
Deep Depth Estimation from Thermal Image

Ukcheol Shin
KAIST

shinwc159@gmail.com

Jinsun Park
Pusan National University

jspark@pusan.ac.kr

In So Kweon
KAIST

iskweon77@kaist.ac.kr

Abstract

Robust and accurate geometric understanding against
adverse weather conditions is one top prioritized condi-
tions to achieve a high-level autonomy of self-driving cars.
However, autonomous driving algorithms relying on the vis-
ible spectrum band are easily impacted by weather and
lighting conditions. A long-wave infrared camera, also
known as a thermal imaging camera, is a potential res-
cue to achieve high-level robustness. However, the miss-
ing necessities are the well-established large-scale dataset
and public benchmark results. To this end, in this pa-
per, we first built a large-scale Multi-Spectral Stereo (MS2)
dataset, including stereo RGB, stereo NIR, stereo thermal,
and stereo LiDAR data along with GNSS/IMU informa-
tion. The collected dataset provides about 195K synchro-
nized data pairs taken from city, residential, road, campus,
and suburban areas in the morning, daytime, and nighttime
under clear-sky, cloudy, and rainy conditions. Secondly,
we conduct an exhaustive validation process of monocu-
lar and stereo depth estimation algorithms designed on
visible spectrum bands to benchmark their performance
in the thermal image domain. Lastly, we propose a uni-
fied depth network that effectively bridges monocular depth
and stereo depth tasks from a conditional random field
approach perspective. Our dataset and source code are
available at https://github.com/UkcheolShin/
MS2-MultiSpectralStereoDataset.

1. Introduction
Recently, a number of researches have been conducted

for accurate and robust geometric understanding in self-
driving cars based on the widely-used benchmark datasets,
such as KITTI [15], DDAD [17], and nuScenes [4]. Mod-
ern computer vision algorithms deploy a deep neural net-
work and data-driven machine learning technique to achieve
high-level accuracy, which needs large-scale datasets. How-
ever, from the perspective of robustness in real-world, the
algorithms mostly rely on visible spectrum images and are
easily degenerated by weather and lighting conditions.

(a) Depth from thermal images via unified depth network

(b) RGB (Reference) (c) Thermal image (d) Depth map

Figure 1. Depth from thermal images in various environments.
Our proposed network can estimate both monocular and stereo
depth maps regardless of given a single or stereo thermal image
via unified network architecture. Furthermore, depth estimation
results from thermal images show high-level reliability and robust-
ness under day-light, low-light, and rainy conditions.

Therefore, recent works have actively investigated alter-
native sensors such as Near-Infrared (NIR) cameras [39],
LiDARs [16, 51], radars [14, 32], and long-wave infrared
(LWIR) cameras [35, 45] to achieve reliable and robust
geometric understanding in adverse conditions. Among
these alternative and complementary sensors, LWIR cam-
era (i.e., thermal camera) has become more popular be-
cause of its competitive price, adverse weather robustness,
and unique modality information (i.e., temperature). There-
fore, various thermal image based computer vision solu-
tions [3, 21–23, 27, 35, 45, 47–50] to achieve high-level ro-
bustness have been actively attracting attention recently.
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Table 1. Comprehensive comparison of multi-modal datasets. Compared to previous datasets [6, 8, 24, 25, 28, 53], the proposed Multi-
Spectral Stereo (MS2) dataset provides about 195K synchronized and rectified multi-spectral stereo sensor data (i.e., RGB, NIR, thermal,
LiDAR, and GNSS/IMU data) covering diverse locations (e.g., city, campus, residential, road, and suburban), times (e.g., morning, daytime,
and nighttime), and weathers (e.g., clear-sky, cloudy, and rainy).

Dataset Year Environment Platform
Total # of

LiDAR IMU
RGB NIR Thermal Weather

Data Pairs Mono Stereo Mono Stereo Mono Stereo RAW Daytime Nighttime Rain

CATS [53] 2017 In/Outdoor Handheld 1.4K ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✕

KAIST [6] 2018 Outdoor Vehicle Unknown ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✕ ✓ ✓ ✓ ✕

ViViD [25] 2019 In/Outdoor Handheld 5.3K/4.3K ✓ ✓ ✓ ✕ ✕ ✕ ✓ ✕ ✓ ✓ ✓ ✕

MultiSpectralMotion [8] 2021 In/Outdoor Handheld 121K/27.3K ✓ ✓ ✓ ✕ ✓ ✕ ✓ ✕ ✓ ✓ ✓ ✕

ViViD++ [24] 2022 Outdoor Vehicle 56K ✓ ✓ ✓ ✕ ✕ ✕ ✓ ✕ ✓ ✓ ✓ ✕

OdomBeyondVision [28] 2022 Indoor
Handheld/ 71K/

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✕
UGV/UAV 117K/21K

Ours 2022 Outdoor Vehicle 195K ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

However, the missing necessities are the well-
established large-scale dataset and public benchmark
results. The publicly available datasets for autonomous
driving are overwhelmingly composed of the visible spec-
trum band (i.e., RGB images), but it very rarely includes
other spectrum bands, such as the NIR band and LWIR
band. Especially, despite the advantage of the LWIR band,
just a few LWIR datasets have been recently released.
However, these datasets are indoor oriented [8, 25, 28],
small scale [25, 53], publicly unavailable [6], or limited
sensor diversity [6, 24]. Therefore, the necessity is getting
increase to design a large-scale multi-sensor driving dataset
to investigate the feasibility and challenges associated
with an autonomous driving perception system from
multi-spectral sensors.

The other necessity is thoroughly validating vision ap-
plications on the LWIR band. Estimating a depth map from
monocular and stereo images is one fundamental task for
geometric understanding. Despite numerous recent stud-
ies in depth estimation, these works have mainly focused
on depth estimation using RGB images. However, thermal
images, which typically have lower resolution, less texture,
and more noise than RGB images, could pose a challenge
for stereo-matching algorithms. This means that the perfor-
mances of these previous works in thermal image domains
are uncertain and may not be guaranteed.

To this end, in this paper, we provide a large-scale multi-
spectral dataset along with exhaustive experimental results
and a new perspective of depth unification to encourage ac-
tive research of various geometry algorithms from multi-
spectral data to achieve high-level performance, reliability,
and robustness against hostile conditions. Our contributions
can be summarized as follows:

• We provide a large-scale Multi-Spectral Stereo (MS2)
dataset, including stereo RGB, stereo NIR, stereo ther-
mal, and stereo LiDAR data along with GNSS/IMU
data. Our dataset provides about 195K synchronized
data pairs taken from city, residential, road, campus,
and suburban areas in the morning, daytime, and night-
time under clear-sky, cloudy, and rainy conditions.

• We perform exhaustive validation and investigate that
monocular and stereo depth estimation algorithms
originally designed for visible spectral bands work rea-
sonably in thermal spectral bands.

• We propose a unified depth network that bridges
monocular depth and stereo depth estimation tasks
from the perspective of a conditional random field ap-
proach.

2. Related Work
2.1. Thermal Image Dataset for 3D Vision

A well-established large-scale dataset is the most fun-
damental and top priority for modern deep neural network
training. For the visible spectrum band, numerous large-
scale datasets have been proposed such as KITTI [15],
DDAD [17], Cityscape [7], Oxford [36], and nuScenes [4]
datasets. On the other hand, the InfraRed (IR) spectrum
band (e.g., near-IR, short-wave IR, long-wave IR) is very
rarely included in just a few datasets in a limited form de-
spite its superior environmental robustness.

The comprehensive comparison is shown in Tab. 1.
Most datasets are insufficient to investigate the feasibil-
ity of geometric and semantic understanding from multi-
spectrum image sensors under diverse outdoor driving sce-
narios. More specifically, these datasets are indoor ori-
ented [8, 25, 28], small scale [25, 53], publicly unavail-
able [6], limited sensor diversity [6, 24], limited weather
condition [6, 24, 25], or missing RAW thermal data [53].

2.2. Depth From Visible Spectrum Band

Monocular Depth Estimation (MDE) has high-level
universality because it estimates depth map from a single
image. There have been numerous mainstream methods for-
mulating depth estimation as per-pixel regression [26, 41,
42, 56] by directly estimating per-pixel depth value through
a neural network, per-pixel classification [12, 13] by dis-
cretizing continuous depth range into discrete intervals, and
classification-and-regression problems [2, 29].
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However, MDE is an ill-posed problem; a single 2D im-
age can be generated from an infinite number of distinct 3D
scenes. Therefore, the estimated monocular depth map is
inherently scale-ambiguous, has low generalization perfor-
mance, and provides lower performance than depth estima-
tion from multi-view images.

Stereo Depth Estimation (SDE) can estimate metric-
scale depth map by utilizing a known camera baseline and
disparity map from a rectified stereo image pair. Existing
stereo matching networks can be categorized into 3D cost
volume [30, 37, 52, 55] and 4D cost volume based meth-
ods [5, 18, 20, 43, 54]. The former one estimates a single-
channel cost volume (e.g., D×H×W) by measuring the sim-
ilarity between left and right features. Then, they aggregate
the contextual information via 2D convolution. These meth-
ods have high memory and computational efficiency, yet the
encoded volume loses large content information leading to
unsatisfactory accuracy.

The latter one builts multiple-channel cost volume (e.g.,
D×C×H×W) by concatenating two left-right feature vol-
umes [5,20], correlation-volume and left-right features [18],
or attention-added features [54]. Then, they aggregate the
4D cost volume with 3D convolution layers. Current state-
of-the-art models are mostly based on this method. How-
ever, this demands high memory consumption and cubic
computational complexity that is expensive to deploy in a
real-world application. The SDE task yields significant per-
formance gains compared to the MDE task, yet the SDE
task is still struggling to find accurate corresponding points
in inherently ill-posed regions such as occlusion areas, re-
peated patterns, textureless regions, and reflective surfaces.

2.3. Depth From Thermal Spectrum Band

Thermal spectrum band has high-level robustness
against various adverse weather and lighting conditions,
such as rain, fog, dust, haze, and low-light conditions. How-
ever, due to the absence of a large-scale dataset, most pre-
vious studies for geometric understanding [3, 10, 21, 38, 47]
are conducted on their own testbed. Also, most works focus
to utilizes a thermal camera along with other heterogeneous
sensors for the target geometric task rather than focusing on
the thermal camera itself.

For the geometric understanding task that utilizes a
deep neural network, a few researches [22, 35, 44–46] have
been proposed recently. Most studies focus on the self-
supervised depth estimation from thermal images with aux-
iliary modality guidance, such as aligned-and-paired RGB
images [22], style transfer network [35], and paired RGB
images [45]. Unlike the previous studies, in this paper, we
target a supervised depth estimation from a single and stereo
thermal image that has not yet been actively explored.

Table 2. Sensor specification for the multi-spectral stereo sys-
tem. Our sensor system consists of RGB, NIR, thermal, and Li-
DAR stereo system along with a GNSS/IMU module. The data
from RGB, NIR, and thermal stereo system was taken at 15 fps
with synchronized signals. Lidar stereo data were taken at 10 fps.

Sensor Model Frame Rate Characteristics

RGB camera
PointGrey BlackFly-S

Max 75 fps
2448×2048 pixel

BFS-U3-51S5C Global Shutter
Kowa LM5JC10M 82.2◦ (H) × 66.5◦(V) FoV

NIR camera Intel RealSense D435i Max 90 fps
1280 × 720 pixel

Global Shutter
69◦ (H) × 42◦(V) FoV

Thermal camera FLIR A65C Max 30 fps

640×512 pixel
45◦ (H) × 37◦(V) FoV

Uncooled VOX microbolometer
16-bit Raw data

LiDAR Velodyne VLP-16 Max 20 fps
Accuracy: ± 3 cm

Measurement range : 100m
360◦ (H), ±15◦ (V) FoV

GNSS/IMU
LORD Microstrain

10/100 Hz
Position, Velocity,

3DM-GX5-45 Attitude, Acceleration, etc.

3. Multi-Spectral Stereo (MS2) Dataset

3.1. Multi-Spectral Stereo Sensor System

Despite the well-known advantages of the long-wave in-
frared camera (i.e., thermal camera) [9, 19, 57], the absence
of a large-scale dataset still interrupts the development and
investigation of condition-agnostic autonomous driving per-
ception systems from the thermal spectrum domain. To this
end, we designed a data collection platform that consists of
RGB, NIR, thermal, and LiDAR stereo system along with
a GNSS/IMU module, as shown in Fig. 2-(a),(b), and (c).
Each sensor specification is described in Tab. 2.

Accurate time-synchronization is one important prereq-
uisite for various geometric tasks with multiple sensors,
such as depth estimation, odometry, 3D detection, and 3D
reconstruction. Therefore, we synchronize RGB and NIR
stereo cameras via an external synchronizer. Thermal stereo
cameras are synchronized with the sync signal of the left
thermal camera. Also, a software trigger is used to synchro-
nize the two systems at the start time of each data acquisi-
tion. Please refer to the supplementary material for more
details on calibration and sensor system configuration.

3.2. Data Collection

We collect multi-spectral stereo data (i.e., stereo RGB,
NIR, thermal, and LiDAR data) along with GNSS/IMU data
under various locations, lighting conditions, and weather
conditions. Specifically, we obtain the synchronized multi-
spectral data from campus, city, residential area, suburban
area, and multiple road environments. Also, we provide var-
ious time diversities (e.g., morning, daytime, and nighttime)
and weather diversities (e.g., clear-sky, cloudy, and rainy)
for each representative location (Fig. 2-(d) and (e)).
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(a) Frontal view of sensor system (b) Sensor system details (c) Coordinate system of our platform

(d) Driving Scenarios - Campus/City/Residential (e) Driving Scenarios - Road/Suburban

(f) Driving Scenario - Campus (RGB/NIR/THR) (g) Driving Scenario - Road (RGB/NIR/THR)

Figure 2. Overview of our proposed Multi-Spectral Stereo (MS2) outdoor driving dataset. We designed a data collection platform
that consists of RGB, NIR, thermal, and LiDAR stereo system along with a GPS/IMU module (i.e. (a),(b),(c)). The collected dataset are
taken under locations of campus, city, residential area, road, and suburban with various time slots (morning, day, and night) and weather
conditions (clear-sky, cloudy, and rainy) (i.e. (d) and (e)). According to the surrounding conditions, each spectrum sensor shows different
aspects, advantages, and disadvantages induced by their sensor characteristics (i.e., (f) and (g)). Further examples and details are described
in the supplementary material.

This aims to investigate and evaluate the generalization
and domain gap handling abilities of a deep neural net-
work. It also targets to explore the possibility of multi-
sensor complementation and the characteristics of each sen-
sor under various conditions (Fig. 2-(f) and (g)). Com-
pared to previous datasets [6, 8, 24, 25, 28, 53], the pro-
posed dataset provides about 195K synchronized and rec-
tified multi-spectral data pairs (i.e., RGB, NIR, thermal,
LiDAR, and GNSS/IMU data) covering diverse locations,
times, weathers, and sensors.

3.3. Multi-Spectral Stereo (MS2) Depth Dataset

Ground-Truth Generation Process. To create a dense
Ground-Truth (GT) depth map, we accumulated 10 succes-
sive stereo LiDAR data by utilizing interpolated odometry
information from GNSS/IMU sensor in a similar way to
KITTI dataset [15]. Specifically, we calculate every pose
information of each sensor’s time stamp by interpolating

GNSS/IMU sensor data. Afterward, we aggregate 10 suc-
cessive stereo LiDAR data for each target thermal image
via transformation matrices between consecutive data and
refine the aggregated point cloud via the Iterative Closest
Point (ICP) algorithm [1]. Then, the refined and aggregated
3D point cloud is projected to the thermal image plane to
get the final semi-dense depth map.

Training Set Configuration. From the MS2 dataset, we
periodically sampled the thermal images and filter out the
static vehicle movement to make training, validation, and
evaluation splits for the learning of monocular and stereo
depth networks. We utilize 26K data pairs for training,
4K pairs for validation, and 5.8K, 6.8K, and 5.2K pairs
for evaluation of daytime, nighttime, and rainy conditions.
We make the training set splits have almost zero overlap in
time, weather, and location diversity. The split details can
be found in the supplementary material.
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Figure 3. Overall pipeline of our proposed depth estimation network. We design a single network that can estimate both monocular
and stereo depth maps from given a single or stereo thermal image. We bridge monocular depth and stereo depth estimation by regarding
the cost-volume as additional information for Neural Window Conditional Random Field (NeWCRF) block [56]. Initially, the network
extracts multi-scale feature maps via Swin-Transformer backbone model [31] and aggregates the global contextual information via Pyramid
Pooling Module (PPM) head [58]. If the right thermal image is available, the network generates each scale of single-channel cost-volume
(i.e., Dscale × Hscale × W scale) based on feature similarity of the left-right features. If only the left image is available, the network
utilizes zero-filled cost-volume. The depth maps are estimated from the multi-scale concatenated features via NeWCRF blocks [56].

4. Depth Estimation from Thermal Image

4.1. Bridging Monocular and Stereo Depth Estima-
tion

In this section, we connect the Monocular Depth Esti-
mation (MDE) and Stereo Depth Estimation (SDE) tasks
via the Conditional Random Field(CRF) perspective. MDE
network has the advantage of high-level universality that
doesn’t need extra constrain such as pre-rectification, ex-
trinsic matrix information, and additional images. How-
ever, MDE networks suffer from inherent scale ambiguity
and generalization issues. On the other hand, SDE net-
works provide an accurate metric-scale depth map by find-
ing horizontal correspondences between rectified left-and-
right images. But, the SDE network is hard to provide a re-
liable depth map in the ill-posed regions such as occlusion
areas, repeated patterns, textureless regions, and reflective
surfaces.

They can complement each other by bridging two tasks
and, at the same time, flexibly estimate depth maps from
given monocular or stereo images, as shown in Fig. 3. To
this end, we utilize the recently proposed MDE network,
Neural Window FC-CRF (NeWCRF), to connect two tasks.
Specifically, we regard the estimated cost volume as addi-
tional information for NeWCRF blocks. Therefore, when
the right image is available, we add each cost volume of
multi-scale left-and-right features to the left image feature
F scale
L . If only the left image is available, the network uti-

lizes zero-filled cost volume.

4.2. Feature Extraction and Aggregation

We adopt Swin transformer [31] as our backbone net-
work. The backbone network extract feature in four scale-
level (i.e., 1/4, 1/8, 1/16, and 1/32) from the given images.
After that, the pyramid pooling module(PPM) [58] aggre-
gates global context information with global average pool-
ing of receptive fields 1, 2, 3, and 6 from the last scale-level.
The features of remained scales are provided to each level
of decoders via a skip-connected manner.

4.3. Cost Volume Construction

Most state-of-the-art stereo matching networks [5,18,54]
utilize a 4D cost volume with 3D convolution layer to
achieve higher performance. However, the 4D cost vol-
ume based method requires costly memory and computa-
tion consumptions. Also, the method makes it hard to as-
sociate monocular depth estimation in the network archi-
tecture by enforcing the utilization of both left-right feature
maps always.

Therefore, we utilize correlation cost volume (i.e., 3D
cost volume) [30,37,52,55] that has a single-channel corre-
lation map for each disparity level. The method loses some
correlation information between left-right features, yet it
can be easily associated with a monocular depth estimation
network as additional information. The cost volume of each
scale is estimated as follows:

Cscale(d, x, y) =
1

Nc
< fscalel (x, y), fscaler (x− d, y) >,

(1)
where < ·, · > is the inner product, Nc denotes the number
of channels, and fscalel and fscaler are the feature map of
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each scale. The cost volume of each scale is concatenated
with the corresponding feature map of the left image fscalel

to form skip-connection input F for the NeWCRF blocks.

4.4. Neural Window FC-CRF

NeWCRF [56] implements traditional CRF as the form
of neural network in a computation efficient way by uti-
lizing shifted window multi-head attention module [31].
Given the previous prediction result X and concatenated
feature F , the NeWCRF block estimate unary potential ψu

and pairwise potential ψp via multi-head attention mecha-
nism (i.e., NeWCRF block of Fig. 3), as follows:

ψpu = θu(X),
∑
i

ψpi = SoftMax(Q ·KT +P ) ·X, (2)

where θu is the parameter of a unary network and Q,K,P
are query, key, and position embedding matrix of attention
block. After that, the optimized net, which consists of two
MLP layers, estimates the current stage result X

′
. And the

X
′

is regarded as X for the next NeWCRF block.

4.5. Disparity and Inverse Depth Prediction

The proposed network estimates four scale prediction
results (i.e., 1/4, 1/8, 1/16, and 1/32) from the last four
NeWCRF blocks. When a single image is fed to the net-
work, we regard the prediction results as an inverse depth
map. For the stereo image pair, we regard the prediction re-
sults as a common disparity map. For the prediction features
X of each scale, the network employs two convolution lay-
ers to get a single-channel (disparity/inverse depth) volume.
After that, the volume is upsampled and converted into a
probability volume by the softmax function along the dis-
parity dimension. Finally, the predicted value is computed
as follows:

Dpred =

Dmax−1∑
k=0

k · pk, (3)

where k denotes disparity level, pk indicates the corre-
sponding probability, and Dmax is the maximum value of
disparity range.

4.6. Loss Function

We utilize a multi-scale smooth L1 loss, that is com-
monly adopted in the SDE task, to train our network.

Lsup =

3∑
scale=0

λscale · (SmoothL1(D
scale
pred,mono, DGT )

+ SmoothL1
(Dscale

pred,stereo, DGT )), (4)

where λ indicates the coefficient for the prediction result
of each scale, DGT denotes the GT disparity map, and
SmoothL1

is the smooth L1 loss.

5. Experimental Results
5.1. Implementation Details

MDE and SDE Networks For the validation of various
MDE and SDE networks designed for the visible spectrum
band, we train and evaluate representative MDE and SDE
networks on the proposed MS2 dataset. Specifically, we
adopt regression [26], classification [13], classification-and-
regression [2], and modern transformer [56] based MDE
networks (i.e., BTS, DORN, AdaBins, and NeWCRF).
Also, we employ 3D cost volume [55] and 4D cost vol-
ume [18, 54] based SDE networks (i.e., AANet, Gwc-
Net, and ACVNet). We utilize their official source code
to implement each network architecture. All networks
are initialized with ImageNet pretrained [11] or provided
backbone model by following their original implementa-
tions [2, 13, 18, 26, 54–56]. We utilize the PyTorch li-
brary [40] to implement our proposed method and other
comparison methods.

Optimizer and Data Augmentation All models are
trained for 60 epochs on a single A6000 GPU with 48GB
of memory. We utilize a batch size of 8 for all MDE model
training and 4 for all SDE model training. For our method,
we use a batch size of 6. We adopt AdamW optimizer [34]
with an initial learning rate 1e−4 for all model training. Co-
sine Annealing Warm Restarts [33] is used as a learning
rate scheduler. For the data augmentation, we apply ran-
dom center crop-and-resize, brightness jitter, and contrast
jitter for all model training. Horizontal flip is additionally
applied to the MDE networks. We set the coefficients of
multi-scale L1 loss λscale to 0.5, 0.5, 0.7, and 1.0. The
maximum value of disparity range Dmax is set to 192.

5.2. Depth Estimation from Thermal Images

We provide the comprehensive comparison of represen-
tative MDE and SDE networks on our MS2 depth dataset,
as shown in Tab. 3. Also, the advantage of depth estimation
from thermal images can be observed in Fig. 4.

Monocular Depth Estimation The performance ten-
dency of MDE networks is generally preserved in the ther-
mal spectrum domain, similar to KITTI depth benchmark
results [15]. MDE networks with regression heads for depth
map prediction (i.e., BTS and NeWCRF) have clear advan-
tages in error metrics over methods with classification heads
by directly regressing precise depth values. On the other
hand, the classification head (i.e., DORN and Ours) achieve
higher accuracy scores by explicitly binning depth range.

The proposed unified network (i.e., Ours (Mono)) gen-
erally shows comparable results with the state-of-the-art
MDE method by showing higher scores in accuracy met-
rics yet, lower metrics in some error metrics. We think the
performance gap comes from the depth prediction head and
loss function. All MDE networks utilize GT depth maps
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Table 3. Quantitative comparison of depth estimation results on the proposed dataset. We compare our network with state-of-the-art
monocular and stereo depth estimation networks [2,13,18,26,54–56]. Ours shows comparable results in both monocular and stereo depth
estimation results. Differing from the other networks, Ours has high-level practicality and flexibility in that it can flexibly estimate a depth
map regardless of a single or stereo thermal image input. Reg and Cls indicate regression and classification heads for MDE task. The two
types of SDE (i.e., 3D and 4D CV) denote 3D and 4D cost volume, respectively. The best performance in each block is highlighted in bold.

(a) Monocular Depth Estimation Results on the Evaluation Set of Our MS2 Depth Dataset.

Methods TestSet Error ↓ Accuracy ↑ Type
AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253 Reg Cls

DORN [13]

Day 0.144 1.288 5.483 0.230 0.856 0.941 0.970

✓
Night 0.136 1.136 5.290 0.212 0.863 0.950 0.976
Rain 0.180 1.934 6.735 0.276 0.781 0.910 0.955
Avg 0.151 1.419 5.776 0.237 0.837 0.935 0.968

BTS [26]

Day 0.122 0.905 4.923 0.198 0.857 0.951 0.980

✓
Night 0.114 0.798 4.701 0.184 0.870 0.959 0.984
Rain 0.157 1.395 6.053 0.243 0.791 0.926 0.969
Avg 0.129 1.008 5.169 0.206 0.843 0.947 0.978

AdaBins [2]

Day 0.129 0.976 5.108 0.205 0.847 0.947 0.979

✓ ✓
Night 0.119 0.822 4.749 0.187 0.864 0.958 0.984
Rain 0.168 1.545 6.336 0.254 0.771 0.918 0.965
Avg 0.137 1.084 5.330 0.212 0.831 0.943 0.977

NeWCRF [56]

Day 0.120 0.864 4.852 0.195 0.858 0.952 0.982

✓
Night 0.112 0.755 4.594 0.179 0.875 0.961 0.985
Rain 0.155 1.352 5.956 0.240 0.795 0.929 0.970
Avg 0.127 0.965 5.077 0.202 0.846 0.949 0.980

Ours (Mono)

Day 0.115 0.983 4.895 0.201 0.882 0.952 0.977

✓
Night 0.107 0.850 4.658 0.185 0.894 0.961 0.981
Rain 0.152 1.567 6.020 0.247 0.822 0.928 0.964
Avg 0.123 1.103 5.134 0.208 0.869 0.948 0.975

Ours (Stereo)

Day 0.113 0.948 4.852 0.200 0.884 0.953 0.977

✓
Night 0.105 0.811 4.584 0.183 0.896 0.961 0.981
Rain 0.149 1.499 5.940 0.245 0.826 0.929 0.965
Avg 0.120 1.057 5.068 0.207 0.872 0.949 0.975

(b) Disparity Estimation Results on the Evaluation Set of Our MS2 Depth Dataset.

Methods TestSet Lower is better Type
EPE-all(px) D1-all(%) > 1px(%) > 2px(%) > 3px(%) 3D CV 4D CV

GwcNet [18]

Day 0.905 5.5 19.2 8.4 5.5

✓
Night 0.946 5.6 26.0 10.2 5.6
Rain 1.070 7.2 24.3 11.1 7.2
Avg 0.969 6.0 23.3 9.9 6.0

AANet [55]

Day 0.939 5.8 20.2 8.8 5.8

✓
Night 0.995 6.1 27.9 11.1 6.1
Rain 1.091 7.5 25.3 11.6 7.5
Avg 1.005 6.4 24.7 10.5 6.4

ACVNet [54]

Day 0.898 5.5 18.9 8.3 5.5

✓
Night 0.943 5.5 25.9 10.1 5.5
Rain 1.056 7.2 23.6 10.9 7.2
Avg 0.962 6.0 23.0 9.8 6.0

Ours (Mono)

Day 1.033 6.4 23.1 10.5 6.4

✓
Night 0.946 5.6 29.6 9.8 5.6
Rain 1.261 8.7 24.4 14.6 8.7
Avg 1.066 6.8 24.4 11.4 6.8

Ours (Stereo)

Day 0.957 5.7 22.7 9.1 5.7

✓
Night 0.853 4.8 21.3 8.2 4.8
Rain 1.159 7.7 29.1 12.4 7.7
Avg 0.976 5.9 24.0 9.7 5.9
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(a) RGB (Reference Only) (b) NIR (Reference Only) (c) THR (d) GT disparity (e) Ours (stereo)

Figure 4. Qualitative results of stereo disparity estimation on the MS2 depth dataset. Predicted disparity map from stereo thermal
images shows high-level robust estimation results regardless of lighting and weather condition. However, inherent hardware noise and the
absence of high-frequency information lead to blurry prediction results for specific regions such as the regions that have similar thermal
radiation values (i.e., temperature) and noisy areas generated by the sensor itself. We think multi-spectral modality fusion can achieve both
robustness and reliability. Further results and comparisons with other MDE and SDE networks can be found in the supplementary material.

that can provide precise distance information. On the other
hand, our network is trained with the disparity map that can
be regarded as discretized distance information. Luckily,
the performance gaps are narrowed down by utilizing the
right image as additional guidance thanks to our unified ar-
chitecture. Also, we believe an investigation of an effective
form of prediction head for unified MDE and SDE tasks can
boost the overall performance.

Stereo Depth Estimation Generally, the method utiliz-
ing 4D cost volume aggregation with 3D convolution layer
(i.e., GwcNet and ACVNet) provide precise disparity esti-
mation results than 3D cost volume methods (i.e., AANet
and Ours (stereo)). However, the strict constraints of the ar-
chitecture module and left-and-right images degenerate net-
work flexibility. On the other hand, our proposed network
has high-level practicality and flexibility by exploiting a sin-
gle network for both monocular and stereo depth estimation.
At the same time, the proposed network can provide com-
parable performance with 4D cost volume based methods.

6. Conclusion
In this paper, we built a large-scale Multi-Spectral Stereo

(MS2) dataset, including stereo RGB, stereo NIR, stereo
thermal, and stereo LiDAR data along with GNSS/IMU in-
formation. Also, we conduct an exhaustive validation pro-
cess of MDE and SDE algorithms whether they work well
in the thermal spectrum band. Lastly, we propose a unified
depth network that effectively bridges monocular depth and
stereo depth tasks from a conditional random field perspec-
tive. We hope our paper encourage active research of var-
ious computer vision algorithm from multi-spectral data to
achieve high-level performance, reliability, and robustness
against challenging environments.
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