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Abstract

In this paper, we present a one-stage framework TriDet
for temporal action detection. Existing methods often suf-
fer from imprecise boundary predictions due to the ambigu-
ous action boundaries in videos. To alleviate this prob-
lem, we propose a novel Trident-head to model the action
boundary via an estimated relative probability distribution
around the boundary. In the feature pyramid of TriDet, we
propose an efficient Scalable-Granularity Perception (SGP)
layer to mitigate the rank loss problem of self-attention that
takes place in the video features and aggregate information
across different temporal granularities. Benefiting from the
Trident-head and the SGP-based feature pyramid, TriDet
achieves state-of-the-art performance on three challeng-
ing benchmarks: THUMOS14, HACS and EPIC-KITCHEN
100, with lower computational costs, compared to previ-
ous methods. For example, TriDet hits an average mAP of
69.3% on THUMOS14, outperforming the previous best by
2.5%, but with only 74.6% of its latency. The code is re-
leased to https://github.com/dingfengshi/TriDet.

1. Introduction

Temporal action detection (TAD) aims to detect all start
and end instants and corresponding action categories from
an untrimmed video, which has received widespread atten-
tion. TAD has been significantly improved with the help
of the deep learning. However, TAD remains to be a very
challenging task due to some unresolved problems.

A critical problem in TAD is that action boundaries are
usually not obvious. Unlike the situation in object detec-
tion where there are usually clear boundaries between the
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Figure 1. Illustration of different boundary modeling. Segment-
level: these methods locate the boundaries based on the global fea-
ture of a predicted temporal segment. Instant-level: they directly
regress the boundaries based on a single instant, potentially with
some other features. Ours: the action boundaries are modeled via
an estimated relative probability distribution of the boundary.

objects and the background, the action boundaries in videos
can be fuzzy. A concrete manifestation of this is that the in-
stants (i.e. temporal locations in the video feature sequence)
around the boundary have relatively higher predicted re-
sponse value from the classifier.

Some previous works attempt to locate the boundaries
based on the global feature of a predicted temporal seg-
ment [21,22,29,46,51], which may ignore detailed informa-
tion at each instant. As another line of work, they directly
regress the boundaries based on a single instant [32,47], po-
tentially with some other features [20,33,49], which do not
consider the relation between adjacent instants (e.g. the rel-
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Figure 2. Within the HACS dataset and SlowFast backbone, we
statistic the average cosine similarity between features at each
instant and the video-level average feature for self-attention and
SGP, respectively. We observe that the SA exhibits high similarity,
indicating poor discriminability (i.e. rank loss problem). In con-
trast, SGP resolves the issue and exhibits stronger discriminability.

ative probability) around the boundary. How to effectively
utilize boundary information remains an open question.

To facilitate localization learning, we posit that the rel-
ative response intensity of temporal features in a video can
mitigate the impact of video feature complexity and in-
crease localization accuracy. Motivated by this, we pro-
pose a one-stage action detector with a novel detection head
named Trident-head tailored for action boundary localiza-
tion. Specifically, instead of directly predicting the bound-
ary offsets based on the center point feature, the proposed
Trident-head models the action boundary via an estimated
relative probability distribution of the boundary (see Fig. 1).
The boundary offset is then computed based on the expected
values of neighboring locations (i.e. bins).

Apart from the Trident-head, in this work, the proposed
action detector consists of a backbone network and a fea-
ture pyramid. Recent TAD methods [9, 40, 47] adopt the
transformer-based feature pyramid and show promising per-
formance. However, the video features of the video back-
bone tend to exhibit high similarities between snippets,
which is further deteriorated by SA, leading to the rank loss
problem [12] (see Fig. 2). Additionally, SA also incurs sig-
nificant computational overhead.

Fortunately, we discover that the success of the previ-
ous transformer-based layers (in TAD) primarily relies on
their macro-architecture, namely, how the normalization
layer and feed-forward network (FFN) are connected, rather
than the self-attention mechanism. We therefore propose
an efficient convolutional-based layer, termed Scalable-
Granularity Perception (SGP) layer, to alleviate the two
abovementioned problems of self-attention. SGP comprises
two primary branches, which serve to increase the discrim-
ination of features in each instant and capture temporal in-
formation with different scales of receptive fields.

The resultant action detector is termed TriDet. Extensive
experiments demonstrate that TriDet surpasses all the pre-
vious detectors and achieves state-of-the-art performance

across three challenging benchmarks: THUMOS14, HACS
and EPIC-KITCHEN 100.

2. Related Work

Temporal action detection. Temporal action detection
(TAD) involves localizing and classifying all actions from
an untrimmed video. The existing methods can be roughly
divided into two categories, namely, two-stage methods and
one-stage methods. The two-stage methods [33, 36, 43, 46,
53] split the detection process into two stages: proposal
generation and proposal classification. Most of the previ-
ous works [8, 13, 19, 21, 22, 26] put emphasis on the pro-
posal generation phrase. Concretely, some works [8,21,22]
predict the probability of the action boundary and densely
match the start and end instants according to the prediction
score. Anchor-based methods [13,19] classify actions from
specific anchor windows. However, two-stage methods suf-
fer from a high complexity problem and can not be trained
in an end-to-end manner. The one-stage methods do the lo-
calization and classification with a single network. Some
previous works [20, 44, 45] build this hierarchical architec-
ture with the convolutional network (CNN). However, there
is still a performance gap between the CNN-based and the
latest TAD methods.

Object detection. Object detection is a twin task of TAD.
General Focal Loss [18] transforms bounding box regres-
sion from learning Dirac delta distribution to a general dis-
tribution function. Some methods [10, 15, 28] use Depth-
wise Convolution to model network structure and some
branched designs [16, 37] show high generalization ability.
They are enlightening for the architecture design of TAD.

Transformer-based methods. Inspired by the great suc-
cess of the Transformer in the field of machine translation
and object detection, some recent works [9,25,27,35,38,47]
adopt the attention mechanism in TAD task, which help
improve the detection performance. For example, some
works [27, 35, 38] detect the action with the DETR-like
Transformer-based decoder [6], which models action in-
stances as a set of learnable. Other works [9, 47] extract
a video representation with a Transformer-based encoder.
However, most of these methods are based on the local be-
havior. Namely, they conduct attention operation only in a
local window, which introduces an inductive bias similar to
CNN but with a larger computational complexity and addi-
tional limitations (e.g. The length of the sequence needs to
be pre-padded to an integer multiple of the window size.).

3. Method

Problem definition. We first give a formal definition for
TAD task. Specifically, given a set of untrimmed videos
D = {Vi}ni=1, we have a set of RGB (and optical flow)
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Figure 3. Illustration of TriDet. We build the pyramid features with Scalable-Granularity Perception (SGP) layer. The corresponding
features in each level are fed into a shared-weight detection head to obtain the detection result, which consists of a classification head and a
Trident-head. The Trident-head estimates the boundary offset based on a relative distribution predicted by three branches: Start Boundary,
End Boundary and Center Offset.

temporal visual features Xi = {xt}Tt=1 from each video Vi,
where T corresponds to the number of instants, andKi seg-
ment labels Yi = {sk, ek, ck}Ki

k=1 with the action segment
start instant sk, the end instant ek and the corresponding
action category ck. TAD aims at detecting all segments Yi
based on the input feature Xi.

3.1. Method Overview

Our goal is to build a simple and efficient one-stage tem-
poral action detector. As shown in Fig. 3, the overall ar-
chitecture of TriDet consists of three main parts: a video
feature backbone, a SGP feature pyramid, and a boundary-
oriented Trident-head. First, the video features are extracted
using a pretrained action classification network (e.g. I3D [7]
or SlowFast [14]). Following that, a SGP feature pyramid is
built to tackle actions with various temporal lengths, similar
to some recent TAD works [9, 20, 47]. Namely, the tempo-
ral features are iteratively downsampled and each scale level
is processed with a proposed Scalable-Granularity Percep-
tion (SGP) layer (Section 3.2) to enhance the interaction
between features with different temporal scopes. Lastly, ac-
tion instances are detected by a designed boundary-oriented
Trident-head (Section 3.3). We elaborate on the proposed
modules in the following.

3.2. Feature Pyramid with SGP Layer

The feature pyramid is obtained by first downsampling
the output features of the video backbone network several
times via max-pooling (with a stride of 2). The features at
each pyramid level are then processed using transformer-
like layers (e.g. ActionFormer [47]).

Current Transformer-based methods for TAD tasks pri-
marily rely on the macro-architecture of the Transformer
(See supplementary material for details), rather than the

self-attention mechanisms. Specifically, SA mainly en-
counters two issues: the rank loss problem across the tem-
poral dimension and its high computational overhead.

Limitation 1: the rank loss problem. The rank loss
problem arises because the probability matrix in self-
attention (i.e. softmax(QKT )) is non-negative and the sum
of each row is 1, indicating the outputs of SA are con-
vex combination for the value feature V . Considering that
pure Layer Normalization [2] projects feature onto the unit
hyper-sphere in high-dimensional space, we analyze the de-
gree of their distinguishability by studying the maximum
angle between features within the instant features. We
demonstrate that the maximum angle between features af-
ter the convex combination is less than or equal to that of
the input features, resulting in increasing similarity between
features (as outlined in the supplementary material), which
can be detrimental to TAD.

Limitation 2: high computational complexity. In addi-
tion, the dense pair-wise calculation (between instant fea-
tures) in self-attention brings a high computational over-
head and therefore decreases the inference speed.

The SGP layer. Based on the above discovery, we pro-
pose a Scalable-Granularity Perception (SGP) layer to ef-
fectively capture the action information and suppress rank
loss. The major difference between the Transformer layer
and SGP layer is the replacement of the self-attention mod-
ule with the fully-convolutional module SGP. The succes-
sive Layer Normalization [2] (LN) is changed to Group
Normalization [41] (GN).

As shown in Fig. 4, SGP contains two main branches:
an instant-level branch and a window-level branch. In the
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Figure 4. Illustration of the structure of SGP layer. We replace the
self-attention and the second Layer Normalization (LN) with SGP
and Group Normalization (GN), respectively.

instant-level branch, we aim to increase the feature discrim-
inability between action and non-action instant by enlarging
their feature distance with the video-level average feature.
The window-level branch is designed to introduce the se-
mantic content from a wider receptive field with a branch
ψ to help dynamically focus on the features of which scale.
Mathematically, the SGP can be written as:

fSGP = ϕ(x)FC(x)+ψ(x)(Convw(x)+Convkw(x))+x,
(1)

where FC and Convw denotes fully-connected layer and
the 1-D depth-wise convolution layer [10] over temporal di-
mension with window sizew. As a signature design of SGP,
k is a scalable factor aiming at capturing a larger granular-
ity of temporal information. The video-level average feature
ϕ(x) and branch ψ(x) are given as

ϕ(x) = ReLU(FC(AvgPool(x))), (2)
ψ(x) = Convw(x), (3)

where AvgPool(x) is the average pooling for all features
over the temporal dimension. Here, both ϕ(x) and ψ(x)
perform the element-wise multiplication with the main-
stream feature.

The resultant SGP-based feature pyramid can achieve
better performance than the transformer-based feature pyra-
mid while being much more efficient.

3.3. Trident-head with Relative Boundary Modeling

Intrinsic property of action boundaries. Regarding the
detection head, some existing methods directly regress the

⨁

Softmax

𝒅𝒅𝒔𝒔𝒔𝒔 = E𝒃𝒃~�𝒑𝒑𝒔𝒔𝒔𝒔 = 𝟑𝟑.𝟓𝟓
Start Prediction

Center Offset

Video Feature

Reference Times

Relative Probability of Start Boundary

offset

Bin Set

Action Start Ground-truth Action
T

𝒔𝒔

𝒅𝒅𝒔𝒔𝒔𝒔

012345

𝑭𝑭𝒄𝒄
𝒔𝒔,𝟎𝟎

t-B 𝒔𝒔 𝑭𝑭𝒔𝒔

𝑭𝑭

Figure 5. The boundary localization mechanism of Trident-head.
We predict the boundary response and the center offset for each
instant. At the instant t, the predicted boundary response in neigh-
boring bin set is summed element-wise with the center offset cor-
responding to the instant t, which is further estimated as the rel-
ative boundary distribution. Finally, the offset is computed based
on the expected value of the bin.

temporal length [47] of the action at each instant of the
feature and refine with the boundary feature [20, 33], or
[21, 22, 46] simply predict an actionness score (indicating
the probability of being an action). These simple strategies
suffer from a problem in practice: imprecise boundary pre-
dictions, due to the intrinsic property of actions in videos.
Namely, the boundaries of actions are usually not obvious,
unlike the boundaries of objects in object detection. Intu-
itively, a more statistical boundary localization method can
reduce uncertainty and facilitate more precise boundaries.

Trident-head. In this work, we propose a boundary-
oriented Trident-head to precisely locate the action bound-
aries based on the relative boundary modeling, i.e. consider-
ing the relation of features in a certain period and obtaining
the relative probability of being a boundary for each instant
in that period. The Trident-head consists of three compo-
nents: a start head, an end head, and a center-offset head,
which are designed to locate the start boundary, end bound-
ary, and the temporal center of the action, respectively. The
Trident-head can be trained end-to-end with the detector.

Concretely, as shown in Fig. 5, given a sequence of
features F ∈ RT×D output from the feature pyramid, we
first obtain three feature sequences from the three branches
(namely, Fs ∈ RT , Fe ∈ RT and Fc ∈ RT×2×(B+1)),
where B is the number of bins for boundary prediction, Fs

and Fe characterize the response value for each instant as
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the starting or ending point of an action, respectively. In
addition, the center-offset head aims at estimating two con-
ditional distributions P (bst|t) and P (bet|t). They represent
the probability that each instant (in its set of bins) serves as
a boundary when the instant t is the midpoint of an action.
Then, we model the boundary distance by combining the
outputs of the boundary head and center-offset head:

P̃st = Softmax(F [(t−B):t]
s + F t,0

c ), (4)

dst = Eb∼P̃st
[b] ≈

B∑
b=0

(bP̃stb), (5)

where F [(t−B):t]
s ∈ RB+1, F t,0

c ∈ RB+1 are the feature
of the left adjacent bin set of instant t and the center off-
sets predicted by instant t only, respectively, and P̃st is the
relative probability which represents the probability of each
instant as a start of the action within the bin set. Then, the
distance between the instant t and the start instant of action
instance dst is given by the expectation of the adjacent bin
set. Similarly, the offset distance of the end boundary det
can be obtained by

P̃et = Softmax(F [t:(t+B)]
e + F t,1

c ), (6)

det = Eb∼P̃et
[b] ≈

B∑
b=0

(bP̃etb) (7)

All heads are simply modeled in three layers convolu-
tional networks and share parameters at all feature pyramid
levels to reduce the number of parameters.

Combination with feature pyramid. We apply the
Trident-head in a pre-defined local bin set, which can be
further improved by combining it with the feature pyramid.
In this setting, features at each level of the feature pyramid
simply share the same small number of bins B (e.g. 16) and
then the corresponding prediction for each level l can be
scaled by 2l−1, which can significantly help to stabilize the
training process.

Formally, for an instant in the l-th feature level tl,
TriDet estimates the boundary distance d̂lst and d̂let with
the Trident-head described above, then the segments a =
(ŝt, êt) can be decoded by

ŝt = (t− d̂lst)× 2l−1, (8)

êt = (t+ d̂let)× 2l−1. (9)

Comparison with existing methods that have explicit
boundary modeling. Many previous methods improve
boundary predictions. We divide them into two broad cat-
egories: the prediction based on sampling instants in seg-
ments [21, 27, 35] and the prediction based on a single
instant. The first category predicts the boundary accord-
ing to the global feature of the predicted instance seg-
ments. They only consider global information instead of

detailed information at each instant. The second cate-
gory directly predicts the distance between an instant and
its corresponding boundary based on the instant-level fea-
ture [20, 33, 47, 49]. Some of them refine the segment with
boundary features [20, 33, 49]. However, they do not take
the relation (i.e. relative probability of being a boundary) of
adjacent instants into account. The proposed Trident-head
differs from these two categories and shows superior per-
formance in precise boundary localization.

3.4. Training and Inference

Each layer l of the feature pyramid outputs a temporal
feature F l ∈ R(2l−1T )×D, which is then fed to the classifi-
cation head and the Trident-head for action instance detec-
tion. The output of each instant t in feature pyramid layer l
is denoted as ôlt = (ĉlt, d̂

l
st, d̂

l
et).

The overall loss function is then defined as follows:

L =
1

Npos

∑
l,t

1{clt>0}(σIoULcls + Lreg)

+
1

Nneg

∑
l,t

1{clt=0}Lcls,

(10)

where σIoU is the temporal IoU between the predicted seg-
ment and the ground truth action instance, and Lcls, Lreg is
focal loss [23] and IoU loss [34]. Npos andNneg denote the
number of positive and negative samples. The term σIoU is
used to reweight the classification loss at each instant, such
that instants with better regression (i.e. of higher quality)
contribute more to the training. Following previous meth-
ods [39,47,48], center sampling is adopted to determine the
positive samples. Namely, the instants around the center of
an action instance are labeled as positive and all the others
are considered as negative.

Inference. At inference time, the instants with classifica-
tion scores higher than threshold λ and their corresponding
instances are kept. Lastly, Soft-NMS [4] is applied for the
deduplication of predicted instances.

4. Experiments

Datasets. We conduct experiments on four challenging
datasets: THUMOS14 [17], ActivityNet-1.3 [5], HACS-
Segment [50] and EPIC-KITCHEN 100 [11]. THUMOS14
consists of 20 sport action classes and it contains 200 and
213 untrimmed videos with 3,007 and 3,358 action in-
stances on the training set and test set, respectively. Ac-
tivityNet and HACS are two large-scale datasets and they
share 200 classes of action. They have 10,024 and 37,613
videos for training, as well as 4,926 and 5,981 videos for
test. The EPIC-KITCHEN 100 is a large-scale dataset in
first-person vision, which have two sub-tasks: noun local-
ization (e.g. door) and verb localization (e.g. open the door).
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Table 1. Comparison with the state-of-the-art methods on THU-
MOS14 dataset. *: TSN backbone. †: Swin Transformer back-
bone. Others: I3D backbone.

Method 0.3 0.4 0.5 0.6 0.7 Avg.

BMN [21]* 56.0 47.4 38.8 29.7 20.5 38.5
G-TAD [43]* 54.5 47.6 40.3 30.8 23.4 39.3
A2Net [44] 58.6 54.1 45.5 32.5 17.2 41.6

TCANet [33]* 60.6 53.2 44.6 36.8 26.7 44.3
RTD-Net [38] 68.3 62.3 51.9 38.8 23.7 49.0
VSGN [49]* 66.7 60.4 52.4 41.0 30.4 50.2

ContextLoc [53] 68.3 63.8 54.3 41.8 26.2 50.9
AFSD [20] 67.3 62.4 55.5 43.7 31.1 52.0
ReAct [35]* 69.2 65.0 57.1 47.8 35.6 55.0
TadTR [27] 74.8 69.1 60.1 46.6 32.8 56.7

TALLFormer [9]† 76.0 - 63.2 - 34.5 59.2
ActionFormer [47] 82.1 77.8 71.0 59.4 43.9 66.8

TriDet 83.6 80.1 72.9 62.4 47.4 69.3

Table 2. Comparison with the state-of-the-art methods on HACS
dataset.

Method Backbone 0.5 0.75 0.95 Avg.

SSN [52] I3D 28.8 18.8 5.3 19.0
LoFi [42] TSM 37.8 24.4 7.3 24.6

G-TAD [43] I3D 41.1 27.6 8.3 27.5
TadTR [27] I3D 47.1 32.1 10.9 32.1
BMN [21] SlowFast 52.5 36.4 10.4 35.8

TALLFormer [9] Swin 55.0 36.1 11.8 36.5
TCANet [33] SlowFast 54.1 37.2 11.3 36.8

TriDet I3D 54.5 36.8 11.5 36.8
TriDet SlowFast 56.7 39.3 11.7 38.6

It contains 495 and 138 videos with 67,217 and 9,668 action
instances for training and test, respectively. The number of
action classes for noun and verb are 300 and 97.

Evaluation. For all these datasets, only the annotations of
the training and validation sets are accessible. Following the
previous practice [9, 21, 46, 47], we evaluate on the valida-
tion set. We report the mean average precision (mAP) at dif-
ferent intersection over union (IoU) thresholds. For THU-
MOS14 and EPIC-KITCHEN, we report the IoU thresh-
olds at [0.3:0.7:0.1] and [0.1:0.5:0.1] respectively. For Ac-
tivityNet and HACS, we report the result at IoU thresh-
old [0.5, 0.75, 0.95] and the avearge mAP is computed at
[0.5:0.95:0.05].

4.1. Implementation Details

TriDet is trained end-to-end with AdamW [31] opti-
mizer. The initial learning rate is set to 10−4 for THU-
MOS14 and EPIC-KITCHEN, and 10−3 for ActivityNet
and HACS. We detach the gradient before the start bound-
ary head and end boundary head and initialize the CNN

Table 3. Comparison with the state-of-the-art methods on EPIC-
KITCHEN dataset. V. and N. denote the verb and noun sub-tasks,
respectively.

Method 0.1 0.2 0.3 0.4 0.5 Avg.

V.

BMN [21] 10.8 8.8 8.4 7.1 5.6 8.4
G-TAD [43] 12.1 11.0 9.4 8.1 6.5 9.4

ActionFormer [47] 26.6 25.4 24.2 22.3 19.1 23.5
TriDet 28.6 27.4 26.1 24.2 20.8 25.4

N.

BMN [21] 10.3 8.3 6.2 4.5 3.4 6.5
G-TAD [43] 11.0 10.0 8.6 7.0 5.4 8.4

ActionFormer [47] 25.2 24.1 22.7 20.5 17.0 21.9
TriDet 27.4 26.3 24.6 22.2 18.3 23.8

weights of these two heads with a Gaussian distribution
N (0, 0.1) to stabilize the training process. The learning
rate is updated with Cosine Annealing schedule [30]. We
train 40, 23, 19, 15 and 13 epochs for THUMOS14, EPIC-
KITCHEN verb, EPIC-KITCHEN noun, ActivityNet and
HACS (containing warmup 20, 5, 5, 10, 10 epochs).

For ActivityNet and HACS, the number of bins B of the
Trident-head is set to 12, 14 and the convoluntion window
w is set to 15, 11 and the scale factor k is set to 1.3 and
1.0, respectively. For THUMOS14 and EPIC-KITCHEN,
the number of bins B of the Trident-head is set to 16 and
the convoluntion window w is set to 1 and the scale factor k
is set to 1.5. We round the scaled windows size and take it
up to the nearest odd number for convenience. We conduct
our experiments on a single NVIDIA A100 GPU.

4.2. Main Results

THUMOS14. We adopt the commonly used I3D [7] as
our backbone feature and Tab. 1 presents the results. Our
method achieves an average mAP of 69.3%, outperform-
ing all previous methods including one-stage and two-stage
methods. Notably, our method also achieves better perfor-
mance than recent Transformer-based methods [9, 27, 33,
35, 47], which demonstrates that the simple design can also
have impressive results.

HACS. For the HACS-segment dataset, we conduct exper-
iments based on two commonly used features: the official
I3D [7] feature and the SlowFast [14] feature. As shown
in Tab. 2, our method achieves an average mAP of 36.8%
with the official features. It is the state-of-the-art and out-
performs the previous best model TadTR by about 4.7% in
average mAP. We also show that changing the backbone to
SlowFast can further boost performance, resulting in a 1.8%
increase in average mAP, which indicates that our method
can benefit from a much more advanced backbone network.

EPIC-KITCHEN. On this dataset, following all previ-
ous methods, SlowFast is adopted as the backbone feature.
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Table 4. Comparison with the state-of-the-art methods on
ActivityNet-1.3 dataset.

Method Backbone 0.5 0.75 0.95 Avg.

PGCN [46] I3D 48.3 33.2 3.3 31.1
ReAct [35] TSN 49.6 33.0 8.6 32.6
BMN [21] TSN 50.1 34.8 8.3 33.9

G-TAD [43] TSN 50.4 34.6 9.0 34.1
AFSD [20] I3D 52.4 35.2 6.5 34.3
TadTR [27] TSN 51.3 35.0 9.5 34.6
TadTR [27] R(2+1)D 53.6 37.5 10.5 36.8
VSGN [49] I3D 52.3 35.2 8.3 34.7

PBRNet [24] I3D 54.0 35.0 9.0 35.0
TCANet+BMN [33] TSN 52.3 36.7 6.9 35.5
TCANet+BMN [33] SlowFast 54.3 39.1 8.4 37.6

TALLFormer [9] Swin 54.1 36.2 7.9 35.6
ActionFormer [47] R(2+1)D 54.7 37.8 8.4 36.6

TriDet R(2+1)D 54.7 38.0 8.4 36.8

The method of our main comparison is ActionFormer [47],
which has demonstrated promising performance in EPIC-
KITCHEN 100 dataset. We present the results in Tab. 3.
Our method shows a significant improvement in both sub-
tasks: verb and noun, and achieves 25.4% and 23.8% aver-
age mAP, respectively. Note that our method outperforms
ActionFormer with the same features by a large margin
(1.9% and 1.9% average mAP in verb and noun, respec-
tively). Moreover, our method achieves state-of-the-art per-
formance on this challenging dataset.

ActivityNet. For the ActivityNet v1.3 dataset, we adopt the
TSP R(2+1)D [1] as our backbone feature. Following previ-
ous methods [9,20,27,33,47], the video classification score
predicted from the UntrimmedNet is adopted to multiply
with the final detection score. Tab. 4 presents the results.
Our method still shows a promising result: TriDet outper-
form the second best model [47] with the same feature, only
worse than TCANet [33] which is a two-stage method and
using the SlowFast as the backbone feature which is not
available now.

4.3. Ablation Study

In this section, we mainly conduct the ablation studies
on the THUMOS14 dataset.

Main components analysis. We demonstrate the effec-
tiveness of our proposed components in TriDet: SGP layer
and Trident-head. To verify the effectiveness of our SGP
layer, we use a baseline feature pyramid used by [20, 47]
to replace our SGP layer. The baseline consists of two 1D-
convolutional layers and shortcut. The window size of con-
volutional layers is set to 3 and the number of channels of
the intermediate feature is set to the same dimension as the

Table 5. Analysis of the Effectiveness of three main components
on THUMOS14.

Method SA SGP Trident 0.3 0.5 0.7 Avg.

1 77.3 65.2 40.0 62.1
2

√
82.1 71.0 43.9 66.8

3
√

83.6 71.7 45.8 68.3
4

√ √
83.6 72.9 47.4 69.3

Table 6. Analysis of computation cost on THUMOS14. Main: All
parts of the model except the detection head. *: Our method with
a normal instant-level regression head.

Method
mAP GMACs Latency

(ms)0.3 0.7 Avg. Main Head All

ActionFormer 82.1 43.9 66.8 30.8 14.4 45.3 224

TriDet∗ 83.6 45.8 68.3 14.5 14.4 28.9 145
TriDet 83.6 47.4 69.3 14.5 29.1 43.7 167

intermediate dimension in the FFN in our SGP layer. All
other hyperparameters (e.g. number of the pyramid layers,
etc.) are set to the same as our framework.

As depicted in Tab. 5, compared with the baseline model
we implement (Row 1), the SGP layer brings a 6.2% abso-
lute improvement in the average mAP. Secondly, we com-
pare the SGP with the previous state-of-the-art method, Ac-
tionFormer, which adopts a self-attention mechanism in a
sliding window behavior [3] with window size 7 (Row 2).
We can see our SGP layer still has 1.5% improvement in
average mAP, demonstrating that the convolutional network
can also have excellent performance in TAD task. Besides,
we compare our Trident-head with the normal instant-level
regression head, which regresses the boundary distance for
each instant. We can see that the Trident-head improves the
average mAP by 1.0%, and the mAP improvement is more
obvious in the case of high IoU threshold (e.g. 1.6% average
mAP improvement in IoU 0.7).

Computational complexity. We compare the computa-
tional complexity and latency of TriDet with the recent Ac-
tionFormer [47], which brings a large improvement to TAD
by introducing the Transformer-based feature pyramid.

As shown in Tab. 6, we divide the detector into two parts:
the main architecture and the detection heads (e.g. classifi-
cation head and regression head). We report the GMACs
for each part and the inference latency (average over five
times) on THUMOS14 dataset using an input with the shape
2304× 2048, following the [47]. We also report our results
using the Trident-head and the normal regression head, re-
spectively. First, from the first row, we see that GMACs
of our main architecture with SGP layer is only 47.1% of
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Figure 6. Effectiveness of window size w and k.

Table 7. Analysis of the number of feature pyramid layers.

#Levels Bin 0.3 0.7 Avg. Bin 0.3 0.7 Avg.

1

16

70.1 15.3 44.5 512 74.2 25.9 53.5
2 77.9 27.8 57.1 256 78.0 29.7 58.0
3 79.8 37.7 61.8 128 80.6 37.1 62.5
4 82.1 42.6 66.1 64 82.7 39.0 64.7
5 82.9 45.7 68.1 32 82.7 44.7 67.4
6 83.6 47.4 69.3 16 83.6 47.4 69.3
7 83.4 46.2 68.9 8 82.7 46.8 68.2

the ActionFormer (14.5 versus 30.8), and the overall la-
tency is only 65.2% (146ms versus 224ms), but TriDet still
outperforms Actionformer by 1.5% average mAP, which
shows that our main architecture is much better than the
local Transformer-based method. Besides, we further eval-
uate our method with Trident-head. The experimental result
shows that our framework can be improved by the Trident-
head which further brings 1.0% average mAP improvement
and the GMACs is still 1.6G smaller than ActionFormer,
and the latency is still only 74.6% of it, proving the high
efficiency of our method.

Ablation on the window size in SGP layer. In this section,
we study the effectiveness of the two hyper-parameters re-
lated to the window size in the SGP layer. Firstly, we fix
k = 1 and vary w. Secondly, we fix the value of w = 1
and change k. Finally, we present the results in Fig. 6 on
THUMOS14 datasets. We find that different choices of w
and k produce stable results on both datasets. The optimal
values are w = 1, k = 5 for THUMOS14.

The effectiveness of feature pyramid level. To study the

Table 8. Analysis of the number of bins.

Bin
THUMOS14 HACS

0.3 0.5 0.7 Avg. 0.5 0.75 0.95 Avg.

4 82.9 71.5 46.3 68.1 55.7 32.3 4.7 33.3

8 83.5 72.9 46.3 69.0 56.2 38.4 11.2 38.0

10 82.8 71.8 46.2 68.1 56.2 38.5 11.1 37.9

12 83.6 72.3 46.2 68.5 56.3 38.4 11.1 38.0

14 83.4 72.6 45.6 68.3 56.7 39.3 11.7 38.6
16 83.6 72.9 47.4 69.3 56.5 38.6 11.1 38.1

20 83.6 71.7 45.8 68.3 56.3 38.6 11.1 38.0

effectiveness of the feature pyramid and its relation with the
number of Trident-head bin set, we start the ablation from
the feature pyramid with 16 bins and 6 levels. We conduct
two sets of experiments: a fixed number of bins or a scaled
number of bins for each level in the feature pyramid. As
shown in Tab. 7, we can see that the detection performance
rises as the number of layers increases. With fewer levels
(i.e. level less than 3), more bins bring better performance.
That is because the fewer the number of levels, the more
bins are needed to predict the action with a long duration
(i.e. higher resolution at the highest level). We achieve the
best result with a level number of 6.

Ablation on the number of bins. In this section, we
present the ablation results for the choice of the number of
bins on the THUMOS14 and HACS datasets in Tab. 8. We
observe the optimal value is obtained at 16 and 14 on the
THUMOS14 and the HACS, respectively. We also find that
a small bin value leads to significant performance degrada-
tion on HACS but not on THUMOS14. That is because the
THUMOS14 dataset aims at detecting a large number of ac-
tion segments from a long video and a small bin value can
meet the requirements, but on HACS, there are more actions
with long duration, thus a larger number of bins is needed.

5. Conclusion
In this paper, we aim at improving the temporal ac-

tion detection task with a simple one-stage convolutional-
based framework TriDet with relative boundary modeling.
Experiments conducted on THUMOS14, HACS, EPIC-
KITCHEN and ActivityNet demonstrate a high generaliza-
tion capability of our method, which achieves state-of-the-
art performance on the first three datasets and comparable
results on ActivityNet. Extensive ablation studies are con-
ducted to verify the effectiveness of each proposed compo-
nent.
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