Transformer Scale Gate for Semantic Segmentation

Hengcan Shi, Munawar Hayat, Jianfei Cai
Department of Data Science & AI, Monash University
Wellington Rd, Clayton VIC 3800, Melbourne, Australia
{hengcan.shi, munawar.hayat, jianfei.cai}@monash.edu

Abstract

Effectively encoding multi-scale contextual information is crucial for accurate semantic segmentation. Most of the existing transformer-based segmentation models combine features across scales without any selection, where features on sub-optimal scales may degrade segmentation outcomes. Leveraging from the inherent properties of Vision Transformers, we propose a simple yet effective module, Transformer Scale Gate (TSG), to optimally combine multi-scale features. TSG exploits cues in self and cross attentions in Vision Transformers for the scale selection. TSG is a highly flexible plug-and-play module, and can easily be incorporated with any encoder-decoder-based hierarchical vision Transformer. Extensive experiments on the Pascal Context, ADE20K, and Cityscapes datasets demonstrate that the proposed feature selection strategy achieves consistent gains.

1. Introduction

Semantic segmentation aims to segment all objects including ‘things’ and ‘stuff’ in an image and determine their categories. It is a challenging task in computer vision, and serves as a foundation for many higher-level tasks, such as scene understanding [15,34], object recognition [23,29] and vision+language [30,33]. In recent years, Vision Transformers based on encoder-decoder architectures have become a new paradigm for semantic segmentation. The encoder consists of a series of multi-head self-attention modules to capture features of image patches, while the decoder has both self- and cross-attention modules to generate segmentation masks. Earlier works [47] usually use Vision Transformers designed for image classification to tackle semantic segmentation, and only encode single-scale features. However, different from image classification where we only need to recognize one object in an image, semantic segmentation is generally expected to extract multiple objects of different sizes. It is hard to segment and recognize these varying sized objects by only single-scale features.

Some methods [20,37] attempt to leverage multi-scale features to solve this problem. They first use hierarchical transformers such as Swin Transformer [20] and PVT [37] to extract multi-scale image features, and then combine them, e.g. by the pyramid pooling module (PPM) [46] or the seminal feature pyramid network (FPN) [18] borrowed from CNNs. We argue that such feature combinations cannot effectively select an appropriate scale for each image patch. Features on sub-optimal scales may impact the segmentation performance. To address this issue, CNN-based methods [3, 8, 14, 32] design learnable models to select the optimal scales. Nevertheless, these models are complex, either use complex mechanisms [3, 8, 14] and/or require scale labels [32], which decrease the network efficiency and may cause over-fitting.

In this paper, we exploit the inherent characteristics of Vision Transformers to guide the feature selection process. Specifically, our design is inspired from the following observations: (1) As shown in Fig. 1(a), the self-attention module in the transformer encoder learns the correlations among image patches. If an image patch is correlated to many patches, small-scale (low-resolution) features may be preferred for segmenting this patch, since small-scale features have large effective receptive fields [42] to involve as many of these patches as possible, and vice versa. (2) In the transformer decoder, the cross-attention module models correlations between patch-query pairs, as shown in Fig. 1(b), where the queries are object categories. If an image patch is correlated to multiple queries, it indicates that this patch may contain multiple objects and need large-scale (high-resolution) features for fine-grained segmentation. On the contrary, an image patch correlated to only a few queries may need small-scale (low-resolution) features to avoid over-segmentations. (3) The above observations can guide design choices for not only category-query-based decoders but also object-query-based decoders. In object-query-based decoders, each query token corresponds to an object instance. Then, the cross-attention module extracts relationships between patch-object pairs. Many high cross-attention values also indicate that the image patch may con-
contain multiple objects and require high-resolution features. Note that these are general observations, which do not mean that these are the only relationships between transformer correlation maps and feature scales.

From these observations and analyses, we propose a novel Transformer Scale Gate (TSG) module that takes correlation maps in self- and cross-attention modules as inputs, and predicts weights of multi-scale features for each image patch. Our TSG is a simple design, with a few lightweight linear layers, and thus can be plug-and-play across diverse architectures. We further extend TSG to a TSGE module in the encoder and a TSGD module in the decoder, which leverage our TSG weights to improve the semantic segmentation performance. (3) Our extensive experiments and ablations show that the proposed modules obtain significant improvements on three semantic segmentation datasets.

2. Related Work

CNN-based semantic segmentation methods usually use the fully convolutional network (FCN) [21], which formulates the semantic segmentation task as a pixel-wise classification problem and designs an encoder-decoder structure. The encoder extracts features of each pixel in the image, while the decoder labels every pixel. Noh *et al.* [24] design a deconvolutional decoder to gradually restore more details, which is the mirror of the CNN encoder. Although these approaches make significant progress for recognizing objects of fixed size ranges, they struggle to segment objects of diverse sizes. To segment variable sized objects, some prior works propose to use multi-scale strategies. Lin *et al.* [17] directly resize the input image into multiple scales and generate multiple predictions, which are then assembled together. Some works extract multi-scale features in the encoder by pyramid pooling module (PPM) and pyramid atrous convolutions and feature pyramid network (FPN), and then combine multi-scale features to predict segmentation results. Another methods [1,28] adopt the deconvolutional decoder [24] and incorporate multi-scale features into the decoder. All these methods only simply combine multi-scale features without any selection. While
some existing works \[3, 8, 14, 31, 32\] propose learnable modules to select multiple scales, they either require complex mechanisms \[3, 8, 14\] and/or scale labels \[32\], and are therefore not ideally suited for efficient scale selection.

Vision Transformers have recently attracted increasing research interest and have become a new paradigm for semantic segmentation, thanks to their ability of modeling long-range dependencies. Ranftl \textit{et al.} \[27\] and Zheng \textit{et al.} \[47\] employ ViT \[10\] as the encoder to extract single-scale features and use CNN-based decoders for semantic segmentation. Strudel \textit{et al.} \[36\] and Xie \textit{et al.} \[41\] design transformer-based decoders, which take categories as queries. Cheng \textit{et al.} \[6\] propose an object-query-based transformer decoder and combine it with a pixel-level decoder to predict segmentation results. These methods ignore the diversity of object sizes. Other recent works design pyramid architectures to obtain multi-scale features in the encoder and fuse them in the decoder for segmentation. Most of them \[9, 20, 37, 39, 43, 44\] adopt PPM \[46\] and/or FPN \[18\] for multi-scale feature fusion, while Xie \textit{et al.} \[41\] and Gu \textit{et al.} \[11\] use lightweight concatenations. Lee \textit{et al.} \[13\] propose multi-path Transformer blocks to better integrate multi-scale features. Instead of combining multi-scale features, Bousselman \textit{et al.} \[2\] leverage multiple transformer decoders to generate multi-scale segmentation results and then aggregate these results. Qin \textit{et al.} \[26\] averages multi-scale results and adds a cross-attention model to capture inter-scale information. However, these combinations cannot effectively select multi-scale features for each image patch. Several works \[16, 35, 38, 45, 49\] select scales from transformer image or query embeddings. Different from these works, our method exploits the relationships between transformer attention maps and segmentation scales instead of image features/embeddings for scale selection. Meanwhile, our attention-map-based and previous feature/embedding-based scale selections are not mutually exclusive, but rather complementary.

3. Proposed Method

3.1. Vision Transformer for Semantic Segmentation

Vision Transformers typically contain an encoder and a decoder, as shown in Fig. 1. An image is first split into multiple patches and every patch is embedded into a token. Let \(Z = \{z_1, z_2, \ldots, z_N\} \) represent the set of tokens, where \(N \) is the number of patches, \(z_n \in \mathbb{R}^{d_z} \) (\(n = 1, \ldots, N \)) is the token of the \(n \)-th patch, and \(d_z \) is the dimension of tokens.

Encoder. The encoder takes these tokens as inputs, and outputs the feature vector of every image patch. The key component in the encoder is the multi-head self-attention, which learns the long-range dependencies of image patches, and then aggregates these results. Qin \textit{et al.} \[26\] use a vision transformer decoder and combine it with a pixel-level decoder to predict segmentation results. These methods ignore the diversity of object sizes. Other recent works design pyramid architectures to obtain multi-scale features in the encoder and fuse them in the decoder for segmentation. Most of them \[9, 20, 37, 39, 43, 44\] adopt PPM \[46\] and/or scale labels \[32\], and are therefore not ideally suited for efficient scale selection.

Vision Transformers have recently attracted increasing research interest and have become a new paradigm for semantic segmentation, thanks to their ability of modeling long-range dependencies. Ranftl \textit{et al.} \[27\] and Zheng \textit{et al.} \[47\] employ ViT \[10\] as the encoder to extract single-scale features and use CNN-based decoders for semantic segmentation. Strudel \textit{et al.} \[36\] and Xie \textit{et al.} \[41\] design transformer-based decoders, which take categories as queries. Cheng \textit{et al.} \[6\] propose an object-query-based transformer decoder and combine it with a pixel-level decoder to predict segmentation results. These methods ignore the diversity of object sizes. Other recent works design pyramid architectures to obtain multi-scale features in the encoder and fuse them in the decoder for segmentation. Most of them \[9, 20, 37, 39, 43, 44\] adopt PPM \[46\] and/or FPN \[18\] for multi-scale feature fusion, while Xie \textit{et al.} \[41\] and Gu \textit{et al.} \[11\] use lightweight concatenations. Lee \textit{et al.} \[13\] propose multi-path Transformer blocks to better integrate multi-scale features. Instead of combining multi-scale features, Bousselman \textit{et al.} \[2\] leverage multiple transformer decoders to generate multi-scale segmentation results and then aggregate these results. Qin \textit{et al.} \[26\] averages multi-scale results and adds a cross-attention model to capture inter-scale information. However, these combinations cannot effectively select multi-scale features for each image patch. Several works \[16, 35, 38, 45, 49\] select scales from transformer image or query embeddings. Different from these works, our method exploits the relationships between transformer attention maps and segmentation scales instead of image features/embeddings for scale selection. Meanwhile, our attention-map-based and previous feature/embedding-based scale selections are not mutually exclusive, but rather complementary.

3. Proposed Method

3.1. Vision Transformer for Semantic Segmentation

Vision Transformers typically contain an encoder and a decoder, as shown in Fig. 1. An image is first split into multiple patches and every patch is embedded into a token. Let \(Z = \{z_1, z_2, \ldots, z_N\} \) represent the set of tokens, where \(N \) is the number of patches, \(z_n \in \mathbb{R}^{d_z} \) (\(n = 1, \ldots, N \)) is the token of the \(n \)-th patch, and \(d_z \) is the dimension of tokens.

Encoder. The encoder takes these tokens as inputs, and outputs the feature vector of every image patch. The key component in the encoder is the multi-head self-attention, which learns the long-range dependencies of image patches, and then aggregates these results. Qin \textit{et al.} \[26\] use a vision transformer decoder and combine it with a pixel-level decoder to predict segmentation results. These methods ignore the diversity of object sizes. Other recent works design pyramid architectures to obtain multi-scale features in the encoder and fuse them in the decoder for segmentation. Most of them \[9, 20, 37, 39, 43, 44\] adopt PPM \[46\] and/or scale labels \[32\], and are therefore not ideally suited for efficient scale selection.

Vision Transformers have recently attracted increasing research interest and have become a new paradigm for semantic segmentation, thanks to their ability of modeling long-range dependencies. Ranftl \textit{et al.} \[27\] and Zheng \textit{et al.} \[47\] employ ViT \[10\] as the encoder to extract single-scale features and use CNN-based decoders for semantic segmentation. Strudel \textit{et al.} \[36\] and Xie \textit{et al.} \[41\] design transformer-based decoders, which take categories as queries. Cheng \textit{et al.} \[6\] propose an object-query-based transformer decoder and combine it with a pixel-level decoder to predict segmentation results. These methods ignore the diversity of object sizes. Other recent works design pyramid architectures to obtain multi-scale features in the encoder and fuse them in the decoder for segmentation. Most of them \[9, 20, 37, 39, 43, 44\] adopt PPM \[46\] and/or FPN \[18\] for multi-scale feature fusion, while Xie \textit{et al.} \[41\] and Gu \textit{et al.} \[11\] use lightweight concatenations. Lee \textit{et al.} \[13\] propose multi-path Transformer blocks to better integrate multi-scale features. Instead of combining multi-scale features, Bousselman \textit{et al.} \[2\] leverage multiple transformer decoders to generate multi-scale segmentation results and then aggregate these results. Qin \textit{et al.} \[26\] averages multi-scale results and adds a cross-attention model to capture inter-scale information. However, these combinations cannot effectively select multi-scale features for each image patch. Several works \[16, 35, 38, 45, 49\] select scales from transformer image or query embeddings. Different from these works, our method exploits the relationships between transformer attention maps and segmentation scales instead of image features/embeddings for scale selection. Meanwhile, our attention-map-based and previous feature/embedding-based scale selections are not mutually exclusive, but rather complementary.
where $F \in \mathbb{R}^{N \times d_F}$ represents the image patch feature matrix, $X \in \mathbb{R}^{C \times d_F}$ is the query token matrix, $j = 1, \ldots, h_{cross}$ and h_{cross} denotes the number of heads in the cross-attention module. Similar to self-attention modules, $Q_j, K_j, V_j \in \mathbb{R}^{N \times d_c}$ are the d_c-dimension query, key and value, respectively. $A_{j}^{cross} \in \mathbb{R}^{C \times N}$ captures relationships between every patch-category pair. $H_{j} \in \mathbb{R}^{C \times d_c}$ represents the feature map in the j-th head, and features in all heads can be combined by Eq. (4).

Through L_{dec} decoder blocks, our decoder outputs query embeddings $Y = \{y_1, y_2, \ldots, y_C\}$, where $Y \in \mathbb{R}^{C \times d_F}$ and $y_c \in \mathbb{R}^{d_F}$ is the embedding vector of the c-th class. The segmentation result can be predicted by the matrix product of patch feature matrix F and class query embedding matrix Y:

$$ P = \text{Softmax} \left(\frac{FY^T}{\sqrt{d_F}} \right) $$

(8)

where $P \in \mathbb{R}^{N \times C}$ contains the classification scores for every image patch. The segmentation result is composed of these patch-wise classification results.

3.2. Transformer Scale Gate (TSG)

From Eq. (2)&(6), we observe that the self-attention map A_{1}^{self} reflects the correlation between an image patch and other patches, while the cross-attention map A_{1}^{cross} reflects the correlation between every image patch and object category. In A_{1}^{self}, if an image patch is highly related to a large number of patches, it may require small-scale features (large effective receptive fields), and vice versa. In A_{1}^{cross}, if an image patch is correlated to many object classes, this patch may contain multiple objects and require large-scale (high-resolution) features.

Considering the above observations, our TSG takes attention maps as inputs and generates gates for every scale. As shown in Fig. 2, we first integrate multi-head attention maps into a single map $A \in \mathbb{R}^{N \times d_A}$, where d_A is its dimension. For self-attention modules in the encoder, attention maps are integrated as

$$ A = \text{Linear}(\text{Concat}(A_{1}^{self}, \ldots, A_{h_{self}}^{self})). $$

(9)

We concatenate attention maps in all heads and use a linear layer to project them to d_A dimensions.

For cross-attention modules in the decoder, we first
change the softmax in A_j^{cross}. The original softmax is applied on the patch dimension (i.e., over N image patches), which reflects the importance of patches for each object class. We change this softmax to the class dimension. The changed softmax reveals the importance of classes for each image patch, which is more suitable for our TSG. Let \tilde{A}_j^{cross} represent the cross-attention map with the modified softmax. We concatenate the transposes of \tilde{A}_j^{cross} in all heads and use a linear layer to transform dimensions,

$$A = \text{Linear}\left(\text{Concat}\left((\tilde{A}_1^{cross})^T, ..., (\tilde{A}_H^{cross})^T\right)\right).$$ (10)

After the integration, our TSG generates multi-scale feature gates as

$$\tilde{G} = \text{MLP}\left(\text{Norm}(A)\right),$$ (11)

$$G = \text{Softmax}(\tilde{G}).$$ (12)

We employ a layer normalization to normalize A, and use an MLP to predict the scale gates $G \in \mathbb{R}^{N \times S}$, where S is the number of scales. Here, we use a two-layer MLP with GELU activation function. G is normalized into G by a softmax function on the scale dimension. In matrix G, value $g_{n,s}$ indicates the gate of the s-th scale for the n-th image patch. We next introduce how to use our scale gates to select features in the encoder and decoder.

3.3. Transformer Scale Gate in Encoder (TSGE)

![Image of Transformer Scale Gate in Encoder (TSGE)](image)

The multi-scale transformer backbone contains S stages. In each stage s, the backbone generates a feature map $F_s^{enc} \in \mathbb{R}^{N_s \times d_{fs}}$, where d_{fs} is its dimension, and N_s is the number of patches in this feature map. Therefore, we have S multi-scale features $\{F_1^{enc}, F_2^{enc}, ..., F_S^{enc}\}$ from the backbone model. We propose a TSGE module, which leverages TSG to generate scale gates G to refine these features, where we denote $\{F_1^{enc}, F_2^{enc}, ..., F_S^{enc}\}$ as the refined features, $F_s^{enc} \in \mathbb{R}^{N_s \times d_f}$ ($s = 1, ..., S$), and all features are refined into the same dimension d_f.

Inspired by feature fusion methods in CNN [8, 18], our TSGE gradually fuses small-scale features into large-scale features, as shown in Fig. 3. Specifically, we fuse two feature maps, the smaller-scale refined feature map F_{s+1}^{enc} and the larger-scale feature map F_s, at each step. F_{s+1}^{enc} is first upsampled to fit the size of F_s. Then, we use a linear layer to transform the feature dimension of the larger-scale feature map F_s. Finally, the unsampled smaller-scale feature map and the transformed larger-scale feature map are weighted by our scale gates and summed as

$$f_{n,s}^{enc} = g_{n,1}\tilde{f}_{n,s}^{enc} + g_{n,2}f_{n,s}$$ (13)

where $\tilde{f}_{n,s}^{enc} \in \mathbb{R}^{d_f}$ and $f_{n,s} \in \mathbb{R}^{d_f}$ are the feature vectors of the n-th image patch in the unsampled smaller-scale feature map and the transformed larger-scale feature map, respectively, and $f_{n,s}^{enc} \in \mathbb{R}^{d_f}$ is the weighted sum. Weights $g_{n,1}$ and $g_{n,2}$ are generated from our TSG. The inputs of our TSG at each step are the self-attention maps corresponding to features maps we used. For example, when we fuse feature maps F_s and F_{s+1}^{enc}, the inputs are self-attention maps in the last blocks from the s-th stage to the S-th stage, because F_{s+1}^{enc} has already included features from F_{s+1} to F_S. Since these attention maps are in different sizes, we upsample them into the size of F_s, before inputting them to TSG. For each image patch n, our TSG outputs two gates $g_{n,1}$ and $g_{n,2}$ for the two feature maps, respectively.

3.4. Transformer Scale Gate in Decoder (TSGD)

The refined features $\{F_1^{enc}, F_2^{enc}, ..., F_S^{enc}\}$ are then input to our decoder, and we propose a TSGD module to integrate them. In the l-th decoder block, to integrate multi-scale features, we first upsample them into the same size. $\{F_1^{enc}, F_2^{enc}, ..., F_S^{enc}\}$ are the upsampled feature maps, where $F_s^{enc} \in \mathbb{R}^{N_n \times d_f}$ ($s = 1, ..., S$) and $N = N_1$. Then,
we leverage our TSG to predict scale gates, which takes the cross-attention maps from the previous block as inputs, as shown in Fig. 4. Our TSG outputs a matrix $G \in \mathbb{R}^{N \times S}$, which contains the gates of all scales for every image patch. Finally, we use these gates to weight the upscaled feature maps and sum them as follows:

$$f_{\text{dec}}^{\text{dec}} = \sum_{s=1}^{S} g_{n,s} \tilde{f}_{n,s}^{\text{enc}} \tag{14}$$

where $\tilde{f}_{n,s}^{\text{enc}} \in \mathbb{R}^{d_F}$ is the feature vector of the n-th image patch in the feature map \tilde{F}_s^{enc}, $g_{n,s}$ in G represents the gate of the s-th scale for this patch, and $f_{\text{dec}}^{\text{dec}} \in \mathbb{R}^{d_F}$ is the weighted sum feature vector of this patch. The feature map \tilde{F}_s^{dec} consists of $\{f_{\text{dec}}^{1,n}, f_{\text{dec}}^{2,n}, \ldots, f_{\text{dec}}^{L_{\text{dec}},n}\}$, which is used to generate keys and values in the current decoder block. For the first block, since there is no previous block, we only sum the upscaled multi-scale features:

$$f_{\text{1,dec}}^{\text{dec}} = \sum_{s=1}^{S} \tilde{f}_{n,s}^{\text{enc}} \tag{15}$$

The final segmentation result is generated by Eq. (8), where we use the integrated feature map $\hat{F}_{\text{dec}}^{\text{dec}}$ in the last decoder block to generate the result:

$$P = \text{Softmax}(\frac{\hat{F}_{\text{dec}}^{\text{dec}} Y^T}{\sqrt{d_F}}). \tag{16}$$

4. Experiments

4.1. Experimental Settings

Datasets. We evaluate our method on three datasets, Pascal Context, ADE20K and Cityscapes. Pascal Context [22] contains 10103 images, 4998 for training and 5105 for validation. There are 60 category labels in this dataset, including 59 object classes and one background class. ADE20K [48] includes 150 object categories, 20210 training images, 2000 validation images and 3352 testing images. Cityscapes [7] has 19 object classes, 2975, 500, and 1525 images for training, validation and testing, respectively. For all these datasets, similar to previous works, we train our method on training images and report the results on validation images.

Metrics. We adopt the common segmentation metric, ‘mIoU’, for evaluation, which is the average of the ‘IoU’ values of all object classes. We report our results of a single model, without multi-scale and horizontal flip ensembles.

Implementation Details. Our TSG can be used for any hierarchical Vision Transformer. Here, we use Swin Transformer [20] as a running example. There are four-scale feature maps in Swin Transformer [20], i.e., $S = 4$. We only use local attention maps in each window in Swin Transformer to generate scale gates. We set the dimension d_F of refined features to 512, use eight heads for both self- and cross-attention modules, and use three blocks in the decoder. We also set d_A to 512, and employ a 512-dimension hidden layer in the MLP in our TSG. Our model is built on the Pytorch [25] platform. Following common settings [2, 20], we leverage weights pretrained on ImageNet-1K and ImageNet-22K to initialize Swin-T and Swin-L, respectively. Query tokens in the decoder are initialized to zero. Other parts are randomly initialized. We adopt cross-entropy loss, ‘AdamW’ optimizer and the ‘poly’ learning rate decay scheduling during training, with an initial learning rate of 6×10^{-5} and a weight decay of 10^{-2}.

4.2. Results and Comparisons

Table 1 shows the results of existing state-of-the-art methods and our method. On Pascal Context, compared with our baselines, Swin Transformer [20] Tiny and Large, our method achieves 4.3% and 3.0% gains, respectively. Compared with SenFormer [2], which also uses category-query-based decoders and multi-scale features, our proposed method yields improvements of 1.3% and 0.9% when using Swin-T and Swin-L backbones, respectively. However, the number of parameters of our method is significantly lower than that of SenFormer. SenFormer uses a heavyweight architecture with multiple transformer decoders to generate multi-scale predictions. In contrast, our method only leverages one decoder and lightweight scale gates, while achieving better performance. Results on ADE20K and Cityscapes also show our superior accuracy.

Our method can also be used for object-query-based decoders. Take Mask2Former [5] as an example. We add our TSGE to its encoder and TSGD to its transformer decoder to select optimal feature scales based on patch-object correlations. We also keep the masked attention in the decoder, as the same as in Mask2Former [5]. On Pascal Context, compared with the original Mask2Former [5], our method achieves 1.4% and 1.1% gains with Swin-T and Swin-L, respectively. Compared with other state-of-the-art methods, our method also shows the superior performance. These results demonstrate not only the effectiveness of our proposed method, but also its versatility in supporting both category-query-based decoders and object-query-based decoders.

Fig. 5(a) depicts qualitative results on the Pascal Context dataset. Swin Transformer [20] and SenFormer [2] only simply combine multi-scale features or multi-scale segmentation results without any selection, and thus fail to segment many small objects, such as the left ‘person’ in the second image in Fig. 5(a). Our TSG selects suitable scales for image patches. When segmenting patches including small objects, our approach selects high-resolution features based on transformer attention cues. Therefore, our method success-
<table>
<thead>
<tr>
<th>Method</th>
<th>Backbone</th>
<th>Params</th>
<th>Pascal Context mIoU (%)</th>
<th>ADE20K mIoU (%)</th>
<th>Cityscapes mIoU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swin (Upernet decoder) [20]</td>
<td>Swin-T</td>
<td>60M</td>
<td>50.2</td>
<td>44.4</td>
<td>71.8</td>
</tr>
<tr>
<td>Swin (Upernet decoder) [20]</td>
<td>Swin-L</td>
<td>234M</td>
<td>60.3</td>
<td>52.1</td>
<td>79.9</td>
</tr>
<tr>
<td>TSG (Ours)</td>
<td>Swin-T</td>
<td>72M</td>
<td>54.5 (+4.3)</td>
<td>47.5 (+3.1)</td>
<td>75.8 (+4.0)</td>
</tr>
<tr>
<td>TSG (Ours)</td>
<td>Swin-L</td>
<td>250M</td>
<td>63.3 (+3.0)</td>
<td>54.2 (+2.1)</td>
<td>83.1 (+3.2)</td>
</tr>
<tr>
<td>Mask2Former [5]</td>
<td>Swin-T</td>
<td>42M</td>
<td>54.6</td>
<td>47.7</td>
<td>79.7</td>
</tr>
<tr>
<td>Mask2Former [5]</td>
<td>Swin-L</td>
<td>216M</td>
<td>63.8</td>
<td>56.1</td>
<td>83.3</td>
</tr>
<tr>
<td>TSG (Ours) + Mask2Former [5]</td>
<td>Swin-T</td>
<td>51M</td>
<td>56.0 (+1.4)</td>
<td>49.0 (+1.3)</td>
<td>80.5 (+0.8)</td>
</tr>
<tr>
<td>TSG (Ours) + Mask2Former [5]</td>
<td>Swin-L</td>
<td>232M</td>
<td>64.9 (+1.1)</td>
<td>56.9 (+0.8)</td>
<td>83.6 (+0.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other state-of-the-art methods</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSPNet [46]</td>
<td>ResNet101</td>
<td>60M</td>
<td>47.0</td>
<td>42.0</td>
<td>78.4</td>
</tr>
<tr>
<td>DeepLabV3+ [4]</td>
<td>ResNet101</td>
<td>63M</td>
<td>47.4</td>
<td>45.5</td>
<td>80.9</td>
</tr>
<tr>
<td>SETR [47]</td>
<td>ViT-L</td>
<td>311M</td>
<td>54.9</td>
<td>48.6</td>
<td>79.3</td>
</tr>
<tr>
<td>Segformer [42]</td>
<td>MiT-B5</td>
<td>85M</td>
<td>54.8</td>
<td>51.0</td>
<td>82.4</td>
</tr>
<tr>
<td>Segmenter [36]</td>
<td>ViT-L</td>
<td>333M</td>
<td>58.1</td>
<td>51.8</td>
<td>80.4</td>
</tr>
<tr>
<td>MaskFormer [6]</td>
<td>Swin-T</td>
<td>42M</td>
<td>53.3</td>
<td>46.7</td>
<td>-</td>
</tr>
<tr>
<td>MaskFormer [6]</td>
<td>Swin-L</td>
<td>212M</td>
<td>62.6</td>
<td>54.1</td>
<td>-</td>
</tr>
<tr>
<td>HRViT [12]</td>
<td>HRViT-b3</td>
<td>28.6M</td>
<td>-</td>
<td>50.2</td>
<td>83.2</td>
</tr>
<tr>
<td>PCAA [19]</td>
<td>ResNet101</td>
<td>-</td>
<td>55.6</td>
<td>46.7</td>
<td>82.3</td>
</tr>
<tr>
<td>SenFormer [2]</td>
<td>Swin-T</td>
<td>144M</td>
<td>53.2</td>
<td>46.0</td>
<td>-</td>
</tr>
<tr>
<td>SenFormer [2]</td>
<td>Swin-L</td>
<td>314M</td>
<td>62.4</td>
<td>53.1</td>
<td>82.8</td>
</tr>
</tbody>
</table>

Table 1. Results of semantic segmentation on Pascal Context, ADE20k and Cityscapes validation. All methods use single model, without multi-scale-model and horizontal-flip ensembles. Our proposed TSG achieves consistent gains with different backbones.

<table>
<thead>
<tr>
<th>Model</th>
<th>Encoder</th>
<th>Decoder</th>
<th>mIoU(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Swin-T</td>
<td>Upernet</td>
<td>50.2</td>
</tr>
<tr>
<td>2</td>
<td>Swin-T</td>
<td>+ TSGE</td>
<td>51.6 (+1.4)</td>
</tr>
<tr>
<td>3</td>
<td>Swin-T</td>
<td>BD</td>
<td>51.3</td>
</tr>
<tr>
<td>4</td>
<td>Swin-T</td>
<td>+ TSGD</td>
<td>52.4 (+1.1)</td>
</tr>
<tr>
<td>5</td>
<td>Swin-T</td>
<td>BD + TSGD</td>
<td>52.7 (+1.4)</td>
</tr>
<tr>
<td>6</td>
<td>Swin-T</td>
<td>FPN</td>
<td>52.9</td>
</tr>
<tr>
<td>7</td>
<td>Swin-T</td>
<td>+ TSGE</td>
<td>53.9 (+1.0)</td>
</tr>
<tr>
<td>8</td>
<td>Swin-T</td>
<td>FPN</td>
<td>54.1 (+1.2)</td>
</tr>
<tr>
<td>9</td>
<td>Swin-T</td>
<td>BD + TSGD</td>
<td>54.5 (+4.3)</td>
</tr>
</tbody>
</table>

Table 2. The effects of main components in our method on Pascal Context validation. ‘BD’ means our baseline decoder.

fully segments these small objects. Previous approaches are also prone to over-segmentation and mis-recognitions. For example, in the first image in Fig. 5, Swin Transformer [20] over-segments the ‘road’ object as two objects, and SenFormer [2] mis-recognizes the ‘road’ object as ‘ground’. Our method avoids these, by selecting suitable scales to segment and recognize objects of diverse scales.

4.3. Ablation Analysis

TSG in encoder. We conduct multiple ablations to verify the contributions of our TSG module for the Transformer encoder in Table 2. The vanilla Swin Transformer [20] (Model 1) takes UperNet [40] as its decoder, which already includes FPN and PPM. In Model 2, we use our TSGE to replace FPN and PPM in UperNet. From the first and second lines in Table 2, it can be observed that our method obtains an improvement of 1.4% in this setting. We next test models using our baseline decoder. Our baseline decoder requires to first integrate multi-scale feature maps into one feature map. Thus, we first add a linear layer to every feature map to convert their dimensions into the same. Then, the converted multi-scale feature maps are upsampled into the same size, and summed as the input of our baseline decoder. In Model 4, our TSG generates scale gates from self-attention modules in the encoder, and these gates are used to weight the multi-scale feature maps before summing them. Through our TSG, the mIoU can be improved by 1.1%. In Models 6&7, we use FPN [18] and our TSG to refine multi-scale feature maps, respectively, and sum the refined feature maps in our decoder. Compared with FPN, our TSGD achieves a gain of 1.0%.

TSG in decoder. From Models 3&5 in Table 2, we observe that our TSGD outperforms the baseline decoder by 1.4% when using the ‘Swin-T’ encoder. With the ‘Swin-T + FPN’ encoder (Models 6&8), our TSGD improves the performance by 1.2%. Our final model (Model 9) uses both TSGE and TSGD, which achieves an improvement of 4.3%, compared with Swin Transformer [20]. These results suggest that our proposed TSG is effective in fusing cues across
Figure 5. (a) Qualitative results on Pascal Context samples, with Swin-L backbone. Our method generates better results than prior works, especially for large and small objects. (b) Visualization of our transformer scale gates. For small objects (‘tree’, ‘building’, etc), TSG generates large gate values on large-scale feature maps (1/4 image size), indicating that our model successfully chooses high-resolution maps for small objects, and vice versa.

<table>
<thead>
<tr>
<th>Model</th>
<th>F_1 (1/4)</th>
<th>F_2 (1/8)</th>
<th>F_3 (1/16)</th>
<th>F_4 (1/32)</th>
<th>mIoU(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swin-T + FPN + BD</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>47.2</td>
</tr>
<tr>
<td>Swin-T + FPN + BD</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>50.1</td>
</tr>
<tr>
<td>Swin-T + FPN + BD</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>51.6</td>
</tr>
<tr>
<td>Swin-T + FPN + BD</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>52.5</td>
</tr>
<tr>
<td>Swin-T + TSGE + BD + TSGD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>54.5</td>
</tr>
</tbody>
</table>

Table 3. The effects of features on different scales on Pascal Context validation. ‘BD’ is our baseline decoder. ‘1/4’, ‘1/8’, ‘1/16’ and ‘1/32’ mean that the resolutions of feature maps are ‘1/4’, ‘1/8’, ‘1/16’ and ‘1/32’ of the image size.

<table>
<thead>
<tr>
<th>Design</th>
<th>mIoU(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSG with multi-head average</td>
<td>54.1</td>
</tr>
<tr>
<td>TSG with multi-head concatenation</td>
<td>54.5 (+0.4)</td>
</tr>
<tr>
<td>TSGs with shared weights</td>
<td>53.8</td>
</tr>
<tr>
<td>TSGs with independent weights</td>
<td>54.5 (+0.7)</td>
</tr>
</tbody>
</table>

Table 4. The impact of different design choices in our TSG module evaluated on Pascal Context validation set.

Table 5 shows the results of our TSG with different settings. In Sec. 3.2, we concatenate multi-head attention maps, which improves the mIoU by 0.4%, compared with averaging multi-head attention maps. This is because some information may be lost in the average, while the concatenation retains all information in attention maps. We use multiple TSG with independent weights in different steps in the encoder and different blocks in the decoder. Compared with sharing weights among different TSGs, independent weights achieve 0.7% improvements, because every TSG has different inputs and independent weights show better ability for different inputs. Nonetheless, our TSG with shared weights can also improve the performance by 3.6%, compared with Swin Transformer [20] baseline.

TSG visualization. We visualize our scale gates in Fig. 5(b). It can be observed that our TSG highlights small objects (‘tree’ and ‘grass’) in large-scale feature maps for more accurate segmentation, while selecting smaller-scale feature maps for larger objects (‘aeroplane’, ‘sky’ and ‘ground’) to reduce over-segmentations.

5. **Conclusion**

In this paper, we have presented a Transformer Scale Gate (TSG) module, which exploits inherent properties in Vision Transformers to effectively select multi-scale features for semantic segmentation. Our TSG is a simple and lightweight transformer-based module, which can be used in transformer segmentation networks in a plug-and-play manner. We have also proposed TSGE and TSGD, which leverage our TSG to further improve the segmentation accuracy in the transformer encoder and decoder, respectively. TSG refines multi-scale features in the encoder by the self-attention guidance, while TSGD integrates multi-scale features in the decoder based on cross-attention maps. Extensive experiments on three semantic segmentation datasets demonstrate the effectiveness of our proposed method.

Acknowledgement. This research is supported by Monash FIT Start-up Grant and ARC DECRA Fellowship DE200101100.
References

