 3).

When only pretrained on ImageNet [15], which contains
mostly single-object images, AbSViT can attend to different
objects in multi-object scenes controllably. For real-world
applications, we observe consistent improvements from Ab-
SViT on Vision-Language tasks such as VQA [3] and zero-
shot image retrieval, where language is used as a prior to
guide attention. For tasks without a strong prior, such as
ImageNet classification and semantic segmentation, AbSViT
can also serve as a general backbone and achieve substantial
improvements. Additionally, the object-centric representa-
tion resulting from the top-down attention design enables
better generalization to corrupted, adversarial, and out-of-
distribution images. We hope this work can encourage future
exploration of task-guided attention designs and visual rep-
resentation learning.

2. Related Work

Top-down visual attention endows us with the crucial abil-
ity to selectively collect information related to the behavioral
goal. Several attempts have been made towards understand-
ing the mechanism of top-down attention from experimental
observations such as multiplicative tuning [43] and contrast
responses [42, 52] in V4, and extra-classical receptive fields
in V1 [2, 8, 54]. Other work tries to build a principled com-
putational model for top-down attention [10, 44, 67].

Top-down attention has also found numerous applications
in computer vision tasks where additional guidance (e.g.,
language) is available aside from the image. Previous work
employs top-down attention for object detection [45], image

captioning [65], and visual question answering [1, 64]. How-
ever, these algorithms are either incompatible with current
self-attention-based models or show inferior performance, as
indicated by our experiments. Other work [17, 39, 40, 66]
uses a feedforward model that takes both image and the high-
level guidance (e.g., text tokens or [cls] token) as input,
which we show is suboptimal compared to our top-down
model design. Dou et al. [18] propose to extract image and
text features with separate encoders and combine them with
a multi-modal fusion module during vision-language pre-
training, which works better than using a single multi-modal
feedforward model on vision language tasks. However, in
this way, the visual encoder is still bottom-up. We show that
augmenting it with the proposed top-down attention further
improves model performance on standard benchmarks.

Top-down attention explained as Analysis by Synthesis.
Analysis by Synthesis (AbS) is hypothesized as a potential
computational model behind top-down attention. Lee [34]
starts from a Bayesian inference perspective and explains
the top-down modulation in examples such as illusionary
contours and shapes from shading. Yu and Dayan [67] focus
on the top-down attention in Ponser’s task [48] and build a hi-
erarchical model where each layer corresponds to a computa-
tional step of Bayesian inference. Subsequent work [10, 50]
assumes each object is generated by an appearance variable
and a location variable and uses Bayesian inference to per-
form spatial attention and feature attention. Borji et al. [5]
adopt a Dynamic Bayesian Network to simulate eye fixation
in top-down attention. However, these models do not apply
to practical designs in modern deep learning.

Generative model for discriminative learning. It has been
widely explored in using generative models to assist discrim-
inative learning. Specifically, the belief that representation
with strong generative capability can better capture the struc-
ture of visual signals has inspired numerous unsupervised
learning algorithms, from the early Restricted Boltzmann
Machine [27, 28] and Helmholtz Machine [14], to the follow-
ing auto-encoder models such as DAE [59] and VAE [31].
Recent work [22, 57] has shown impressive results on gen-
erative unsupervised learning. Generative models can also
help with supervised learning, e.g., by refining object detec-
tion [36] or detecting errors in semantic segmentation [63].
Feedforward models with generative feedback are also more
robust to input corruptions [29]. In our work, AbSViT also
contains a generative feedback path that is able to refine the
intermediate representation and attention and thus improves
the performance.

3. Preliminaries: Attention as Sparse Recon-
struction

Shi et al. [56] show that a sparse reconstruction (SR)
module functionally resembles visual attention. An SR mod-
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ule takes an input x ∈ Rd and outputs z = Pũ∗ where
P ∈ Rd×d′

is the dictionary and ũ∗ is the sparse code, i.e.,

ũ∗ = argmin
ũ∈Rd′

1

2
||Pũ− x||22 + λ||ũ||1. (1)

Each atom (column) of P contains a template pattern and
each element in ũ is the activation of the corresponding
template. The objective is to reconstruct the input using as
few templates as possible. To solve Eq. (1), one may adopt a
first-order optimization [53, 56] with dynamics at time t of

du

dt
∝ −u− (PTP− I)ũ+PTx, (2)

where the optimization is over an auxiliary variable u and
ũ = gλ(u) = sgn(u)(|u| − λ)+ with sgn(·) as the sign
function and (·)+ as ReLU Here u is activated by the tem-
plate matching PTx between the dictionary and the in-
put, and different elements in u inhibit each other through
−(PTP− I)ũ to promote sparsity.

To see the connection between visual attention and sparse
reconstruction, recall that attention in the human visual sys-
tem is achieved via two steps [16]: (i) grouping features
into separate objects or regions, and (ii) selecting the most
salient objects or regions while repressing the distracting
ones. A similar process is also happening in SR, i.e., if each
atom in P is a template of every single object, then each
element in u groups the input features belonging to that ob-
ject through PTx, while the sparsity constraint promoted by
the lateral inhibition −(PTP − I)ũ selects the object that
is most activated. As shown in [56], SR modules achieve
similar attention effects as self-attention (SA) [58] while
being more robust against image corruptions.

Interestingly, it is also pointed out in [56] that under
certain constraints (e.g., the key and query transform is the
same), SA can be viewed as solving a similar SR problem
but without sparsity. After adding the sparsity back, SA is
an approximation of

Ũ∗ = argmin
Ũ

1

2
||Φ(K)Ũ−V||22 + λ||Ũ||1,

Z = Φ(Q)Ũ∗,

(3)

(4)

where Q,K,V ∈ R(hw)×c are the query, key, and
value matrices, Φ(Q),Φ(K) ∈ R(hw)×d′

are the ran-
dom features [11] that approximate the softmax kernel
Φ(Q)iΦ(K)Tj ≈ eQiK

T
j , Ũ∗ ∈ Rd′×c is the sparse code

and Z is the output. This provides a novel perspective on the
mechanism of SA, i.e., it is solving a channel-wise sparse re-
construction of the value matrix V using an input-dependent
dictionary Φ(K). Visualization of Φ(K) shows each atom
contains a mask for one single object or region, which means
that SA is trying to reconstruct the input with as few masks
as possible, thus only the salient objects are selected and
highlighted (Fig. 2 (a)).

4. Top-Down Attention from AbS
We consider top-down visual attention from an Analysis

by Synthesis (AbS) view of vision. We start from the hierar-
chical AbS formulation of visual perception (Sec. 4.1) and
show that it is equivalently optimizing a sparse reconstruc-
tion objective that is modulated by a top-down signal, thus
entailing top-down attention (Sec. 4.2).

4.1. Hierarchical AbS

AbS formulates visual perception as a Bayesian inference
process. Given the image generation process p(h|z) and a
prior p(z), where h is the image and z is the latent code,
AbS finds z∗ = argmaxz p(h|z)p(z).

In this work, we assume the generation is hierarchical,
i.e., zL → zL−1 → · · · → z1 → h, where zℓ is the latent at
ℓ-th layer. The MAP estimation is

z∗L, · · · , z∗1 = argmax
zL,··· ,z1

p(h|z1) · · · p(zL−1|zL)p(zL). (5)

For each generation process zℓ+1 → zℓ between layer
ℓ and ℓ + 1, we further assume that zℓ is constructed by a
sparse code ũℓ which is generated from zℓ+1 via a non-linear
function gℓ(·), i.e.,

ũℓ ∼ p(ũℓ|zℓ+1) ∝ exp{−
1

2
||Pℓũℓ − gℓ(zℓ+1)||22 − λ||ũℓ||1} (6)

zℓ = Pℓũℓ, (7)

where Pℓ is the dictionary. Intuitively, it first generates
gℓ(zℓ+1) as a blurry and noisy version of zℓ, then find the
sparse code ũℓ to construct a sharper and cleaner version.

Since zℓ is decided by ũℓ, it suffices to optimize the MAP
estimation over {ũℓ}Lℓ=1, i.e.,

ũ∗
L, · · · , ũ∗

1 = argmax
ũL,··· ,ũ1

p(h|ũ1) · · · p(ũL−1|ũL)p(ũL). (8)

Solving Eq. (8) by simple gradient ascent (of the logarithm)
gives the dynamics

dũℓ

dt
∝ ∇ũℓ

log p(ũℓ−1|ũℓ) +∇ũℓ
log p(ũℓ|ũℓ+1) (9)

where ũℓ is affected by both ũℓ−1 and ũℓ+1.

4.2. Top-Down Attention from AbS

From AbS (Eq. (6-9)) we can derive the dynamics of ũℓ

as
dũℓ

dt
∝ ∇ũℓ

(
−
1

2
||Pℓũℓ − (xbu

ℓ + xtd
ℓ )||22 − λ||ũℓ||1 − rℓ(ũℓ)

)
(10)

where xtd
ℓ = gℓ(zℓ+1) is the top-down signal and xbu

ℓ =
fℓ(zℓ−1) = JT

gℓ−1
zℓ−1 is the bottom-up signal where

Jgℓ−1
is the jacobian of gℓ−1(Pℓũℓ), and rℓ(ũℓ) =

||gℓ−1(Pℓũℓ)||22 is an additional regularization. Details of
the derivation are pushed back to Appendix. One may notice
from Eq. (10) that, in AbS each layer is solving a similar
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Figure 2. (a) Each atom in the dictionary contains masks for sep-
arate objects or regions. The sparse reconstruction tries to use as
few masks as possible to reconstruct the input feature map, thus
only the salient objects are highlighted. (b) The top-down signal
xtd
ℓ puts a bias on the weights of the atoms so that only the objects

that agree with xtd
ℓ are selected.

sparse reconstruction problem as in Eq. (1) but with the in-
put of xbu

ℓ + xtd
ℓ , thus simulating attention that is modulated

by both bottom-up and top-down signals. This can also be
observed by turning Eq. (10) into

dũℓ

dt
∝ −uℓ − (PT

ℓ Pℓ − I)ũℓ +PT
ℓ x

bu
ℓ +PT

ℓ x
td
ℓ −∇rℓ(ũℓ).

(11)
Comparing with Eq. (2), here ũℓ is steered by an additional
term PT

ℓ x
td
ℓ that acts as a bias on which atom in Pℓ to choose.

For example, if atoms in Pℓ are templates of separate objects
(like in self-attention), then PT

ℓ x
td
ℓ highlights the objects that

are consistent with the top-down signal (Fig. 2 (b)).
This implies an AbS system naturally entails top-down

attention. Intuitively, the prior reflects which objects the
output zL should highlight. Then the affected zL is fed back
to layer L− 1 through gL−1, as a top-down signal to direct
which objects to select in layer L − 1. The same process
repeats until the first layer. Different priors will direct the
intermediate layers to select different objects, achieving top-
down attention.

Interestingly, if we consider the analogy between self-
attention and sparse reconstruction, Eq. (10) leads to a
smooth way of building a top-down version of self-attention,
i.e., we only need to add a top-down signal to the value V,
while keeping other parts such as Q and K (which decides
the dictionary) untouched. We will make it clearer in Sec. 5.

5. Analysis-by-Synthesis Vision Transformer
Inspired by the connection between top-down attention

and AbS, we propose to achieve top-down attention by build-
ing a vision transformer that performs AbS (Eq. (5)), i.e.,
if the network has input h and latent representation zℓ af-
ter each layer ℓ (which means zL is the output), the final

latent representation should approximate z∗1, · · · , z∗L. Since
directly solving Eq. (5) requires an iterative optimization
which would be extremely costly, in this work, we adopt a
variational approximation to Eq. (5). Specifically, we opti-
mize a variational loss

Lvar = −
L−1∑
ℓ=0

log p(zℓ|zℓ+1)− log p(zL)

=

L−1∑
ℓ=0

(
1

2
||Pℓũℓ − gℓ(zℓ+1)||22 + λ||ũℓ||1

)
− log p(zL)

(12)

where z0 = h. However, as stated below, there are several
caveats we need to work around when training a network
with Eq. (12) in real-world tasks.

The sparsity regularization. Since the practical model
we build in this work is based on self-attention (Sec. 5.1),
which neither has a sparsity constraint nor solves the SR
explicitly [56], we remove the sparsity regularization by
setting λ = 0, which makes − log p(zℓ|zℓ+1) =

1
2 ||Pℓũℓ −

gℓ(zℓ+1)||22 = 1
2 ||zℓ − gℓ(zℓ+1)||22.

Jointly training the decoder gℓ. Normally, optimizing
Eq. (12) requires knowing the generation process gℓ before-
hand, which in our case is unknown. This can be addressed
by training gℓ jointly with the whole network, similar to
VAE [31]. It is natural to use gℓ also as the feedback path of
the network, as shown in Sec. 5.1.

Trade-off between the generative and discriminative
power. The variational loss forces each zℓ+1 to be capa-
ble of generating zℓ. However, we find empirically that
enforcing a strong generative power on the feature will harm
its discriminative power in the setting of supervised learn-
ing. To address this, for each term − log p(zℓ|zℓ+1) we
stop the gradient on zℓ and zℓ+1, i.e., − log p(zℓ|zℓ+1) =
1
2 ||sg(zℓ) − gℓ(sg(zℓ+1))||22, where sg(·) is stop-gradient.
In this way, only the decoder gℓ receives the gradient.

The variable prior. Rigorously speaking, variational meth-
ods only approximate AbS with a fixed prior p(zL). How-
ever, top-down attention should be able to flexibly attend to
different objects by changing different priors. The question
is, how can we learn a variational model that generalizes
to different priors? In this work, we adopt a simple trick
called Meta-amortized VI [62]. Concretely, we assume the
prior pξ(zL) depends on some parameter ξ, which can be a
sentence or a class prototype cueing what objects to look at
in the image. Then we make the model adaptable to ξ during
inference to approximate AbS with prior pξ(zL) given any
ξ. See the design details in Sec. 5.1.

After applying these tricks, our variational loss becomes

Lvar =
1

2

L−1∑
ℓ=0

||sg(zℓ)− gℓ(sg(zℓ+1))||22 − log pξ(zL), (13)
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Figure 3. Design of AbSViT. (a) Four steps to every single inference. The operations in each step are colored as purple and others as gray.
AbSViT first passes the image through the feedforward path. The output tokens are then reweighted by their similarity with the prior vector
ξ and fed back through the decoders to each self-attention module as the top-down input for the final feedforward run. (b) The top-down
input to self-attention is added to the value matrix while other parts stay the same.

which contains layer-wise reconstruction loss and a prior
loss. We also try cosine similarity instead of ℓ2 distance for
reconstruction and get similar results. In Sec. 5.1, we will
show how to build a ViT with prior-conditioned top-down
modulation and train it with Eq. (13).

5.1. AbSViT Design

Fig. 3 (a) shows the proposed AbSViT which is built upon
ViT [17]. Every single inference consists of 4 steps: (i) pass
the image through the feedforward encoder, (ii) modulate the
output tokens with a prior vector ξ, (iii) send the tokens back
through the feedback decoder to intermediate layers, and (iv)
run the feedforward path again but with each self-attention
layer also receiving the top-down tokens as input.

Within the whole pipeline, the feedforward encoder has
the same architecture as regular ViT. For the feedback path,
we use a single token-wise linear transform for each layer-
wise decoder gℓ. The design of token modulation with prior
ξ and the self-attention with top-down input are introduced
below:

Design of token modulation with ξ. The purpose is to
modify the tokens to carry the information about the prior pξ
when fed back to the network. The prior is parameterized by
ξ, which may be a language embedding or a class prototype
telling the network which objects to look at. Therefore, we
instantiate the modulation as a simple spatial reweighting,
i.e., ziL → α · sim(ξ, ziL) · ziL, where ziL is the i-th output
token, sim is the cosine similarity clamped to [0, 1], and α is
a scaling factor controlling the scale of the top-down signal,
which is set to 1 by default. In this way, only the tokens
with high similarity to ξ are sent back, and others are (softly)
masked out. Note that the design here is for simplicity and
may not be suitable for general usage. For example, when

dealing with transparent images where two objects overlap,
spatial reweighting cannot separate two objects away.

Design of self-attention with top-down input. From the
analogy between self-attention and sparse reconstruction
(Eq. (3)), the value matrix in SA corresponds to the recon-
structed input signal, and the query and key serve as the
dictionary. Since the top-down attention in AbS (Eq. (10))
adds a top-down signal to the input while keeping the dictio-
nary untouched, it is natural to design the top-down version
of self-attention by simply adding the top-down signal to the
value and keep query and key as the same, as illustrated in
Fig. 3 (b). We will show in Sec. 6.4 that this is better than
an arbitrary design where we add the top-down signal to the
query, key, and value.

In this paper, we focus on supervised learning and train
the model on two types of tasks. One is Vision-Language
(V&L) tasks such as VQA and zero-shot image retrieval,
where the language acts as a prior to cue the model where
to look at. The other one is image understanding, such as
ImageNet classification and semantic segmentation, which
do not have a specific prior. When training the network, we
optimize the supervised loss as well as the variational loss
(Eq. (13)), i.e.,

L =
1

2

L∑
ℓ=1

||sg(zℓ)−gℓ(sg(zℓ+1))||22−log pξ(zL)+Lsup, (14)

where zℓ is the ℓ-th layer’s output after the whole inference
cycle, sg is stop-gradient, and gℓ is the ℓ-th layer’s decoder.
The form of prior pξ depends on the task. For V&L tasks, ξ
is the text embedding and we use a CLIP-style prior [49]:

pξ(zL) =
exp{ξT zL}

exp{ξT zL}+
∑

k exp{ξT zk−}
, (15)
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Figure 4. Controllable top-down attention in multi-object images.
For each image, bottom-up attention will highlight both objects.
In contrast, we can use different class prototypes as the prior to
control the top-down attention to focus on different objects, and the
classification result also changes accordingly.

where the negative samples zk− are the output from other
images. For image classification and segmentation where no
specific prior is available, we set ξ as a trainable query vector
that is independent of the input image, and we choose an
uninformative prior that does not contribute to the gradient,
i.e., ∇ log pξ(zL) = 0.

6. Experiments
In this section, we first show that AbSViT achieves con-

trollable top-down attention in multi-object scenes (Sec. 6.1).
Then we test AbSViT on Vision-Language tasks such as
VQA and zero-shot image retrieval (Sec. 6.2), and also on
ImageNet classification and model robustness (Sec. 6.3). Fi-
nally, we analyze specific designs of AbSViT in Sec. 6.4.
See Appendix for experiments on semantic segmentation.

Datasets. For VQA, we use VQAv2 [21] for training and
testing and compare the attention map with human attention
collected by VQA-HAT [13]. For zero-shot image retrieval,
we use Flickr30K [47]. For image classification, we train and
test on ImageNet-1K (IN) [15], and also test on corrupted im-
ages from IN-C [23], adversarial images from IN-A [25], and
out-of-distribution images from IN-R [24] and IN-SK [60].
For semantic segmentation, we test on PASCAL VOC [20],
Cityscapes [12], and ADE20K [70].

Experimental setup. We compare several baselines for
goal-directed attention: (i) PerceiverIO [30] uses eξ(·) to
reweight the tokens from feedforward output just like in
AbSViT, but directly outputs the reweighted tokens without
any feedback, (ii) MaskAtt uses the same soft mask for

Figure 5. Comparison between different top-down attention algo-
rithms. Prior corresponds to the left image. AbSViT has cleaner
attention map than other baselines.

reweighting the output tokens to reweight the value tokens
in intermediate self-attention modules, instead of adding the
top-down tokens on them, (iii) Feedback directly feeds back
the output tokens without reweighting. For V&L tasks, we
use the METER [18] framework, which contains a vision
backbone, a language backbone, and a multimodal fusion
module. We use ViT [17] as the vision backbone and replace
it with AbSViT or the baseline models. For image classifica-
tion, we try the backbones of ViT, RVT [41], and FAN [71],
which is state of the art on ImageNet and robustness bench-
marks. The scaling factor α is set as 1 during ImageNet
pretraining and evaluation and set as 10 for finetuning on
V&L tasks because we find AbSViT pretrained on super-
vised single-object classification only learns weak top-down
attention in multi-object scenes (??). See the Appendix for
additional implementation details.

6.1. Controllable Top-Down Attention of AbSViT

To test the top-down attention in multi-object images, we
take a AbSViT pretrained on ImageNet (Sec. 6.3) and create
multi-object images by randomly sampling two images from
ImageNet and concatenating them side by side. To control
the top-down attention, we use the class prototype (from the
last linear layer) of the two classes as ξ. Since in regular ViT,
the class prototypes only align with the [cls] token but
not with other output tokens, here we use a ViT with global
average pooling. We set α = 10.

To compare the bottom-up and top-down attention, we
visualize the norm of output tokens from ViT and AbSViT
for each class. As shown in Fig. 4, bottom-up attention high-
lights both objects while only the target object is selected
by top-down attention. Consequently, the classification re-
sult, which has a tie between two classes when no prior is
available, is biased towards the target class when we turn
on the prior. This indicates AbSViT has the ability to con-
trol its attention on different objects given different priors.
We also compare the top-down attention of AbSViT with
several baselines (Fig. 5). We can see that the attention of
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Model VQAv2 Flickr-Zero-Shot
test-dev test-std IR@1 IR@5 IR@10

BEiT-B-16 [4] 68.45 - 32.24 - -
CLIP-B-32 [49] 69.69 - 49.86 - -

ViT-B 67.89 67.92 42.40 77.18 86.82
- PerceiverIO 67.87 67.93 42.52 76.92 86.73
- Feedback 67.99 68.13 42.04 77.38 86.90
- MaskAtt 67.53 67.51 41.89 76.53 86.78
- AbSViT 68.72 68.78 45.28 77.98 87.52

Table 1. Comparison of different top-down attention algorithms on
VQA and zero-shot image retrieval. AbSViT achieves consistent
improvements on both tasks.

Figure 6. Comparison of attention map from AbSViT and human
attention on VQA. AbSViT’s attention is adjustable to different
questions and is consistent with human attention.

PerceiverIO focuses coarsely on the target object but is noisy,
possibly because it lacks a feedback mechanism. MaskAtt,
on the other hand, tends to miss parts of the object, implying
that masking attention is less suitable for ViTs.

6.2. AbSViT for Vision-Language Tasks

We test AbSViT on two V&L tasks, VQA, and zero-
shot image retrieval. We use the METER framework and
replace the vision backbone with ViT-B, AbSViT-B, and
other baselines. All the vision backbones are pretrained on
ImageNet (Sec. 6.3). Results are shown in Tab. 1.

On VQAv2, AbSViT surpasses the baselines on both test
splits and reaches the same performance as the unsupervised
model (BEiT-B). At the same time, PerceiverIO has no im-
provement over ViT, probably because the multimodal fusion
in METER can already perform token reweighting. The pure
feedback network helps a little, mainly due to the feature
refinement during the feedback loop. It is worth noticing that
MaskAtt, a strategy frequently used in previous work, actu-
ally hurts performance when added to the vision transformer.

Model P/F Clean IN-C (↓) IN-A IN-SK IN-R

PiT-Ti [26] 5/0.7 72.9 69.1 6.2 34.6 21.6
ConViT-Ti [19] 6/1.4 73.3 68.4 8.9 35.2 22.4
PVT-Ti [61] 13/1.9 75.0 79.6 7.9 33.9 21.5
GFNet-Ti [51] 8/1.3 74.6 65.9 6.3 40.4 27.0

ViT-Ti [17] 6/1.3 72.5 71.1 7.5 33.0 20.1
- AbS 7/2.6 74.1 66.7 10.1 34.9 22.6

RVT-Ti [41] 9/1.3 78.1 58.8 13.9 42.5 29.1
- AbS 11/2.7 78.6 55.9 17.3 43.2 29.9

FAN-Ti [71] 7/1.3 77.5 59.8 13.1 42.6 29.9
- AbS 9/2.9 78.3 57.4 16.5 42.8 31.2

PiT-S [26] 24/2.9 80.9 52.5 21.7 43.6 30.8
PVT-S [61] 25/3.8 79.9 66.9 18.0 40.1 27.2
Swin-T [37] 28/4.5 81.2 62.0 21.6 41.3 29.1
ConvNext-T [38] 29/4.5 82.1 53.2 24.2 47.2 33.8

ViT-S [17] 22/4.2 80.1 54.6 19.2 41.9 28.9
- AbS 26/9.8 80.7 51.6 24.3 43.1 30.2

RVT-S [41] 22/4.3 81.9 50.5 26.0 47.0 34.5
- AbS 26/10.4 81.9 48.7 31.1 48.5 35.6

FAN-S [71] 28/5.3 82.8 49.1 29.3 47.4 35.6
- AbS 32/11.4 83.0 47.4 34.0 48.3 36.4

PiT-B [26] 74/12.5 82.4 48.2 33.9 43.7 32.3
PVT-L [61] 61/9.8 81.7 59.8 26.6 42.7 30.2
Swin-B [37] 88/15.4 83.4 54.4 35.8 46.6 32.4
ConvNext-B [38] 89/15.4 83.8 46.8 36.7 51.3 38.2

ViT-B [17] 87/17.2 80.8 49.3 25.2 43.3 31.6
- AbS 99/38.9 81.0 48.3 28.2 42.9 31.7

RVT-B [41] 86/17.7 80.9 52.1 26.6 39.6 26.1
- AbS 100/39.5 80.9 51.7 28.5 39.3 26.0

FAN-B [71] 54/10.4 83.5 45.0 33.2 51.4 39.3
- AbS 62/21.8 83.7 44.1 38.4 52.0 39.8

Table 2. Results on ImageNet classification and robustness bench-
marks. AbSViT improves performance across different benchmarks
and backbones. P/F: # of parameters and FLOPs. ↓: lower is better.

On zero-shot image retrieval, we have a similar observation
that AbSViT has higher performance than all other baselines.
Especially, it has an improvement of ∼ 3% over bottom-up
ViT on IR@1.

We also visualize the attention map of AbSViT on VQA
and compare it to human attention. As shown in Fig. 6,
AbSViT can adjust its attention to the objects related to the
question. The attention map is also consistent with human
attention.Nevertheless, the attention map of AbSViT is still
not precise enough. For example, in the last example, when
the question is “What is the person holding?”, the top-down
attention highlights both the person and the dogs. Since the
model is only pretrained on ImageNet, it may be further
improved by CLIP [49] pretraining.

6.3. Image Classification and Robustness

We test AbSViT on ImageNet classification and robust-
ness benchmarks (Tab. 2). We report mCE (lower the bet-
ter) [23] for IN-C and accuracy for other datasets. On clean
images, AbSViT consistently improves over baselines, with
a similar number of parameters although higher FLOPs. The
clean accuracy on FAN-B is improved to 83.7%, reaching
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Model Clean IN-C (↓) IN-A IN-R IN-SK

ViT-Ti 72.5 71.1 7.5 33.0 20.1
- PerceiverIO 72.8 70.4 8.0 32.8 20.5
- Feedback 73.4 67.8 9.7 34.6 22.4
- MaskAtt 72.5 70.6 8.3 33.4 20.5
- AbS 74.1 66.7 10.1 34.9 22.6

RVT-Ti 78.1 58.8 13.9 42.5 29.1
- PerceiverIO 78.3 57.8 13.7 42.8 29.8
- Feedback 79.1 55.7 18.2 44.1 31.3
- MaskAtt 77.9 59.0 13.5 43.0 29.7
- AbS 79.5 54.8 18.7 44.5 32.5

Table 3. Comparison of different top-down attention algorithms on
ImageNet classification and robustness.

Figure 7. Visualization of the bottom-up attention, token weights,
and the top-down attention in AbSViT. The bottom-up attention
is noisy and fails to detect the complete foreground object. In
AbSViT, the query mask can coarsely detect the foreground object
and reweight tokens fed back to direct the top-down attention to
better extract the foreground object.

the same level as ConvNext-B with fewer parameters. On
corrupted (IN-C) and adversarial (IN-A) images, AbSViT
boosts the performance by about 1-5% across all the scales.
Especially, the performance on FAN-B is raised by 1% and
5% for IN-C and IN-A, reaching a new state-of-the-art result.
On out-of-distribution images, AbSViT also improves by 3%
on Tiny and Small models and 0.5% on FAN-B.

Fig. 7 visualizes the attention map of ViT and AbSViT,
as well as token weights generated in eξ(·). The bottom-up
attention in ViT is often noisy and only partly detects the
foreground object. On the other hand, the query ξ in AbSViT
learns to coarsely detect the foreground and reweight the
feedforward output tokens, which are fed back and generate
top-down attention that better detects the foreground object.

We compare AbSViT with several baseline algorithms
for goal-directed attention in Tab. 3. One may see that a
pure feedback model already improves the clean accuracy
and robustness, and AbSViT further boosts the performance

Model Clean IN-C (↓) IN-A IN-R IN-SK

AbSViT-QKV 73.3 68.0 9.4 33.8 21.2
AbSViT 74.1 66.7 10.1 34.9 22.6

Table 4. The predicted design of top-down self-attention (AbSViT)
is better than an arbitrary design (AbSViT-QKV).

by better extracting the foreground object. Due to a similar
reason, PerceiverIO without feedback also slightly improves
the performance. On the other hand, MaskAtt is sometimes
harmful (on Clean, IN-C, and IN-A for RVT), implying that
a mask attention design is unsuitable for vision transformers.

6.4. Justification of Model Design

The design of AbSViT follows the principle of AbS. For
example, AbSViT adds the top-down signal only to the value
matrix considering the analogy between self-attention and
sparse reconstruction (Sec. 5.1). At the same time, an arbi-
trary design may also add it to the query and key. We also
optimize the variational loss to approximate AbS instead of
just building a top-down model and training with the super-
vised loss. We show advantages of these “destined” designs
compared with arbitrary designs, which also justifies the
proposed guiding principle of AbS. We discuss the design of
top-down self-attention in this section, and push the ablation
on variational loss to Appendix.

We try an arbitrary design of self-attention with top-down
input by adding the top-down signal on the query, key, and
value instead of only on the value. We name this design as
AbSViT-QKV. We compare AbSViT and AbSViT-QKV on
image classification and robustness (Tab. 4), and we can see
that AbSViT is superior to AbSViT-QKV on every bench-
mark. This is consistent with our analysis in Sec. 4.2 that the
sparse reconstruction AbS is optimizing has an additional
top-down input (corresponding to V), while the dictionary
(corresponding to Q and K), which contains templates for
separate objects, is fixed.

7. Conclusion

We consider top-down attention by explaining from an
Analysis-by-Synthesis (AbS) view of vision. Starting from
previous work on the functional equivalence between visual
attention and sparse reconstruction, we show that AbS opti-
mizes a similar sparse reconstruction objective but modulates
it with a goal-directed top-down modulation, thus simulating
top-down attention. We propose AbSViT, a top-down mod-
ulated ViT model that variationally approximates AbS. We
show that AbSViT achieves controllable top-down attention
and improves over baselines on V&L tasks as well as image
classification and robustness.
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