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Abstract

Diffusion models have emerged as the state-of-the-art
for image generation, among other tasks. Here, we present
an efficient diffusion-based model for 3D-aware generation
of neural fields. Our approach pre-processes training data,
such as ShapeNet meshes, by converting them to continuous
occupancy fields and factoring them into a set of axis-aligned
triplane feature representations. Thus, our 3D training
scenes are all represented by 2D feature planes, and we
can directly train existing 2D diffusion models on these
representations to generate 3D neural fields with high quality
and diversity, outperforming alternative approaches to
3D-aware generation. Our approach requires essential
modifications to existing triplane factorization pipelines to
make the resulting features easy to learn for the diffusion
model. We demonstrate state-of-the-art results on 3D
generation on several object classes from ShapeNet.

1. Introduction
Diffusion models have seen rapid progress, setting

state-of-the-art (SOTA) performance across a variety of
image generation tasks. While most diffusion methods model
2D images, recent work [2, 14, 42, 86] has attempted to
develop denoising methods for 3D shape generation. These
3D diffusion methods operate on discrete point clouds and,
while successful, exhibit limited quality and resolution.

In contrast to 2D diffusion, which directly leverages the
image as the target for the diffusion process, it is not directly
obvious how to construct such 2D targets in the case of 3D
diffusion. Interestingly, recent work on 3D-aware generative
adversarial networks (GANs) (see Sec. 2 for an overview)
has demonstrated impressive results for 3D shape generation
using 2D generators. We build upon this idea of learning to
generate triplane representations [6] that encode 3D scenes or
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Figure 1. Our method leverages existing 2D diffusion models for
3D shape generation using hybrid explicit–implicit neural repre-
sentations. Top: triplane-based 3D shape diffusion process using
our framework. Bottom: Interpolation between generated shapes.

radiance fields as a set of axis-aligned 2D feature planes. The
structure of a triplane is analogous to that of a 2D image and
can be used as part of a 3D generative method that leverages
conventional 2D generator architectures.

Inspired by recent efforts in designing efficient 3D GAN
architectures, we introduce a neural field-based diffusion
framework for 3D representation learning. Our approach
follows a two-step process. In the first step, a training set of
3D scenes is factored into a set of per-scene triplane features
and a single, shared feature decoder. In the second step, a
2D diffusion model is trained on these triplanes. The trained
diffusion model can then be used at inference time to generate
novel and diverse 3D scenes. By interpreting triplanes as
multi-channel 2D images and thus decoupling generation
from rendering, we can leverage current (and likely future)
SOTA 2D diffusion model backbones nearly out of the box.
Fig. 1 illustrates how a single object is generated with our
framework (top), and how two generated objects—even with
different topologies—can be interpolated (bottom).

Our core contributions are as follows:
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Figure 2. Visualization of the denoising process. Here, we show examples of triplanes as they are iteratively denoised at inference, as well as
the shapes we obtain by “decoding” the noisy triplanes with our jointly-learned MLP. By interpreting triplane features simply as multi-channel
feature images, we build our framework around 2D diffusion models.

• We introduce a generative framework for diffusion on
3D scenes that utilizes 2D diffusion model backbones
and has a built-in 3D inductive bias.

• We show that our approach is capable of generating both
high-fidelity and diverse 3D scenes that outperform
state-of-the-art 3D GANs.

2. Related Work

Neural fields. Implicit neural representations, or neural
fields, hold the SOTA for 3D scene representation [74, 80].
They either solely learn geometry [1,4,5,10,11,15,21,23,45,
47, 48, 57, 65, 73] or use posed images to jointly optimize ge-
ometry and appearance [6,7,18,25,29,33,36–39,44,49,50,54,
55,59,67,72,82–84]. Neural fields represent scenes as contin-
uous functions, allowing them to scale well with scene com-
plexity compared to their discrete counterparts [40,66]. Initial
methods used a single, large multilayer perceptron (MLP) to
represent entire scenes [10, 47, 49, 57, 65], but reconstruction
with this approach can be computationally inefficient because
training such a representation requires thousands of forward
passes through the large model per scene. Recent years have
shown a trend towards locally conditioned representations,
which either learn local functions [5,9,28,62] or locally modu-
late a shared function with a hybrid explicit–implicit represen-
tation [4,6,12,19–21,37,43,45,58]. These methods use small
MLPs, which are efficient during inference and significantly

better at capturing local scene details. We adopt the expressive
hybrid triplane representation introduced by Chan et al. [6].
Triplanes are efficient, scaling with the surface area rather than
volume, and naturally integrate with expressive, fine-tuned
2D generator architectures. We modify the triplane represen-
tation for compatibility with our denoising framework.

Generative synthesis in 2D and 3D. Some of the most pop-
ular generative models include GANs [22,31,32], autoregres-
sive models [16,60,77,78], score matching models [68,70,71],
and denoising diffusion probabilistic models (DDPMs) [13,
26, 52, 76]. DDPMs are arguably the SOTA approach for syn-
thesizing high-quality and diverse 2D images [13]. Moreover,
GANs can be difficult to train and suffer from issues like mode
collapse [75] whereas diffusion models train stably and have
been shown to better capture the full training distribution.

In 3D, however, GANs still outperform alternative
generative approaches [6, 7, 17, 24, 34, 35, 37, 46, 51, 53, 56,
61,64,79,85,87]. Some of the most successful 3D GANs use
an expressive 2D generator backbone (e.g., StyleGAN2 [32])
to synthesize triplane representations which are then decoded
with a small, efficient MLP [6]. Because the decoder is
small and must generalize across many local latents, these
methods assign most of their expressiveness to the powerful
backbone. In addition, these methods treat the triplane as a
multi-channel image, allowing the generator backbone to be
used almost out of the box.
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Current 3D diffusion models [2,14,42,81,86] are still very
limited. They either denoise a single latent or do not utilize
neural fields at all, opting for a discrete point-cloud-based
approach. For example, concurrently developed single-latent
approaches [2, 14] generate a global latent for conditioning
the neural field, relying on a 3D decoder to transform the
scene representation from 1D to 3D without directly per-
forming 3D diffusion. As a result, the diffusion model does
not actually operate in 3D, losing this important inductive
bias and generating blurry results. Point-cloud-based ap-
proaches [42, 86], on the other hand, give the diffusion model
explicit 3D control over the shape, but limit its resolution and
scalability due to the coarse discrete representation. While
showing promise, both 1D-to-3D and point cloud diffusion
approaches require specific architectures that cannot easily
leverage recent advances in 2D diffusion models.

In our work, we propose to directly generate triplanes
with out-of-the-box SOTA 2D diffusion models, granting the
diffusion model near-complete control over the generated
neural field. Key to our approach is our treatment of well-fit
triplanes in a shared latent space as ground truth data for
training our diffusion model. We show that the latent space of
these triplanes is grounded spatially in local detail, giving the
diffusion model a critical inductive bias for 3D generation.
Our approach gives rise to an expressive 3D diffusion model.

3. Triplane Diffusion Framework
Here, we explain the architecture of our neural field

diffusion (NFD) model for 3D shapes. In Section 3.1, we
explain how we can represent the occupancy field of a single
object using a triplane. In Section 3.2, we describe how we
can extend this framework to represent an entire dataset of
3D objects. In Section 3.3, we describe the regularization
techniques that we found necessary to achieve optimal results.
Finally, Sections 3.4 and 3.5 illustrate training and sampling
from our model. For an overview of the pipeline at inference,
see Figure 3.

3.1. Representing a 3D Scene using a Triplane

Neural fields have been introduced as continuous and
expressive 3D scene representations. In this context, a neural
field NF : R3 → RM is a neural network–parameterized
mapping function that takes as input a three-dimensional
coordinate x and that outputs an M -dimensional vector
representing the neural field. Neural fields have been
demonstrated for occupancy fields [47], signed distance
functions [57], radiance fields [49], among many other types
of signals [65]. For the remainder of this work, we focus on
3D scene representations using occupancy fields such that the
output of the neural field is a binary value, indicating whether
a coordinate is inside or outside an object and M=1.

The triplane representation is a hybrid explicit–implicit
network architecture for neural fields that is particularly effi-

cient to evaluate [6]. This representation uses three 2D feature
planes fxy,fxz,fyz ∈ RN×N×C with a spatial resolution of
N×N and C feature channels each, and a multilayer percep-
tron (MLP) “decoder” tasked with interpreting features sam-
pled from the planes. A 3D coordinate is queried by projecting
it onto each of the axis-aligned planes (i.e., the x−y, x−z,
and y−z planes), querying and aggregating the respective fea-
tures, and decoding the resulting feature using a lightweight
MLPϕ with parameters ϕ. Similar to Chan et al. [6], we found
the sum to be an efficient feature aggregation function, result-
ing in the following formulation for the triplane architecture:

NF(x)=MLPϕ(fxy(x)+fyz(x)+fxz(x)). (1)

The feature planes and MLP can be jointly optimized to
represent the occupancy field of a shape.

3.2. Representing a Class of Objects with Triplanes

We aim to convert our dataset of shapes into a dataset of tri-
planes so that we can train a diffusion model on these learned
feature planes. However, because the MLP and feature planes
are typically jointly learned, we cannot simply train a triplane
for each object of the dataset individually. If we did, the
MLP’s corresponding to each object in our dataset would fail
to generalize to triplanes generated by our diffusion model.
Therefore, instead of training triplanes for each object in isola-
tion, we jointly optimize the feature planes for many objects si-
multaneously, along with a decoder that is shared across all ob-
jects. This joint optimization results in a dataset of optimized
feature planes and an MLP capable of interpreting any triplane
from the dataset distribution. Thus, at inference, we can use
this MLP to decode feature planes generated by our model.

In practice, during training, we are given a dataset of I
objects, and we preprocess the coordinates and ground-truth
occupancy values of J points per object. Typically, J=10M,
where 5M points are sampled uniformly throughout the
volume and 5M points are sampled near the object surface.
Our naive training objective is a simple L2 loss between
predicted occupancy values NF(i)(x

(i)
j ) and ground-truth

occupancy values O
(i)
j for each point, where x(i)

j denotes the
jth point from the ith scene:

LNAIVE =

I∑
i

J∑
j

∥∥∥NF(i)
(
x
(i)
j

)
−O

(i)
j

∥∥∥
2

(2)

During training, we optimize Equation 2 for a shared
MLP parameterized by ϕ, as well as the feature planes
corresponding to every object in our dataset:{

ϕ,f (i)xy ,f
(i)
xz ,f

(i)
yz

}
= argmin{

ϕ,f
(i)
xy ,f

(i)
xz ,f

(i)
yz

}LNAIVE (3)
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Figure 3. Pipeline. Sampling a 3D neural field from our model consists of two decoupled processes: 1) using a trained DDPM to iteratively
denoise latent noise into feature maps and 2) using a locally conditioned Occupancy Network to decode the resulting triplane into the final
neural field. This architecture allows the DDPM to generate samples with a 3D inductive bias while utilizing existing 2D DDPM backbones
and a continuous output representation.

3.3. Regularizing Triplanes for Effective General-
ization

Following the procedure outlined in the previous section,
we can learn a dataset of triplane features and a shared triplane
decoder; we can then train a diffusion model on these triplane
features and sample novel shapes at inference. Unfortunately,
the result of this naive training procedure is a generative model
for triplanes that produces shapes with significant artifacts.

We find it necessary to regularize the triplane features
during optimization to simplify the data manifold that the
diffusion model must learn. Therefore, we include total
variation (TV) regularization terms with weight λ1 in the
loss function to ensure that the feature planes of each training
scene do not contain spurious high-frequency information.
This strategy makes the distribution of triplane features more
similar to the manifold of natural images (see supplement),
which we found necessary to robustly train a diffusion model
on them (see Sec. 4).

While the trained feature values are unbounded, our
DDPM backbone requires training inputs with values in the
range [-1,1]. We address this by normalizing the feature
planes before training, but this process is sensitive to outliers.
As a result, we include an L2 regularization term on the tri-
plane features with weight λ2 to discourage outlying values.

We also include an explicit density regularization (EDR)
term. Due to our ground-truth occupancy data being
concentrated on the surface of the shapes, there is often
insufficient data to learn a smooth outside-of-shape volume.
Our EDR term combats this issue by sampling a set of random
points from the volume, offsetting the points by a random
vector ω, feeding both sets through the MLP, and calculating
the mean squared error. Notationally, this term can be
represented as EDR(NF(x),ω) = ∥NF (x)− NF (x+ω)∥22.
We find this term necessary to remove floating artifacts in
the volume (see Sec. 4)

Our training objective, with added regularization terms,
is as follows:

L=

N∑
i

M∑
j

BCE
(

NF(i)
(
x
(i)
j

)
−O

(i)
j

)
+λ1

(
TV

(
f (i)xy

)
+TV

(
f (i)xz

)
+TV

(
f (i)yz

))
+λ2

(
||f (i)xy ||2+||f (i)yz ||2+||f (i)xz ||2

)
+EDR

(
NF

(
x
(i)
j

)
,ω

)
(4)

3.4. Training a Diffusion Model for Triplane
Features

For unconditional generation, a diffusion model takes
Gaussian noise as input and gradually denoises it in T steps.
In our framework, the diffusion model operates on triplane fea-
tures f0...T ∈RN×N×3C that stack the feature channels of all
three triplane axes into a single image. In this notation, fT ∼
N (fT ;0,I) is the triplane feature image consisting of purely
Gaussian noise, and f0∼q(f0) is a random sample drawn from
the data distribution. The data distribution in our framework
includes the pre-factored triplanes of the training set, normal-
ized by the mean and variance of the entire dataset such that
each channel has a zero mean and a standard deviation of 0.5.

The forward or diffusion processes is a Markov chain
that gradually adds Gaussian noise to the triplane features,
according to a variance schedule β1,β2,...,βT

q(ft|ft−1)=N
(
ft;
√
1−βtft−1,βtI

)
. (5)

This forward process can be directly sampled at step t using
the closed-form solution q(ft|f0)=N (ft;

√
ᾱtf0,(1−ᾱt)I),

where ᾱt=
∏t

s=1αs with αt=1−βt.
The goal of training a diffusion model is to learn the

reverse process. For this purpose, a function approximator
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ϵθ is needed that predicts the noise ϵ∼N (0,I) from its noisy
input. Typically, this function approximator is implemented
as a variant of a convolutional neural network defined by its
parameters θ. Following [26], we train our triplane diffusion
model by optimizing the simplified variant of the variational
bound on negative log-likelihood:

LDDPM=Et,f0,ϵ

[∥∥ϵ−ϵθ
(√

ᾱtf0+
√
1−ᾱtϵ,t

)∥∥2], (6)

where t is sampled uniformly between 1 and T .

3.5. Sampling Novel 3D Shapes

The unconditional generation of shapes at inference is a
two-stage process that involves sampling a triplane from the
trained diffusion model and then querying the neural field.

Sampling a triplane from the diffusion model is identical
to sampling an image from a diffusion model. Beginning
with a random Gaussian noise fT ∼N (0,I), we iteratively
denoise the sample in T steps as

ft−1=
1

√
αt

(
ft−

1−αt√
1−ᾱt

ϵθ(ft,t)

)
+σtϵ, (7)

where ϵ∼N (0,I) for all but the very last step (i.e., t= 1),
at which ϵ=0 and σ2

t =βt.
The result of the denoising process, f0, is a sample from

the normalized triplane feature image distribution. Denormal-
izing it using the dataset normalization statistics and splitting
the generated features into the axis aligned planes fxy,fyz,fxz
yields a set of triplane features which, when combined with
the pre-trained MLP, are used to query the neural field.

We use the marching cubes algorithm [41] to extract
meshes from the resulting neural fields. Note that our
framework is largely agnostic to the diffusion backbone used;
we choose to use ADM [52], a 2D state-of-the-art diffusion
model.

Source code and pre-trained models will be made
available.

4. Experiments
Datasets. To compare NFD against existing 3D generative
methods, we train our model on three object categories from
the ShapeNet dataset individually. Consistent with previous
work [85, 86], we choose the categories: cars, chairs and
airplanes. Each mesh is normalized to lie within [−1,1]3 and
then passed through watertighting. The generation of ground
truth triplanes then works as follows: we precompute the
occupancies of 10M points per object, where 5M points are
distributed uniformly at random in the volume, and 5M points
are sampled within a 0.01 distance from the mesh surface.

1As PVD outputs 098 point clouds, we apply the ball pivoting algorithm
(BPA) to PVD outputs before calculating FID. BPA was selected as it
achieved a good balance between speed and quality.

Data Method FID ↓ Precision ↑ Recall ↑

PVD 1 335.8 0.1 0.2
Cars SDF-StyleGAN 98.0 35.9 36.2

NFD (Ours) 83.6 49.5 50.5

PVD 305.8 0.2 1.7
Chairs SDF-StyleGAN 36.5 90.9 87.4

NFD (Ours) 26.4 92.4 94.8

PVD 244.4 2.7 3.8
Planes SDF-StyleGAN 65.8 64.5 72.8

NFD (Ours) 32.4 70.5 81.1

Table 1. Render quality metrics on ShapeNet. We achieve
state-of-the-art FID, which measures overall quality, as well as well
as state-of-the-art precision and recall, which measure fidelity and
diversity independently. Metrics calculated on shaded renderings
of generated and ground-truth shapes.

We then train an MLP jointly with as many triplanes as we
can fit in the GPU memory of a single A6000 GPU. In our
case, we initially train on the first 500 objects in the dataset.
After this initial joint optimization, we freeze the shared MLP
and use it to optimize the triplanes of the remaining objects
in the dataset. All triplanes beyond the first 500 are optimized
individually with the same shared MLP; thus, the training
of these triplanes can be effectively parallelized.

Evaluation metrics. As in [85], we choose to evaluate our
model using an adapted version of Fréchet inception distance
(FID) that utilizes rendered shading images of our generated
meshes. Shading-image FID [85] overcomes limitations
of other mesh-based evaluation metrics such as the light-
field-descriptor (LFD) [8] by taking human perception into
consideration. Zheng et al. [85] provide a detailed discussion
of the various evaluation metrics for 3D generative models.
Following the method [85], shading images of each shape
are rendered from 20 distinct views; FID is then compared
across each view and averaged to obtain a final score:

FID=
1

20

[
20∑
i=1

∥µi
g−µi

r∥2+Tr
(
Σi
g+Σi

r−2(Σi
rΣ

i
g)

1
2

)]
,

(8)
where g and r represent the generated and training datasets,
while µi,Σi represent the mean and covariance matrices for
shading images rendered from the ith view, respectively.

Along with FID, we also report precision and recall
scores using the method proposed by Sajjadi et al. [63].
While FID correlates well with perceived image quality,
the one-dimensional nature of the metric prevents it from
identifying different failure modes. Sajjadi et al. [63] aim
to disentangle FID into separate metrics known as precision
and recall, where the former correlates to the quality of the
generated images and the latter represents the diversity of
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Figure 4. We compare 3D shapes generated by our model against generations of state-of-the-art baselines for ShapeNet Cars, Chairs, and
Planes. Our model synthesizes shapes with noticeably sharper details than the previous state-of-the-art, while also capturing the broad
diversity in each category.

the generative model.

Baselines. We compare our method against state-of-the-art
point-based and neural-field-based 3D generative models,
namely PVD [86] and SDF-StyleGAN [85]. For evaluation,
we use the pre-trained models for both methods on the three
ShapeNet categories listed above. Note that PVD is inherently
a point-based generative method and therefore does not out-
put a triangle mesh needed for shading image rendering. To
circumvent this, we choose to convert generated point clouds
to triangle meshes using the ball-pivoting algorithm [3].

Results. We provide qualitative results, comparing samples
generated by our method to samples generated by baselines, in
Figure 4. Our method generates a diverse and finely detailed
collection of objects. Objects produced by our method contain
sharp edges and features that we would expect to be difficult
to accurately reconstruct—note that delicate features, such
as the suspension of cars, the slats in chairs, and armaments
of planes, are faithfully generated. Perhaps more importantly,
samples generated by our model are diverse—our model
successfully synthesizes many different types of cars, chairs,

and planes, including reproductions of several varieties that
we would expect to be rare in the training dataset.

In comparison, while PVD also produces a wide variety
of shapes, it is limited by its nature to generating only
coarse object shapes. Furthermore, because PVD produces
a fixed-size point cloud with only 2048 points, it cannot
synthesize fine elements.

SDF-StyleGAN creates high-fidelity shapes, accurately
reproducing many details, such as airplane engines and chair
legs. However, our method is more capable of capturing very
fine features. Note that while SDF-StyleGAN smooths over
the division between tire and wheel well when generating
cars, our method faithfully portrays this gap. Similarly, our
method synthesizes the tails and engines of airplanes, and the
legs and planks of chairs, with noticeably better definition.
Our method also apparently generates a greater diversity of
objects than SDF-StyleGAN. While SDF-StyleGAN capably
generates varieties of each ShapeNet class, our method
reproduces the same classes with greater variation. This
is expected, as a noted advantage of diffusion models over
GANs is better mode coverage.

We provide quantitative results in Table 1. The metrics
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Figure 5. Interpolation. Our model learns a continuous latent space of triplanes. We can smoothly interpolate between two noise triplanes,
resulting in semantically meaningful shape interpolation.

tell a similar story to the qualitative results. Quantitatively,
NFD outperforms all baselines in FID, precision, and recall
for each ShapeNet category. FID is a standard one-number
metric for evaluating generative models, and our performance
under this evaluation indicates the generally better quality of
object renderings. Precision evaluates the renderings’ fidelity,
and recall evaluates their diversity. Outperforming baselines
in both precision and recall suggest that our model produces
higher fidelity of shapes and a more diverse distribution
of shapes. This is consistent with the qualitative results in
Figure 4, where our method produced sharper and more
complex objects while also covering more modes.

Semantically meaningful interpolation. Figure 5 shows
latent space interpolation between pairs of generated neural
fields. As shown in prior work [69], smooth interpolation
in the latent space of diffusion models can be achieved by
interpolation between noise tensors before they are iteratively
denoised by the model. As in their method, we sample from
our trained model using a deterministic DDIM, and we use
spherical interpolation so that the intermediate latent noise
retains the same distribution. Our method is capable of
smooth latent space interpolation in the generated triplanes
and their corresponding neural fields.

4.1. Ablation Studies

We validate the design of our framework by ablating com-
ponents of our regularization strategies using the cars dataset.

Explicit density regularization. As discussed by Park et
al. [57], the precision of the ground truth decoded meshes
is limited by the finite number of point samples guiding the
training of the decision boundaries. Because we rely on
a limited number of pre-computed coordinate–occupancy
pairs to train our triplanes, it is easy to overfit to this limited
training set. Even when optimizing a single triplane in
isolation (i.e., without learning a generative model), this
overfitting manifests in “floater” artifacts in the optimized

Figure 6. Ablation over density regularization. Clear artifacts
are visible in the resulting occupancy field without explicit density
regularization. In this example, we optimize a single triplane on
a single shape.

neural field. Figure 6 shows an example where we fit a single
triplane with and without density regularization. Without
density regularization, the learned occupancy field contains
significant artifacts; with density regularization, the learned
occupancy field captures a clean object.

Triplane regularization. Regularization of the triplanes
is essential for training a well-behaved diffusion model.
Figure 7 compares generated samples produced by our entire
framework, with and without regularization terms. If we
train only with Equation 2, i.e., without regularization terms,
we can optimize a dataset of triplane features and train a
diffusion model to generate samples. However, while the
surfaces of the optimized shapes will appear real, the triplane
features themselves will have many high-frequency artifacts,
and these convoluted feature images are a difficult manifold
for even a powerful diffusion model to learn. Consequently,
generated triplane features produced by a trained diffusion
model decode into shapes with significant artifacts. We note
that these artifacts are present only in generated samples;
shapes directly factored from the ground-truth shapes are
artifact-free, even without regularization.

Training with Equation 4 introduces TV, L2, and
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Figure 7. Ablation over regularized triplanes. A generative model
trained on unregularized triplanes produces samples with significant
artifacts. Effective regularization of triplane features enables
training of a generative model that produces shapes without artifacts.
Top left: triplane features learned only with Equation 2 contain
many high frequency artifacts. Bottom left: a diffusion model
trained on these unregularized triplanes fails to produce convincing
samples. Top right: triplane features learned with Equation 4 are
noticeably smoother. Bottom right: A diffusion model trained on
these regularized triplanes produces high-quality shapes.

Method FID ↓ Precision ↑ Recall ↑
No regularization 285.8 1.6 0.6

Density + TV + L2 Reg. 83.6 49.5 50.5

Table 2. Quantitative results for the ablation on triplane regulariza-
tion. Our model performs poorly without explicit regularization
on the triplanes.

density regularizing factors. Triplanes learned with these
regularization terms are noticeably smoother, with frequency
distributions that more closely align with those found in
natural images (see supplement). As we would expect,
a diffusion model more readily learns the manifold of
regularized triplane features. Samples produced by a
diffusion model trained on these regularized shapes decode
into convincing and artifact-free shapes.

5. Discussion

In summary, we introduce a 3D-aware diffusion model
that uses a 2D diffusion backbone to generate triplane feature
maps, which are assembled into 3D neural fields. Our ap-
proach improves the quality and diversity of generated objects
over existing 3D-aware generative models by a large margin.

Limitations. Similarly to other generative methods,
training a diffusion model is slow and computationally
demanding. Diffusion models, including ours, are also slow
to evaluate, whereas GANs, for example, can be evaluated in
real-time once trained. Luckily, our method will benefit from
improvements to 2D diffusion models in this research area.

Figure 8. Failure cases. We observe that our model at times generate
axis-aligned artifacts and struggles to account for thin structures,
likely caused by the use of a triplane representation.

Slow sampling at inference could be addressed by more effi-
cient samplers [30] and potentially enable real-time synthesis.
While a step forward in quality, some of the samples gener-
ated by our method suffer from artifacts, as depicted by Fig. 8.
Strategies like guidance [13, 27], which trade off diversity
for fidelity, may reduce the prevalance of these outliers.

Future Work. We have demonstrated an effective way to
generate occupancy fields, but in principle, our approach can
be extended to generating any type of neural field that can be
represented by a triplane. In particular, triplanes have already
been shown to be excellent representations for radiance
fields, so it seems natural to extend our diffusion approach to
generating NeRFs. While we demonstrate successful results
for unconditional generation, conditioning our generative
model on text, images, or other input would be an exciting
avenue for future work.

Ethical Considerations. Generative models, including
ours, could be extended to generate DeepFakes. These pose
a societal threat, and we do not condone using our work to
generate fake images or videos of any person intending to
spread misinformation or tarnish their reputation.

Conclusion. 3D-aware object synthesis has many exciting
applications in vision and graphics. With our work, which
is among the first to connect powerful 2D diffusion models
and 3D object synthesis, we take a significant step towards
utilizing emerging diffusion models for this goal.
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ing persistent 3D feature embeddings. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019. 2

[67] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.
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