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Figure 1. We propose 3D human pose estimation given only low-level acoustic signals with a single pair of microphones and loudspeakers.
Given an audio feature frame (right-middle), our method estimates 3D human pose sequences (right-bottom).

Abstract

Given only acoustic signals without any high-level in-
formation, such as voices or sounds of scenes/actions, how
much can we infer about the behavior of humans? Unlike
existing methods, which suffer from privacy issues because
they use signals that include human speech or the sounds of
specific actions, we explore how low-level acoustic signals
can provide enough clues to estimate 3D human poses by
active acoustic sensing with a single pair of microphones
and loudspeakers (see Fig. 1). This is a challenging task
since sound is much more diffractive than other signals and
therefore covers up the shape of objects in a scene. Accord-
ingly, we introduce a framework that encodes multichan-
nel audio features into 3D human poses. Aiming to capture
subtle sound changes to reveal detailed pose information,
we explicitly extract phase features from the acoustic sig-
nals together with typical spectrum features and feed them
into our human pose estimation network. Also, we show

that reflected or diffracted sounds are easily influenced by
subjects’ physique differences e.g., height and muscularity,
which deteriorates prediction accuracy. We reduce these
gaps by using a subject discriminator to improve accu-
racy. Our experiments suggest that with the use of only
low-dimensional acoustic information, our method outper-
forms baseline methods. The datasets and codes used in this
project will be publicly available.

1. Introduction

The ability to capture human behavior, such as 3D poses,
has many potential applications. Over the last decade,
many different technologies have been proposed to infer
human poses, including conventional cameras [4, 8], tran-
sient light [16], radio frequency (RF) or WiFi measure-
ments [22, 33]. However, the optical signals are easily oc-
cluded and restricted by poor lighting conditions, such as

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Method Modality Occluded by Required semantics level Invasiveness
RGB-based [4, 8] RGB Any opaque objects High (image required) Non-invasive

RF/WiFi-based [1, 22, 30, 33] RF/WiFi Metal, water Low Non-invasive
Audio to joint [10, 21, 28] Audio Soundproof room High (speech required) Non-invasive

Audio to hand micro gesture [20] Audio Soundproof room Low Invasive
Ours Audio Soundproof room Low Non-invasive

Table 1. Comparisons between existing pose estimation methods and our method.

a dark room or a night road. RF/WiFi signals are also oc-
cluded by water or metal. In addition, the use of wireless
signals is often limited, as electronic devices that transmit
signals must remain off during flights as well as in hospital
rooms with sensitive electronic systems.

Audio signals, which exist everywhere in our world,
have the potential to solve these fatal limitations. We can
listen to sounds regardless of the lighting conditions, and
acoustic signals do not affect electronic systems. If we use
ultrasonic waves, which are outside of our audible range,
we are not even aware of them. Moreover, since acoustic
signals have a much longer wavelength (meter scale) than
visible light (nanometer scale) and RF/WiFi signals (cen-
timeter scale), the signals are less occluded.

Some very recent studies have used acoustic signals
in cross-modal analyse with visual information, including
scene geometry estimation [5, 26], action recognition [9],
visual semantic segmentation [15], and even object under-
standing [27]. Another line of studies uses acoustic signals
for sensing humans, such as active hand gesture monitor-
ing [20]. Papers that are more relevant to ours are those that
infer human joints by converting human speech or music
to gestures [10, 21, 28]. These methods use human speech
as a clue for recovering human gestures/motions. However,
these methods utilize semantics of sounds, for instance, hu-
man voice, music, speech, or sounds of specific actions,
which raise privacy issues. In this paper, we define such
signals with the semantics of sounds as “high-level sig-
nals” and signals that do not include any of the semantics
of sounds as “low-level signals.” So far, no methods have
been proposed to capture whole human 3D poses given only
low-level acoustic signals.

The previous studies raised the following three ques-
tions. First, do low-level acoustic signals have enough in-
formation to reconstruct whole 3D human poses? Second,
what is the smallest set of hardware needed for the task?
And third, which ones lend themselves to effective infer-
ence algorithms?

To answer these questions, this paper examines a new
task, 3D human pose estimation from only low-level acous-
tic signals. This is a challenging task. The wavelengths of
acoustic signals are much longer than optical or RF/WiFi
signals. While it could be advantageous for occlusion is-
sues, a longer wavelength is diffractive, making it difficult
to distinguish small pose changes. In this work, we explore

a solution to this task with minimal equipment configura-
tion using only a single ambisonics microphone (Fig. 1),
as opposed to previous methods, which use high-definition
RGB(D) cameras and RF/WiFi signals from multiple trans-
mitters and receivers. While we do use multiple channels,
our microphone is located in a specific single position and
has far fewer geometry clues to map the signals to human
activities. Moreover, unlike most previous works that have
utilized higher-level semantics, such as human speech, mu-
sic, or a dog barking, our low-level signals do not represent
any of this kind of information directly.

To capture human status effectively under such a se-
vere condition, we propose a convolutional neural net-
work (CNN)-based framework designed to employ multi-
channel audio features as its inputs and directly output
the predicted 3D body part joint locations. If humans oc-
clude acoustic signals emitted from loudspeakers, this sub-
tle “shifts” in arrival time of the incoming acoustic signals
will occur. Our network model captures these small shifts
by explicitly integrating phase features that represent the
time difference of arrival (TDOA) and utilizing them to in-
fer human behavior. Additionally, we discover that sounds
reflected or diffracted on subjects’ bodies tend to be affected
by their physique differences, such as height and muscular-
ity. Our proposed dataset contains sound data of both men
and women, and the physical features vary among subjects.
This difference causes our model to over-fit on each sub-
ject’s physical characteristics and prevents it from general-
izing well to unseen subjects. Therefore, we apply adver-
sarial learning to this task using the subject discriminator’s
prediction uncertainty and create subject-invariant features.

Since no previous method could tackle this task, there
is no public dataset available. Therefore, to train our
network, we set up an active acoustic-sensing system us-
ing a single pair of ambisonics microphones and loud-
speakers. Then, we actively record the sounds of a time-
stretched pulse (TSP) signal emitted from the speaker, syn-
chronized with motion capture (Mocap) data. These data
were recorded in both (i) an anechoic room with little effect
of reverberation and (ii) a classroom with a lot of noise.

To summarize, our contributions are as follows: (1) We
are the first to tackle a new task: 3D human pose estimation
given only low-level audio signals; (2) We describe a net-
work architecture that directly maps acoustic features to 3D
human poses; (3) We increase prediction accuracy by using
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adversarial learning and creating human-physique-invariant
features; (4) Since there are no previous methods to carry
out this task, we describe how to create new datasets to train
our network model; and (5) We conduct extensive experi-
mentation and show the effectiveness of our method.

2. Related Work
Table 1 summarizes where our method is positioned

among existing approaches that are relevant to ours. This
section introduces them and describes other relevant ap-
proaches in detail.
Human Pose Estimation with Different Modalities. Es-
timating human poses has long been a research topic in the
computer vision community [4, 8]. Although a majority of
existing work leverages the fact that the human body is vis-
ible to cameras, this line of research includes a wide variety
of solutions in terms of hardware systems and reconstruc-
tion algorithms that operate in different parts of the spec-
trum. Besides the visible spectrum (380–740 nm) [16] or
near-IR (740–1500 nm) light [6], WiFi and RF (centimeter
scale) [22, 33] or even sound waves (meter scale) [20] are
used to estimate human behavior.

Operating in a specific part of the spectrum affects the
nature of the signal that can be used for human activity
or pose estimation. For example, visible signals are eas-
ily restricted by poor lighting conditions (e.g., a dark room,
night road) and occluded by other objects (e.g., buildings,
etc.). RF or WiFi signals enable through-the-wall pose esti-
mation [1, 22, 33] since longer electromagnetic waves tend
to pass through objects; however, these signal spectra are
also occluded by some materials (i.e., metal, water), and
their use is often limited to being used. For example, elec-
tronic devices that transmit signals must be turned off dur-
ing flights as well as in hospital rooms with sensitive elec-
tronic systems.

Acoustic signals have the potential to overcome the is-
sues raised above. They are less affected by occlusion than
other signals due to their longer wavelength. Additionally,
acoustic signals are rarely prohibited, unlike wireless sig-
nals. However, this also presents a number of fundamental
limitations when estimating human poses. For example, the
spatial and angular resolution must be limited, making it
hard to distinguish small differences in poses. We will ad-
dress these limitations and explore the potential of active
acoustic sensing for 3D human pose estimation.
Acoustic Sensing for Capturing Human Behavior. In this
paper, we leverage active acoustic sensing using a single
pair of ambisonics microphones and loudspeakers. Hence,
our work is closely related to studies that leveraged acous-
tic sensing for capturing human behavior. Passive acoustic
sensing has been used for gesture recognition [7,11,12], on-
body sensing [13], activity [9], or even body joints estima-
tion [10,21,28]. However, these methods require their users

to put on wearable devices [7, 11–13], and use high-level
acoustic information, such as human speech [10, 21, 28]
or daily activity sound [9]. These signals contain a great
deal of information, which raises privacy issues. Moreover,
these approaches basically reconstruct “gestures” and are
thus not designed to estimate more “subtle” differences in
poses. This is because passively obtained acoustic signals
often lack enough information to recover finer human poses.
Active acoustic sensing has also been researched to pro-
vide a more detailed level of gesture recognition [20,25,32].
However, these methods also require the placement of de-
vices on a part of a human body to capture its movement
or position. Inspired by these previous works, we capture
3D human poses in a non-invasive manner, given low-level
acoustic signals only.

3. Methodology

Given only a sequence s = [s1, s2, ..., sT ] of low-level
acoustic signals, our goal is to infer the 3D human pose
sequence p = [p1, p2, ..., pT ], where pt represents the 3D
joint position of frame t. Here, T indicates the number of
samples. An overview of our method is provided in Fig. 2.
Our proposed framework consists of an acoustic feature ex-
traction module that encodes raw acoustic signals into a
sequence of acoustic feature vectors a = [a1, a2, ..., aT ]
and 3D human pose estimation network f . The following
subsections describe the active acoustic sensing (Sec. 3.1)
and acoustic features that are fed into f (Sec. 3.2). Then,
Sec. 3.3 explains our 3D human pose estimation network.

3.1. Active Acoustic Sensing

Suppose we have a known sound source and a micro-
phone. The sound emitted from the source bounces off
objects in space and reaches the microphone. Hence, the
recorded signal reflects information about the structure of
the scene and the position and shape of the objects in the
scene. The information we want is the change made to the
original sound generated by the source when it is captured
by the microphone, which is equivalent to the problem of
identifying the room impulse response (RIR), the system
transfer function of the environment. Since measuring the
RIRs for any given state in advance is impossible, we esti-
mate them using our network in an active acoustic sensing
manner.

Following a successful existing active acoustic sensing
technique [20], we transmit a modulated acoustic signal
and pre-process the received signal to emulate RIR. This
is a similar approach to the “chirp signal” generally applied
to FMCW radar, which transmits linear sweep frequency-
modulated signals. We specifically use a time-stretched
pulse (TSP) as our sound s′(t), which is a kind of swept
sine wave designed for RIR measurement.
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Figure 2. The overview of our framework for acoustic signal-based 3D human pose estimation.
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where N is the entire waveform length (number of sam-
ples), m is a parameter that determines the pulse length of
the TSP, k is a parameter that determines a frequency, and
the superscript ∗ represents a complex conjugate. The in-
verted TSP signal is defined as a complex conjugate of the
TSP signal in a frequency range. For measurement, s′(k)
is subjected to inverted Fourier conversion and thereby con-
verted into a signal that takes time as a parameter. The con-
verted signal is reproduced and used. In our system, we
emitted a TSP signal with a sampling rate of 48 kHz, and
its entire waveform length N was set to 4096.

To effectively capture the 3D structure of the scene, we
used a single ambisonics microphone, which consists of
four microphones. Each acoustic signal was synchronized
and exported as a B-format that has four channels of signals
representing a different microphone polar pattern, pointing
in a specific direction.

3.2. Acoustic Signal Features

To generate the sequence of the audio feature vectors
a = [a1, a2, ..., aT ] as input to our network, one straight-
forward way would be to directly feed raw signals into a
CNN as attempted before in [2] for audio feature learning.
However, the multichannel audio that we use is far richer
than the monaural sound assumed in their work; hence, it is
more important to extract the information needed to make
learning stable. Therefore, we extract the (i) intensity vector
I intensity that has b×3 dimensions, including three channels
of (x, y, z)-directional components, and (ii) the log Mel
spectrum I logmel with b × 4 channels that are often used
for sound source localization [31] and audio event detec-
tion, respectively. Here, b denotes the number of frequency
bins. Since the range of each signal is different between
the intensity vector and log Mel spectrum, we standardized
them before concatenation. The same standardization is ap-

plied in validation and testing. The final a is then computed
to be a b×7 tensor. We use b = 128 in our implementation.
Intensity Vector. The acoustic signal s(t) that we capture
includes four channels: w, x, y, and z. These four channels
of signals include omni-directional, i.e., XYZ-directional
components. The instantaneous sound intensity vector can
be expressed as Î = pv, where p is the sound pressure ob-
tained from w, and v = (vx, vy, vz)

T is the particle veloc-
ity vector obtained from x, y, and z. This intensity vec-
tor represents the acoustical energy direction of a sound
wave. Hence, it can be used to estimate the direction of
arrival (DoA) of the sound source, which would be a clue to
perceiving the scene geometry. In order to concatenate the
intensity vector and the log Mel spectrum that we describe
later, following [3], we compute the intensity vector in the
short-time Fourier transform (STFT) domain and the Mel
space as follows:

Î(f, t) = R

W ∗(f, t) ·

 X(f, t)
Y (f, t)
Z(f, t)

 , (2)

Î ′(k, t) = Hmel(k, f)
I(f, t)

||I(f, t)||
, (3)

where W,X, Y, Z are the STFT domain of w, x, y, z, re-
spectively. R{·} indicates the real part, ∗ denotes the con-
jugate, k is the index of the Mel bins, Hmel is the Mel-bank
filter, and || · || represents the L1 norm. We then standard-
ize Î(k, t) to extract final intensity vector I intensity that we
input into the network.
Log Mel Spectrum is an acoustic time-frequency repre-
sentation and is known for its good performance as the input
of a convolutional neural network. The Fast Fourier Trans-
form (FFT) is performed for the received audio signal s(t),
and we convert it to the Mel scale as follows:

Imel(k, t) = Hmel(k, f) · F(s(f, t)), (4)

where k is the index of the Mel bins, Hmel represents the
Mel-bank filter, and F is the Fourier transform operation.
We then convert it to log scale and standardize it to obtain
the feature I logmel, which is also fed into the network.
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3.3. 3D Human Pose Estimation Network

Next, we introduce our 3D human pose estimation net-
work f that outputs human pose p = f(a) given acous-
tic feature vector a. The network f includes the subject
discriminator module that reduces subjects’ physique dif-
ferences, aiming to increase the generalization ability for
unseen subjects.
Pose Estimator Network. Following a previous work us-
ing acoustic signals, we use a similar architecture to [10],
which consists of a sequence of acoustic features as input
and time-wise U-Net for temporal consistency-aware pose
estimation. Unlike this previous work, we leverage the in-
tensity vector so that the network can infer finer human
poses based on the direction of sound arrival. In addition,
compared with [10], our datasets contain more dynamic
movement. Therefore, we changed the time scale (time
window for Fourier transform and sequence length). More
specifically, the network takes 12 frames of the acoustic fea-
ture sequence as input, which has a size of 7 × 128 × 12.
It is then fed into a 2D CNN with four blocks to generate
temporal consistency-aware acoustic feature ϕ with a size
of 4096 × 12 × 1. Then, each row of ϕ is fed into a U-Net
shaped network with five 1D CNN layers to generate pose
feature ρ, and finally, after going through four 1D CNN lay-
ers, the network output pose p with a size of 12×63, which
consists of 3D ×21 joints for each 12 frames.

With the variable θ that contains all trainable parameters,
the training objective uses Mean Squared Error (MSE) loss

Lpose(θ) =
1
T Σ

T
i (p̂i − pi)

2. (5)

Here, L denotes the loss function, and p̂ represents the
ground-truth position of the pose. In addition to Lpose, fol-
lowing [18], we also use smooth loss to make our prediction
smoother:

Lsmooth(θ) =
1

T−1Σ
T
i=2||(p̂i − p̂i−1)− (pi − pi−1)||. (6)

Subject Discriminator Module. Regarding acoustic
signal-based human behavior estimation, it is reported that
the estimation performance is highly dependent on do-
main [17, 18]. Here, domain expresses a pair of human
bodies and a recording environment. With the presence of
such a difference of domain (hereafter, domain gap), predic-
tion accuracy is easily affected by subjects’ physique dif-
ferences, and hence our model has a reduced generaliza-
tion ability to predict the joint positions of unseen subjects.
Therefore, we introduce “subject discriminator,” an adver-
sarial learning-based module, to remove subject-specific
features and leverage only human-invariant information.

Our discriminator has a single fully connected layer. The
input of the discriminator is the output of i-th hidden layer
of the U-Net-shaped network inside f . As shown in Fig. 2,
we set this i to the number of the most pooled layer so

Ambisonics 
Microphones

Loudspeakers

Motion Capture 
Cameras

(a) (b)

Ambisonics 
Microphones

Loudspeakers

Motion Capture 
Cameras

Figure 3. The setup of our experiments in (a) an anechoic chamber,
and (b) a classroom.

that we can leverage information about the entire sequence.
Given the hidden layer output, the discriminator outputs
subject distribution S. Based on the S, our discriminator
is trained using cross-entropy loss so it can distinguish each
subject. Unlike previous work [17], we leverage the uncer-
tainty of the subject discriminator’s prediction, namely, the
standard deviation of its output. We define the standard de-
viation (STD) loss as follows:

Lstd = 1
T ′Σ

T ′

n=1STD(Sn), (7)

where Sn and T ′ denote the n-th sequence’s prediction
regarding subject distribution and the number of total se-
quences respectively. The function STD(·) computes the
standard deviation of the elements. Based on Eqs.(5), (6),
and (7), our final loss function is represented as follows with
the weight parameters wα, wβ , and wγ :

L = wαLpose + wβLsmooth + wγLstd. (8)

4. Experimental Settings
4.1. Datasets

Motion Capture Suits Dataset. We captured a large
set of acoustic measurement data synchronized with Mocap
data captured with eight cameras (OptiTrack Prime 17W).
As shown in Fig. 3, we used a pair of ambisonics micro-
phone (Zoom H3-VR) and loudspeakers (Sanwa Supply
MM-SPU9BK). The acoustic signals were captured in both
(a) an anechoic chamber environment, where the reverbera-
tion or other noise can be reduced, and (b) an ordinal class-
room in a university containing noises and reverberation.
Both datasets are one hour in length (equal to 3.6K frames
at 10 fps). They consist of eight subjects1 who were asked
to wear the Mocap suit and stand between a microphone and
loudspeakers while the subjects performed the actions.

The subjects performed various complex poses: walking,
sitting, bending forward, raising both hands, and transition-
ing between all of these motions. For pose ground-truth
annotation, we used the skeleton of 21 joints, including the

1All subjects agreed that their Mocap data and captured acoustic signals
could be used in this research.
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Table 2. Quantitative experimental results in the anachoic chamber environment (left half) and the classroom environment (right half).

Anechoic Chamber Environment Classroom Environment

Single Subject Cross Subject Single Subject Cross Subject

Method RMSE MAE
PCKh
@0.5 RMSE MAE

PCKh
@0.5 RMSE MAE

PCKh
@0.5 RMSE MAE

PCKh
@0.5

(↓) (↓) (↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓) (↓) (↑)

Ginosar et al. [10] 0.44 0.23 0.90 0.83 0.51 0.60 0.58 0.30 0.84 0.95 0.56 0.68
Jiang et al. [18] 0.90 0.44 0.73 0.96 0.55 0.62 0.58 0.34 0.73 1.02 0.63 0.49
Ours (Method’s best) 0.42 0.22 0.90 0.73 0.45 0.72 0.54 0.28 0.85 0.93 0.55 0.67

head, neck, shoulders, arms, forearms, hands, hips, legs,
feet, toes, pelvis, and spine. These datasets include subjects
with various physical scales. Therefore, we applied addi-
tional translation so that the position of the hips sits at the
origin of our coordinates, followed by normalization using
the length between the spine and hips. These datasets were
used for both training and testing.

In Plain Clothes Dataset. To further showcase our
method’s applicability, we also tested our method on the
acoustic signal captured with subjects not wearing Mo-
cap suits. Although audio signals do pass through normal
clothes, the signal attenuation or diffraction may change,
depending on what the subjects put on and whether their
clothes are tight-fitting. Two subjects were asked to put
on plain clothes and act the same as those wearing Mo-
cap suits. Since these datasets do not include ground-truth
poses, these were only used for testing purposes.

4.2. Baseline Methods

There is no existing work on 3D full-body human pose
estimation from low-level acoustic signals without any envi-
ronmental sounds, such as human speech or music. There-
fore, we compared our network model against the following
similar approaches to ours; (i) Ginosar et al. [10] that uses
audio signals like ours but includes high-level signal, i.e.,
human speech, and (ii) Jiang et al. [18] one of the state-
of-the-art methods for capturing 3D human poses from ac-
tively captured low-level signals, i.e., WiFi signals. Both
networks were trained with our datasets for fair architecture
comparisons. To this end, we modified the input and the
last layer of the baseline network so that they can use our
acoustic signals as input, and outputs 3D poses. For Jiang et
al.’s method, although in their original work they predicted
angles between joints thus getting positions using known
body shapes, we modify the method to directly predict the
positions of joints. This is because as mentioned in 4.1, we
apply positional normalization with the root position to the
samples, making the skeleton structure have a certain level
of correctness without using any known body shape.

4.3. Evaluation Metrics

We used three types of metrics to evaluate our method:
root mean square error (RMSE), mean absolute er-
ror (MAE), and percentage of correct key points (PCK).
RMSE and MAE measure the average magnitude of the er-
ror and the absolute differences between predicted and ac-
tual observation of each human joint. PCK measures the
percentage of the predicted joint locations that are within a
specific range from the ground truth. Specifically, this pa-
per applied the PCKh@0.5 score, which uses a threshold of
50% for the head–neck bone link.

4.4. Implementation Details

Audio Signal Features. We used librosa [24] as an audio
signal processing library to extract the log Mel spectrum.
We sampled acoustic frames to extract features at 20 fps.
Networks and Training. In all experiments, we used
Adam [19] to optimize our network. We set the learning
rate to 0.003 and 0.001 with and without the subject dis-
criminator module respectively. The network function typ-
ically converges after 100 and 30 epochs in single-subject
and cross-subject settings, respectively. As for weight pa-
rameters, we set wα = wβ = 1.0. wγ = 0.5 and wγ = 1.0
were set for an anechoic chamber and classroom environ-
ment, respectively. We set wγ = 0.5 for our model without
the intensity vector, which will be described in an ablative
analysis.

5. Experiments and Results

We conducted five different experiments to investigate
our method’s efficacy: (1) a comparison against existing
pose estimation baselines; (2) an ablation study to show the
importance of the intensity vector and subject discriminator,
which are our main technical contributions; (3) a compari-
son between our subject discriminator loss and the existing
discriminator loss method; and (4) an investigation of the
trade-off between the length of the time window and estima-
tion accuracy. While these four tests used a motion capture
suit dataset that includes ground truth, we also conducted
(5) qualitative analyses with the “in plain clothes” dataset.
Comparison against baseline methods. We compared our
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Figure 4. Qualitative results with the motion capture suit dataset.
While the baseline method failed to reconstruct finer poses, our
method output closer poses to the ground truth.

method against the baselines with the two different datasets
to show our method’s practicality with sound noises and re-
verberation. Both experiments were conducted in two dif-
ferent settings: (i) a single-subject setting, using the same
subject for both training and testing; and (ii) a cross-subject
setting, using different subjects for training and testing. For
the single-subject setting, we trained our model for each
subject. We used an 80:20 train-test data split in a time-
series manner. For the cross-subject setting, we trained
models on seven subjects and tested them on the other sub-
ject. Please note that the subject discriminator module was
only introduced for the cross-subject setting. This is be-
cause the single-subject setting does not require any physi-
cal differences between the subjects to be removed.

Table 2 (left) shows the quantitative results. Here, we
compare our method’s best model (i.e., our method with
intensity vector, except for cross-subject/classroom. Sub-
ject discriminator is also introduced in a cross-subject set-
ting) with baselines. The reason why the intensity vector is
removed in a cross-subject/classroom setting is explained
in the next experiment for ablative analysis. As shown
in the table, our method outperformed other baselines in
all the settings except PCK@0.5 in the classroom/cross-
subject setting. Fig. 4 shows the qualitative results of the
cross-subject setting2. As the green arrows show, Ginosar
et al.’s model was not able to reproduce finer human poses
like “hand rising.” Moreover, Jiang et al.’s model often pre-
dicted the average shape. In contrast, our method outputs
poses that were closer to ground truth. Hence, our network
model with the intensity vector and subject discriminator

2Single-subject results are given in the supplementary materials.

Table 3. Ablation study.

Anechoic Chamber Classroom

Method RMSE MAE
PCKh
@0.5 RMSE MAE

PCKh
@0.5

(↓) (↓) (↑) (↓) (↓) (↑)

Ours 0.73 0.45 0.72 0.97 0.57 0.64
Ours w/o SM 0.79 0.48 0.68 0.98 0.57 0.67
Ours w/o IV 0.77 0.47 0.68 0.93 0.55 0.67

Table 4. Comparison between STD and ordinal discriminator loss.

Method RMSE MAE PCKh@0.5
(↓) (↓) (↑)

Ours (Ld [17]) 0.78 0.47 0.68
Ours (Lstd) 0.73 0.45 0.72

module perceives finer poses of the unseen subject com-
pared with the baseline networks.
Ablative Analysis. This ablation test investigated the ef-
fect of (a) using an intensity vector and (b) introducing a
subjective discriminator module, which are our main tech-
nical contributions. As shown in Table 3, in the anechoic
chamber environment, our model reported the best score
compared with both our model without the subject discrim-
inator module (denoted as Ours w/o SM) and our model
without the intensity vector (denoted as Ours w/o IV), indi-
cating that both essences contributed to improving the esti-
mation accuracy. In the classroom environment, Ours w/o
IV outperformed the other implementations. We believe
that this is because, unlike an anechoic chamber, a nor-
mal classroom contains various noises and reverberations,
which makes the intensity vector too noisy to capture the
arrival direction of the sound precisely.
Effect of standard deviation loss on the subject dis-
criminator module. The previous paragraph explained
that our subjective discriminator module contributes to total
scores. However, one might wonder if our standard devia-
tion (STD) loss Lstd is more effective than other discrimina-
tors. Here, we compare the performance of the model with
our STD loss compared against the discriminator used in
the previous work [17] in a cross-subject setting in the ane-
choic room environment. The previous work [17] utilizes
environment-invariant features and incorporates the nega-
tive cross-entropy loss of the discriminator into the final ob-
jective. We denote this loss function with their discrimina-
tor as Ld, and we used it in place of Lstd for comparison.
For Ld, we set wγ = 0.1.

The results are shown in Table 4. Based on these results,
our method with the subjective discriminator that uses Lstd

(denoted as Ours(Lstd)) outperformed the method with Ld

(denoted as Ours(Ld)), which indicates that our loss Lstd

works more effectively. Also, Fig. 5 illustrates that our sub-
jective discriminator module removed sample feature differ-
ences among varied subjects. Samples from three different
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Figure 5. The intermediate outputs of three subjects.

subjects, including 2 males and 1 female, were dimension-
ally reduced into 2D. As shown in the figure, the samples
without any subject discriminator (left) and those with Ld

(middle) exhibited large differences among subjects, which
were successfully removed in samples with Lstd (right).
Investigation of FPS for Feature Extraction. As de-
scribed in 3.2, we extracted the acoustic features at a fixed
window length (frame rate). A longer window length (i.e.,
lower frame rate) provides more information per window
due to the increase in the number of samples, but at the
same time, the temporal resolution per window decreases,
which may result in degradation of the estimation accuracy.
We empirically investigated the optimal window length. Ta-
ble 5 shows the results at 20, 30, and 40 fps in an anechoic
room and in the cross-subject setting. As the table shows,
the model trained with the features at 20 fps achieved the
highest performance, and PCKh@0.5 decreased as fps in-
creased. For RMSE and MAE, there was no significant
negative trend as fps increased. However, note that our
model trained at 40 fps still outperformed the baseline mod-
els trained at 20 fps (see Table 2 for the baseline performam-
nce), which shows the efficacy of our model.
Evaluation with In Plain Clothes Dataset. To show the
applicability of our approach to real-world data, we fur-
ther tested our method on the “in plain clothes” dataset de-
scribed in Sec. 4.1, in which the subjects were asked not
to wear Mocap suits in an anechoic chamber environment.
As shown in Fig. 6, in the cross-subject setting, our method
produced better poses than the baselines in various cases,
including “T-pose” (see the first line with green arrow), and
successfully avoided average prediction (see the second line
with a green arrow).

Additionally, we employed the Strided Transformer [23]
as an image-based pose prediction model to obtain pseudo
labels for our plain clothes dataset within a classroom en-
vironment. The results are displayed in Table 6, illustrat-
ing practicality in plain clothes and noisy settings. The
Strided Transformer was trained using Human 3.6M [14]
and HumanEva-I [29] datasets, which have slightly differ-
ent definitions regarding the positions of each joint com-
pared to our Mocap datasets. Furthermore, this image-
based model introduces some errors in the z-dimension.
Consequently, the results in 6 contain some unavoidable er-
rors; thus, please consider this quantitative data as a refer-
ence only.

Table 5. Investigation on FPS for feature extraction.

Method RMSE MAE PCKh@0.5
(↓) (↓) (↑)

Ours (FPS = 20) 0.73 0.45 0.72
Ours (FPS = 30) 0.81 0.50 0.68
Ours (FPS = 40) 0.76 0.46 0.66

Table 6. Quantitive result on our plain clothes dataset

Method RMSE (↓) MAE (↓)

Ours best 1.59 1.09
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Figure 6. Qualitative pose estimation results with the “in plain
clothes” dataset.

6. Limitations
This paper explored the ability to capture human be-

havior using low-level acoustic signals. While we showed
promising results in this paper, there are some limitations.
For sensing, we emitted TSP signals within the audible
range of signal frequency. However, we plan to test our
system with signals over 20 kHz, which are inaudible to the
human ear, and hence the approach can be entirely silent for
the user.

7. Conclusion
This work proposes a framework to infer 3D poses of hu-

mans, given only low-level acoustic signals. Our framework
uses audio features that include the direction of arrival of the
sound as well as signals that mimic the non-linear human
ear’s perception of sound. We show for the first time that it
is possible to use low-level audio signals to obtain a high-
level understanding of human behavior aided by the power
of the data-driven approach. Further, we found that acous-
tic features are dependent on the subject’s physique and
proposed subject discriminator module to extract subject-
invariant features. Although more research is necessary to
make this approach practical, we believe that this prelim-
inary work offers a new possibility for acoustic inference
of essentially visual information and a remarkable potential
for higher-level reasoning based on acoustic measurement.
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