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Figure 1. Visualization of 3D shape generation for various categories using SDF-Diffusion. SDF-diffusion gradually removes
the Gaussian noise and generates high-resolution 3D shapes in the form of an SDF voxel by a two-stage framework. Unlike previous
methods, which use point clouds, we can generate 3D meshes without concern of complex post-processing. For visualization purposes, we
show less-noise data instead of the initial Gaussian noise.

Abstract

We propose a 3D shape generation framework
(SDF-Diffusion in short) that uses denoising dif-
fusion models with continuous 3D representation via
signed distance fields (SDF). Unlike most existing meth-
ods that depend on discontinuous forms, such as point
clouds, SDF-Diffusion generates high-resolution 3D
shapes while alleviating memory issues by separating the
generative process into two-stage: generation and super-
resolution. In the first stage, a diffusion-based generative
model generates a low-resolution SDF of 3D shapes.
Using the estimated low-resolution SDF as a condition,
the second stage diffusion model performs super-resolution
to generate high-resolution SDF. Our framework can
generate a high-fidelity 3D shape despite the extreme
spatial complexity. On the ShapeNet dataset, our model
shows competitive performance to the state-of-the-art
methods and shows applicability on the shape completion
task without modification.

*Corresponding author.

1. Introduction
The need for generative modeling of 3D shapes has

rapidly increased due to high demand in various fields, such
as computer vision, graphics, robotics, and content gener-
ation. To synthesize a high-quality 3D shape, numerous
generative approaches have been actively studied, includ-
ing generative adversarial networks (GAN) [1, 7, 8, 18, 20,
40, 51, 62, 71, 85], variational auto-encoders (VAE) [13, 27,
35,45,67], normalizing flows [26,30,60,77], auto-regressive
models [19, 31, 45, 46, 76], and others [61, 74, 75, 80, 84].

Recently, denoising diffusion models (DDM) have
emerged as a promising generative framework in image
generation [10, 16, 22, 39, 47, 63] and speech synthesis [5,
32, 54]. DDM achieves a generative process by gradually
corrupting data through a diffusion process and denoising
through a learned neural network. This network can gen-
erate new realistic data by repeating the denoising process
from the given pure noise. Based on the success of DDM-
based generative models in various domains, several at-
tempts are being made to apply them to the task of 3D shape
generation [41,83,87]. They have applied DDM to generate
new point cloud and have outperformed previous methods.
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However, even though DDM-based 3D generative mod-
els have demonstrated their impressive performance, they
still have limitations to being adopted for real-world prob-
lems. Most previous DDM-based 3D generative models
use point clouds to represent 3D shapes, which limits their
ability to express continuous surfaces of 3D shapes, unlike
mesh representation commonly used in real-world applica-
tions. To resolve this issue, intricate post-processing [2,
24, 25, 52] is required to reconstruct continuous meshes
from point clouds. They require various parameter tun-
ing or additional information (e.g., surface normal at each
point [52]), and a densely sampled point cloud is required
to reconstruct high-quality mesh. However, existing DDM-
based methods for 3D shape generation are based on sparse
point clouds.

In this work, we introduce a new DDM-based generation
framework that generates high-quality 3D shapes through
signed distance fields (SDF) (see Fig. 1). We can view SDF
as a function that takes an arbitrary location as input and
returns a signed distance value from the input location to
the nearest surface of the mesh, and the sign of the value
means whether inside or outside of the shape. We sample
SDF values uniformly from a 3D shape to form a voxel-
shaped SDF. This form has several advantages over point
clouds. It can directly reconstruct mesh through the march-
ing cube algorithm [38] and can utilize convolutional neural
network (CNN) because of its dense and fixed structure.

Based on this voxel-shaped SDF representation, we pro-
pose a novel DDM-based generative model in two-stage
(see Fig. 2). In the first stage, a diffusion-based SDF gener-
ation produces low-resolution SDF for coarse 3D shapes. In
the second stage, we propose a diffusion-based SDF super-
resolution, given the low-resolution SDF of the first stage as
a condition. In particular, since the increasing resolution of
the voxel comes as a significant burden in terms of computa-
tional resources (i.e., due to the curse of the dimension), we
approach this problem by super-resolution in patch-based
learning. Under this scheme, we can iteratively perform
the second stage multiple times with the same structure and
generate further higher resolution of SDF, which is a more
detailed 3D shape. With various experiments, we achieve
state-of-the-art in single-/multi-category 3D shape genera-
tive quality, and our method can be directly converted into
3D meshes, unlike other point cloud-based methods that re-
quire intricate post-processing.

In summary, our contributions are as follows:

• We propose a novel DDM-based generation method that
utilizes a voxel-shaped SDF representation to generate
high-quality and continuous 3D shapes.

• We represent a memory-efficient two-stage framework
composed of low-resolution SDF generation and SDF
super-resolution conditioned on the low-resolution SDF.

In particular, we can iteratively perform super-resolution
to generate higher-resolution SDF.

• SDF-diffusion can be seamlessly extended into
multi-category 3D shape generation and completion,
which shows the flexibility of the proposed method.

2. Related Work
3D Shape representation. Numerous in-depth studies
have been conducted on the representation of 3D shape [8,
43, 44, 48–50, 64, 73, 78, 79, 81]. We can categorize them
into two groups: explicit representations, such as vox-
els [14, 15, 71], point clouds [1, 55, 56], and implicit func-
tions, such as signed distance fields (SDF) [50, 64].

Voxels are widely adapted in various neural networks
due to their intuitive structure and synergy with 3D
CNN [14, 15, 71, 73]. However, it may cause a mem-
ory problem according to the increase in resolution. Point
clouds, which are compact and readily available, are domi-
nant representations with their well-suitability to learn con-
textual information in neural networks [1, 55, 56, 79, 81].
However, it requires post-processing to convert the syn-
thesized point clouds into meshes for real-world applica-
tions [8, 38, 43, 44, 48–50, 78].

Implicit functions view the 3D shape as a set of levels
for a continuous function, which makes it possible to ex-
press a continuous surface [8,44,48–50,64,78]. As a result,
despite their slow interference as they require numerous net-
work operations, these methods are growing in popularity.
In particular, SDF encoded with distance to the nearest sur-
face has some advantages to express sharper reconstruc-
tions [50, 64]. Thus, we exploit SDF voxel representation
to obtain sharper meshes without unnecessary procedures.
3D shape generation. To generate 3D geometry, a va-
riety of frameworks are applied [1, 7, 8, 13, 19, 20, 26, 27,
30, 31, 34, 46, 51, 60, 62, 67, 85]. With such a perspective,
several frameworks are applied to model the distribution
representing a 3D shape, such as GAN-based models [33],
auto-regressive models [66], flow-based models [77], and
implicit functions [43, 50].

For GAN-based 3D generative method, SDF-
StyleGAN [86] extends StyleGAN2 [23] for 3D shape
generation by proposing global and local discriminator that
enables GAN discriminator on SDF. Generative methods,
such as AutoSDF [45], and ShapeFormer [76], propose to
utilize a voxel form of implicit representation (e.g., SDF
and occupancy) for mesh generation through a two-stage.
A two-stage generative strategy reduces required computa-
tional resources by compressing data into a tractable form
(e.g., latent feature) rather than directly dealing with an
original data structure to make a generative model con-
centrate semantically compressed representation and save
computational resources. Motivated by VQ-GAN [12],
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AutoSDF and ShapeFormer apply two-stage generative
method and show impressive performance on conditional
3D shape generation. They utilize an auto-encoder to
convert voxel into compressed latent space and generate
a new shape using the autoregressive model on the latent
space. However, they miss fully utilizing the advantage
of the two-stage generative method because they use a
regression-based auto-encoder unlike VQ-GAN, which
uses GAN and perceptual loss [21]. Unlike the 2D image
generation, there are insufficient research works in percep-
tually plausible auto-encoding methods about 3D shapes,
especially voxel structures; it has difficulties in applying a
two-stage strategy to 3D shape generation.

On the other hand, recent research works propose a
new two-stage generative method [17, 42, 59]. They use
a super-resolution model to up-sample low-resolution data,
and the generation model learns low-resolution data distri-
bution. Instead of training an auto-encoder, these methods
utilize naturally constructed low-resolution forms. Inspired
by this, our method exploits a two-stage framework using
voxel-shaped SDF. Instead of learning the auto-encoder, we
propose a method of generating a coarse 3D shape that is
naturally compressed form in the representation of a low-
resolution voxel. We then generate high-quality 3D shapes
by refining the details of the coarse shape by upsampling
the low-resolution voxel.

Diffusion-Based 3D shape generation. With the suc-
cess of DDM-based generative models in image gener-
ation [10, 16, 47], diffusion-based 3D shape generations
have advanced significantly. In particular, diffusion prob-
abilistic models (DPM) [41] suggest a DDM-based ap-
proach with an auto-encoder architecture built on Point-
Net [55], which compresses point clouds into a latent vec-
tor and then generates new shape latent using normaliz-
ing flows [6, 11]. Point voxel diffusion (PVD) [87] ap-
plies DDM directly on the point clouds by adopting a point
voxel CNN-based network architecture [36], which uti-
lizes both the 3D CNN and PointNet. In addition, point
diffusion-refinement (PDR) [42] proposes a two-stage gen-
erative framework for conditional point cloud generation
task. It generates sparse point clouds by PointNet-based
DDM in the first stage and up-samples the sparse point
clouds to denser ones in a learning-based manner. Moti-
vated by latent diffusion models (LDM) [58], latent point
diffusion models (LION) [83] propose a two-stage approach
with compressed latent point clouds through VAE [29].
LION converts result point clouds into mesh by shapes as
points (SAP) [52]. Despite their great performance, it still
requires a pre-trained SAP model or fine-tuning stage. In
other words, the usability of the above point clouds-based
approaches is limited to be adopted in real-world applica-
tions. To address this issue, we propose a diffusion-based
generative model upon voxel-shaped SDF representation,
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Figure 2. Overview of SDF-Diffusion. The proposed method
consists of two stages. In the first stage, we take as input voxel-
shaped noise xLR

T = ϵLR and generate low-resolution SDF voxel
xLR
0 of new coarse 3D shape through DDM. In the second stage,

conditioned on xLR
0 , we perform super-resolution through another

DDM, which generates high-resolution SDF voxel xHR
0 with fine

and detailed 3D shape.

which can directly reconstruct 3D mesh using zero iso-
surface finding methods [38].

3. Methodology
We propose a generative method for high-resolution 3D

shapes in the form of SDF voxels based on the denoising
diffusion models [16, 63] (SDF-Diffusion in short). To
generate high-resolution samples efficiently, the proposed
method involves two stages: diffusion-based SDF genera-
tion and diffusion-based patch-wise SDF super-resolution
(see Fig. 2 for the overview). In the first stage, the diffusion-
based SDF generation model generates a low-resolution
coarse 3D shape. Given this low-resolution sample, the
diffusion-based SDF super-resolution model progressively
produces high-resolution samples in the second stage. In
other words, we can consider the first stage as a pure
diffusion-based generative model, and the second stage as
a conditional diffusion-based super-resolution model. It is
worth noting that, ideally, the second stage can be repeated
multiple times with the same architecture, which enables us
to generate more high-resolution 3D shapes.

In the following, we briefly explain the background on
DDM in Sec. 3.1. Then, in Sec. 3.2, we describe our method
for generating coarse 3D shapes using a diffusion-based
technique. In Sec. 3.3, we explain how we generate high-
resolution 3D shapes by super-resolving low-resolution cor-
respondence. Training and inference processes for each dif-
fusion model are listed in Algorithm 1 and Algorithm 2.

3.1. Background on Denoising Diffusion Models

DDM is a class of generative models that generates new
samples from a given data distribution by learning the in-
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verse of the noising process [16, 63]. Concretely, starting
from samples from the Gaussian distribution xT , the de-
noising process gradually produces samples with less noise
xT−1,xT−2, . . . , and aims to reach final samples x0, which
is the noise-free final output.
Forward process. The forward process (or diffusion pro-
cess) gradually adds the Gaussian noise to the clean data,
which is the approximate joint posterior q(x1:T |x0). This
diffusion process is represented as a Markov chain:

q(x0:T ) = q(x0)

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (2)

where βt denotes the noise scheduling hyperparameter.
According to [16], the forward process admits sampling

xt at an arbitrary time step t by a closed form:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (3)

where αt = 1 − βt and ᾱt = Πt
s=1αs. Thus, xt can be

directly sampled by:

xt =
√
ᾱtx0+

√
1− ᾱtϵ, ϵ ∼ N (0, I). (4)

Reverse process. The reverse process (or generative pro-
cess) aims to generate samples by gradually inverting in-
finitesimal noise, which is the joint distribution pθ(x0:T ).
This reverse process is defined as a Markov chain with the
learned Gaussian transitions:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (5)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I), (6)

where p(xT ) = N (xT ;0, I) is the standard Gaussian dis-
tribution, µθ(xt, t) indicates a denoising function parame-
terized by θ, σ2

t is a time-step dependant variance, and we
fix σ2

t = 1−ᾱt−1

1−ᾱt
βt, following [16]. We can sample from

p(xT ) and then draw xt−1∼pθ(xt−1|xt) by Eq. (6) as:

xt−1 = µθ(xt, t)+σtϵ, ϵ ∼ N (0, I). (7)

By repeating this process, we can eventually generate x0.
Training objective. Following [16], we can simplify
µθ(xt, t):

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, (8)

where ϵθ(xt, t) is a neural network parameterized by θ that
predicts noise from noisy input xt. Thus, the objective func-
tion compares the difference between the predicted noise
ϵθ(xt, t) and the applied noise ϵ [16]:

L = ∥ϵθ(xt, t)− ϵ∥pp, (9)

where p ∈ {1, 2}. On the other hand, according to [16], it is
possible to modify µθ(xt, t) with a neural network predict-
ing x0 instead of noise ϵ:

µθ(xt, t) = γtfθ(xt, t)+δtxt, (10)

where γt =
βt

√
ᾱt−1

1−ᾱt
and δt =

(1−ᾱt−1)
√
αt

1−ᾱt
, and fθ(xt, t)

is a neural network parameterized by θ that predicts noise-
free data x0. In that case, the objective function becomes:

L = ∥fθ(xt, t)− x0∥pp. (11)

Thus, we use Eq. (11) as our objective function in this work.

3.2. Diffusion SDF Generation

Here, we describe a diffusion-based generative model for
low-resolution 3D shape represented as SDF voxel xLR

0 ∼
q(xLR

0 ) sampled from the real data distribution q(xLR
0 ).

Diffusion-based SDF voxel generation. Specifically,
given a clean data sample xLR

0 , we corrupt xLR
0 with the

same shaped voxel noise ϵLR ∼ N (0, I) sampled from the
standard Gaussian distribution following the forward pro-
cess in Eq. (4):

xLR
t =

√
ᾱtx

LR
0 +

√
1− ᾱtϵ

LR, ϵLR ∼ N (0, I). (12)

Then, a network fLR
θ is trained to predict noise-free data

with MSE objective function like Eq. (11):

LLR = ∥fLR
θ (xLR

t , t, c)− xLR
0 ∥22, (13)

where c is a category label of given data.
During inference, a new SDF voxel is generated by pro-

gressively predicting lesser noisy samples xLR
t−1 with the

trained neural network fLR
θ as t = T, . . . , 1:

xLR
t−1 = γtf

LR
θ (xLR

t , t, c)+δtx
LR
t +σtϵ

LR. (14)

In Eq. (13) and Eq. (14), the category condition c is used
only for multi-category generations.
Network architecture. Our model is built upon a U-
shaped network in SR3 [59], which is a DDM-based super-
resolution method designed for 2D image domain. Thus,
we modify and improve this structure for 3D domain. We
convert 2D-based U-shaped network of SR3 into 3D-based
model by replacing 2D-based convolutional layers with 3D
ones. The network has three layers, and each layer is
composed of several layers of residual blocks and self-
attention [68] and the Swish activation function [57]. The
voxel feature resolution is halved for each layer (e.g., 32 →
16 → 8), and the channel is doubled (e.g., 64 → 128 →
256). A more detailed design of the network architecture is
in the supplementary material.

The timestep t and category condition c are embedded
into a vector z through MLPs following [4, 59]:

z = MLP(PosEnc(
√
ᾱt))+MLP(Embedding(c)), (15)
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Algorithm 1 Training
Stage 1: Diffusion SDF Generation
repeat

(xLR
0 , c) ∼ q(xLR

0 , c) ▷ Sample LR voxel and category label
t ∼ U({1, . . . T LR})
ϵLR ∼ N (0, I)
xLR
t =

√
ᾱtxLR

0 +
√
1− ᾱtϵLR ▷ Noisy voxel at timestep t

θ ← η∇θ∥fLR
θ (xLR

t , t, c)− xLR
0 ∥22

until fLR
θ is converged

Stage 2: Patch-Based Diffusion SDF Super-Resolution
repeat

(x̂HR
0 , c) ∼ q(x̂HR

0 , c) ▷ Sample HR voxel patch and category label
x̂LR
0 ∼ q(x̂LR

0 ) ▷ Sample LR conditional voxel patch
t ∼ U({1, . . . THR})
ϵ̂HR ∼ N (0, I)
x̂HR
t =

√
ᾱtx̂HR

0 +
√
1− ᾱtϵ̂HR ▷ HR noisy voxel at timestep t

θ ← η∇θ∥fHR
θ (x̂HR

t , x̂LR
0 , t, c)− x̂HR

0 ∥11
until fHR

θ is converged

where PosEnc is the sinusoidal positional encoding used
in Transformer [68] and Embedding is the embedding
layer, and the second term is ignored for a single-category
generation. The embedding vector z is inserted into ev-
ery residual block using adaptive group normalization lay-
ers (AdaGN) following [10]. AdaGN is an extension of
group normalization [72] through channel-wise scaling and
shifting w.r.t. normalized feature maps h ∈ Rk×h×w×d,
where k is the number of feature map channels:

AdaGN(h, z) = zs(GroupNorm(h)+zt), (16)

where (zs, zt) ∈ R2×k = MLP(z) is result of an MLP
layer. The detailed network architecture is available in the
supplementary material.

3.3. Patch-Based Diffusion SDF Super-Resolution

We aim to train a conditional diffusion-based super-
resolution model that generates realistic high-resolution
SDF voxel xHR

0 with low-resolution condition xLR
0 .

Patch-based learning scheme. The increase in demand-
ing memory due to the growth of spatial complexity hin-
ders the learning of high-resolution generative models. In-
stead of training on the full high-resolution voxel, we train
our model based on small cube-shaped patches of given in-
put high-resolution voxel xHR

0 ∼q(xHR
0 ) sampled from real

data distribution to reduce memory consumption. We de-
note x̂HR

t as a cube-shaped patch extracted from a random
location of voxel xHR

t , and x̂LR
t is a patch extracted from the

corresponding location of xLR
t . In addition, ϵHR and ϵ̂HR are

voxel-shaped noises sampled from the standard Gaussian
distribution that have the same shape with xHR

t and x̂HR
t re-

spectively. Note that the patch-based operation is optional
during the test phase if GPU has enough memory.

Conditional diffusion-based super-resolution. Similarly
to Eq. (12), the diffusion process for SDF super-resolution

Algorithm 2 Sampling
Stage 1: Diffusion-Based 3D Shape Generation
Input: c: category label (integer)
Output: xLR

0 : generated coarse shape
t = T
xLR
t ∼ N (0, I)

while t ̸= 0 do
ϵLR ∼ N (0, I)
xLR
t−1 ← γtfLR

θ (xLR
t , t, c)+δtxLR

t +σtϵLR

t = t− 1
end while

Stage 2: Patch-Based Diffusion SDF Super-Resolution
Input: c: category label (integer), xLR

0 : low-resolution condition
Output: xHR

0 : generated high-resolution shape
t = T
xHR
t ∼ N (0, I) ▷ Patch is optional during inference phase

while t ̸= 0 do
ϵHR ∼ N (0, I)
xHR
t−1 ← γtfHR

θ (xHR
t ,xLR

0 , t, c)+δtxHR
t +σtϵHR

t = t− 1
end while

can be represented as:

x̂HR
t =

√
ᾱtx̂

HR
0 +

√
1− ᾱtϵ̂

HR, ϵ̂HR ∼ N (0, I). (17)

In the case of the objective function, we use L1 for super-
resolution, followed by SR3 [59], where they empirically
find that L1 loss is better for super-resolution task compared
to MSE loss:

LHR = ∥fHR
θ (x̂HR

t , x̂LR
0 , t, c)− x̂HR

0 ∥11. (18)

The low-resolution condition is nearestly up-sampled to be
the same resolution as the high-resolution side and channel-
wise concatenation is applied. Sampling is done by repeat-
ing a similar process to Eq. (14):

xHR
t−1=γtf

HR
θ (xHR

t ,xLR
0 , t, c)+δtx

HR
t +σtϵ

HR, (19)

In Eqs. (18) and (19), the category condition c is ignored for
a single-category generation.

In addition, our model can generate further higher reso-
lution shapes by iteratively applying the second stage model
trained on multiple resolutions (e.g., 323 → 643 and 643 →
1283). We provide this higher-resolution generation in the
experiments.

4. Experiments
In this section, we evaluate and compare the proposed

method with state-of-the-art methods in 3D shape genera-
tions. Specifically, we present qualitative and quantitative
comparisons of our method for single-/multi-category 3D
shape generation tasks in Secs. 4.1 and 4.2, respectively.
Additionally, we demonstrate the applicability of the pro-
posed SDF-Diffusion for shape completion in Sec. 4.3.
Before diving into the details, we first provide several pieces
of information for experiments, such as implementation de-
tails, dataset, evaluation metrics, and comparison methods.
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PointFlow DPM PVD SDF-Diffusion (ours)

Figure 3. Generated 3D shapes with a single-category genera-
tive model. Baseline methods generate point clouds with 2, 048
points, and SDF-Diffusion produces 3D shapes in the form of
T-SDF voxels, which can be converted to meshes directly through
zero iso-surface finding algorithms.

Implementation details. For both generation and super-
resolution models, we share the same network structure re-
gardless of single-category and multi-category generations
except for the category embedding layer (i.e., the same net-
work architecture is shared with all of our experiments). For
point cloud input, we use the point cloud encoder from the
convolutional occupancy network [53] as our point cloud
encoder and combine the resulting features using AdaGN.

We use the Adam optimizer [28] with β1 = 0.9 and
β2 = 0.999, to train all of our models. We train our method
with learning rate 0.0001 with learning rate warmup at the
first epoch and reduce the learning rate when the validation
loss is not decreased for 5 epochs. We fix the patch size
to 323 for training the super-resolution model regardless of
the target resolution. On the other hand, we sample the full
resolution of the shape at once without using patches during
the inference phase. Following [16], we set diffusion step
T = 1, 000, and linear noise scheduler with β0 = 0.0001
and βT = 0.02. We reduce sampling steps to 50 using the
denoising diffusion implicit model (DDIM) [65] to accel-
erate sampling speed. We use the exponential moving av-
erage (EMA) following [23] for the first stage model. Flip
data augmentation is applied to the super-resolution model.

Dataset. For evaluation, we use the ShapeNet dataset [3]
(especially version 1), which consists of 13-category of 3D
shapes in mesh representations. In comparison to prior
work, our method requires sampled SDF in the training and
evaluation phase. For this reason, we convert meshes in the
ShapeNet dataset into voxel-shaped SDF similar to the dual
octree graph networks [69]. Concretely, we normalize each
of the watertight mesh so that it has zero center and unit
scale with 0.1 padding. We then extract SDF voxels at mul-
tiple resolutions of 32 for low-resolution and 64 and 128
for high-resolution using Mesh2SDF [70]. While sampling
watertight mesh, we manipulate the level set value, which is
the parameter of Mesh2SDF, to approximately double cell
size (i.e., 0.03125 for voxel resolution of 64). We then clip

each of the extracted SDF voxel with minimum and maxi-
mum thresholds as the same value with double voxel size,
and we utilize SDF in the form of truncated signed dis-
tance fields (T-SDF) to decrease redundant information. Af-
ter that, we sample 15K points from the watertight meshes
at the resolution of 64, which are used as ground truth
for training point cloud-based methods and evaluation pur-
poses. Following [69], the dataset is split into the train, val-
idation, and test datasets. We mainly measure the quality of
our method with point clouds sampled from a voxel resolu-
tion of 64 in the validation dataset like previous methods.
Evaluation metrics. Following the previous methods [77,
87], we use three metrics (MMD, COV, and 1-NNA [37])
based on both the Chamfer Distance (CD) and the Earth
Mover’s Distance (EMD) as the main evaluation metrics.
MMD, COV, and 1-NNA analyze both quality and variety
by quantifying the distributional similarity between the pro-
duced forms and the validation set. A detailed explanation
of the evaluation method is in the supplementary material.
Comparison methods. To evaluate the generative ability
of our model, we compare it with various methods, such as
DDM-based techniques: point voxel diffusion (PVD) [87]
and diffusion point cloud (DPM) [41], as well as flow-
based technique, PointFlow [77]. As most of the previous
methods have been trained using the ShapeNet dataset pre-
processed by PointFlow, which only provides point clouds
and not SDF, we re-implemented these methods to com-
pare with our approach. It should be noted that since our
dataset and PointFlow’s are based on the different versions
of ShapeNet, and different pre-processing methods, the re-
sults may slightly differ from those of the original papers.

4.1. Single-Category Generation

Following previous works [41, 77, 87], we evaluate met-
rics for 3 models trained with each category (airplane, car,
and chair) separately. To ensure a fair comparison with
point clouds-based baseline methods that used 2, 048 points
to compute metrics, we sampled the same number of points
from meshes reconstructed by our method.

We show the quantitative comparisons in Table 1. Our
method, SDF-Diffusion demonstrated competitive per-
formance in all categories and outperformed other base-
lines, especially in the 1-NNA (EMD) metric, which is
the most important metric designed to overcome the limi-
tations of MMD and COV [77]. In addition, EMD is a more
distinctive metric [42] because CD tends to fail to com-
pare point clouds with uneven density, and uniform point
cloud density is important to represent 3D shapes well.
Since SDF-Diffusion reconstructs continuous meshes
first and then samples point clouds from the meshes, the
point clouds can be evenly arranged, unlike other methods
that generate point clouds directly.

Figure 3 shows the qualitative comparisons with the
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Figure 4. Generated samples by SDF-Diffusion on 13-category classes of the ShapeNet dataset.

Table 1. Quantitative evaluation on the ShapeNet dataset
about MMD, COV, 1-NNA about 3-category. MMD, 1-NNA
scores are the lower, the better, and the higher COV, the better.
MMD-CD and MMD-EMD scores are multiplied by 103 and 102.

Trainset PointFlow [77] DPM [41] PVD [87] ours

Airplane

MMD (CD) 1.51 2.43 2.24 2.46 2.37
COV (CD) 56.93 50.50 50.00 45.30 50.25

1-NNA (CD) 45.92 72.28 67.45 62.62 56.56

MMD (EMD) 2.33 1.67 1.64 1.55 1.49
COV (EMD) 57.43 52.97 52.23 53.96 55.20

1-NNA (EMD) 47.40 62.50 63.37 52.72 48.14

Car

MMD (CD) 2.44 2.61 2.57 2.48 2.48
COV (CD) 54.07 41.92 44.19 44.33 47.26

1-NNA (CD) 49.47 74.50 75.57 58.48 58.28

MMD (EMD) 1.28 1.39 1.39 1.30 1.28
COV (EMD) 52.34 41.92 41.92 48.33 52.47

1-NNA (EMD) 50.53 71.90 71.90 51.13 53.20

Chair

MMD (CD) 8.05 8.27 7.65 7.87 8.00
COV (CD) 54.95 46.53 47.86 48.89 49.78

1-NNA (CD) 52.88 70.83 66.40 55.61 53.69

MMD (EMD) 3.57 4.21 4.08 3.56 3.61
COV (EMD) 53.47 49.63 41.65 50.37 49.31

1-NNA (EMD) 48.74 74.74 76.66 53.03 51.77

baseline methods. SDF-Diffusion generates plausible
3D shapes like the other approaches; especially, we can di-
rectly produce continuous 3D meshes.

4.2. Multi-Category Generation

In addition to single-category, our SDF-Diffusion
is seamlessly extended to multi-category generation us-
ing category information. We train and compare our
SDF-Diffusion on the 13 categories of the ShapeNet
dataset: airplane, bench, cabinet, car, chair, display,
lamp, loudspeaker, rifle, sofa, table, telephone, and ves-
sel, by conditioning on the category information c. As
shown in Fig. 4, SDF-Diffusion generates multi-
category detailed 3D shapes with high-quality and diver-
sity. Furthermore, we can perform the second stage (i.e.,
super-resolution) multiple times to generate much higher-
resolution samples. Figure 5 illustrates the 3D shapes gen-
erated using multiple super-resolution stages, allowing us to
achieve 1283 resolution SDF voxels.

To assess the generation quality of multi-category
generation, we compare our model with PVD, which
is a diffusion-based state-of-the-art 3D shape generation
method. However, PVD and other baselines are designed
for only single-category generation. So, we compare ours
with the modified version of PVD (PVD* in short) that can

Table 2. Quantitative evaluation on the ShapeNet dataset
through 1-NNA about CD and EMD with 13-category. PVD*
denotes the modified version of PVD for multi-category.

Category
1-NNA (CD) 1-NNA (EMD)

PVD* ours trainset PVD* ours trainset

Airplane 67.20 70.79 45.92 57.92 58.04 47.40
Bench 62.43 60.22 53.31 59.67 57.46 54.14

Cabinet 62.10 62.74 47.13 68.15 63.06 50.96
Car 64.55 66.29 49.47 57.89 55.81 50.53

Chair 61.89 63.23 52.88 59.40 59.33 48.74
Display 61.47 44.50 51.83 58.26 53.21 52.29
Lamp 58.87 58.01 49.13 61.04 56.28 51.95

Loudspeaker 59.32 57.14 48.14 57.45 54.76 52.17
Rifle 61.39 60.54 50.00 58.44 53.59 49.79
Sofa 58.04 52.84 51.58 54.57 50.63 47.32
Table 62.41 55.76 49.71 61.82 56.35 51.00

Telephone 60.00 57.14 48.57 55.71 54.76 50.95
Vessel 59.59 59.84 51.55 58.29 54.15 50.78

Average 61.48 59.16 49.94 59.12 55.96 50.62

receive a category condition with MLPs with Embedding
layers similar to ours but without AdaGN to preserve the
timestep embedding method of the original PVD. Quantita-
tive results are shown in Table 2. The results of PVD* and
SDF-Diffusion are trained equally for 1, 000 epochs for
only multi-category case. SDF-Diffusion shows better
results in most categories about 1-NNA metric, especially
outperforming EMD-based metrics. Additional qualitative
comparisons on the mesh domain will be discussed in the
supplementary material.

4.3. Application: Shape Completion

We show the applicability of our SDF-Diffusion on
another task: 3D shape completion with voxel condition.
Without modification of network architecture, we show that
our method can be applied to 3D shape completion. Specif-
ically, the second stage of our method takes a voxel-shaped
condition by concatenating the conditional input (i.e., low-
resolution SDF generated by the first stage) with noisy data
to denoise. In other words, let the SDF voxel be a single-
channel, then we can consider the second stage of our model
takes two-channel input and returns a single-channel out-
put. Therefore, using the same network architecture, we
can seamlessly train a shape completion model by giving a
partial SDF voxel instead of a low-resolution condition.

For partial 3D shapes, we perform a 3D shape comple-
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Figure 5. Visualization of generated 3D shapes at different res-
olutions. The first stage model generates coarse shapes in the res-
olution of 323. By performing super-resolution using our second
stage model multiple times, we can obtain improved shape detail
of 3D shapes with the voxel resolutions of 643 and 1283.

tion based on SDF-Diffision, as shown in Fig. 6. As
you can see, we can generate various 3D shapes from given
partial 3D shapes, which shows the applicability and flexi-
bility of the proposed SDF-Diffision.

In addition, we also demonstrate the generality of our
SDF-Diffusion by using it for the task of 3D shape
completion with a partially observed point cloud as a con-
dition. To generate the partial point cloud input, we ran-
domly sample 200 points from the preprocessed ShapeNet
dataset using the same method employed in [82]. For out-
of-distribution data, we acquire partial point clouds from
depth images of the Redwood 3DScans dataset [9]. As
the point cloud has a different format than the voxel fea-
ture generated by our SDF-Diffusion, we incorporate
an additional layer to extract and voxelize the point cloud.
Specifically, we employ the PointNet layer [55] from the en-
coder of the convolutional occupancy network [53], which
transforms the point cloud feature into a voxel and gives this
feature to each layer of SDF-Diffusion along with the
AdaGN. The completed 3D shapes are visualized in Fig. 7.
We show SDF-Diffusion can successfully apply unseen
out-of-distribution data.

5. Conclusion

In this work, we have proposed SDF-Diffusion,
a novel diffusion-based SDF generation approach for 3D
shapes. SDF-Diffusion composed of two-stage gener-
ates low-resolution SDF and then produces high-resolution
SDF conditioned on the low-resolution one. For memory
efficiency, we learn the second stage of SDF-Diffusion
(i.e., super-resolution) in a patch-wise manner, which al-
lows us to perform super-resolution several times in high-
resolution. In addition, SDF-Diffusion can be seam-

Ground truth Partial shape Completed shapes

Figure 6. Generated 3D shapes by 3D shape completion.
SDF-Diffusion can be easily expanded to a 3D shape com-
pletion task by modifying only the input head of the network ar-
chitecture.

Reconstructed meshes

RGB

Depth

RGB

Depth

Partial point cloud

(200 points)

Figure 7. Generated 3D shapes by 3D shape completion on out-
of-distribution data. SDF-Diffusion shows various comple-
tion candidates from out-of-distribution partial point clouds.

lessly extended to multi-category 3D shape generation and
3D shape completion. Experiments demonstrate that the
proposed method can generate high-quality 3D shapes in
the SDF domain with superior generative power.
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