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Figure 1. Unsupervised Volumetric Animation (UVA). Selected animation results for faces and bodies. Given a driving image sequence
and a source image (not shown), UVA renders realistic animations and simultaneously generates novel views of the animated object. With
our reconstruction loss, our method also generates high-fidelity depth and normals, and identifies semantically meaningful object parts.

Abstract

We propose a novel approach for unsupervised 3D

animation of non-rigid deformable objects. Our method

learns the 3D structure and dynamics of objects solely

from single-view RGB videos, and can decompose them

into semantically meaningful parts that can be tracked and

animated. Using a 3D autodecoder framework, paired with

a keypoint estimator via a differentiable PnP algorithm,

our model learns the underlying object geometry and parts

decomposition in an entirely unsupervised manner. This al-

lows it to perform 3D segmentation, 3D keypoint estimation,

novel view synthesis, and animation. We primarily evaluate

the framework on two video datasets: VoxCeleb 2562 and

TEDXPeople 2562. In addition, on the Cats 2562 image

dataset, we show it even learns compelling 3D geometry

from still images. Finally, we show our model can obtain

animatable 3D objects from a single or few images
1
.

1Code and visual results available on our project website:
https://snap-research.github.io/unsupervised-volumetric-animation.
⇤ Work done while interning at Snap.

1. Introduction
The ability to realistically animate a dynamic object

seen in a single image enables compelling creative tasks.
Such applications range from tractable and cost-effective
approaches to visual effects for cinema and television, to
more lightweight consumer applications (e.g., enabling ar-
bitrary users to create “performances” by famous modern or
historical figures). However, this requires understanding the
object’s structure and motion patterns from a single static
depiction. Efforts in this field are primarily divided into
two approaches: those that outsource this understanding to
existing, off-the-shelf models specific to an object category
that capture its particular factors of variation; and those that
learn the object structure from the raw training data itself.
The former group employs supervision, and thus requires
knowledge about the animated object (e.g., the plausible
range of shapes and motions of human faces or bodies).
The latter group is unsupervised, providing the flexibility
needed for a wider range of arbitrary object categories.

Significant progress has been made recently in the do-
main of unsupervised image animation. Methods in this
category typically learn a motion model based on object

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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parts and the corresponding transformations applied to
them. Initially, such transformations were modeled using
a simple set of sparse keypoints. Further works improved
the motion representation [52, 55], learned latent motion
dictionaries [64], kinematic chains [59] or used thin-plate
spline transformations [81]. However, broadly speaking,
all such works propose 2D motion representations, warping
the pixels or features of the input image such that they
correspond to the pose of a given driving image. As
such, prior unsupervised animation methods offer means
to perform 2D animation only, and are inherently limited
in modeling complex, 3D effects, such as occlusions,
viewpoint changes, and extreme rotations, which can only
be explained and addressed appropriately when considering
the 3D nature of the observed objects.

Our work fundamentally differs from prior 2D works in
that it is the first to explore unsupervised image animation in
3D. This setting is substantially more challenging compared
to classical 2D animation for several reasons. First, as the
predicted regions or parts now exist in a 3D space, it is quite
challenging to identify and plausibly control them from
only 2D videos without extra supervision. Second, this
challenge is further compounded by the need to properly
model the distribution of the camera in 3D, which is a
problem in its own right [40], with multiple 3D generators
resorting to existing pose predictors to facilitate the learning
of the underlying 3D geometry [5,58]. Finally, in 3D space,
there exists no obvious and tractable counterpart for the bias
of 2D CNNs, which are essential for unsupervised keypoint
detection frameworks for 2D images [53].

We offer a solution to these challenges. Our framework
maps an embedding of each object to a canonical volumetric
representation, parameterized with a voxel grid, containing
volumetric density and appearance. To allow for non-rigid
deformations of the canonical object representation, we
assume the object consists of a certain number of rigid parts
which are softly assigned to each of the points in the canon-
ical volume. A procedure based on linear blend skinning is
employed to produce the deformed volume according to the
pose of each part. Rather than directly estimating the poses,
we introduce a set of learnable 3D canonical keypoints for
each part, and leverage the 2D inductive bias of 2D CNNs
to predict a set of corresponding 2D keypoints in the current
frame. We propose the use of a differentiable Perspective-
n-Point (PnP) algorithm to estimate the corresponding pose,
explicitly linking 2D observations to our 3D representation.
This framework allows us to propagate the knowledge from
2D images to our 3D representation, thereby learning rich
and detailed geometry for diverse object categories using
a photometric reconstruction loss as our driving objective.
The parts are learned in an unsupervised manner, yet they
converge to meaningful volumetric object constituents. For
example, for faces, they correspond to the jaw, hair, neck,

and the left and right eyes and cheeks. For bodies, the same
approach learns parts to represent the torso, head, and each
hand. Examples of these parts are given in Fig. 1.

To simplify the optimization, we introduce a two-stage
strategy, in which we start by learning a single part such that
the overall geometry is learned, and proceed by allowing the
model to discover the remaining parts so that animation is
possible. When the object is represented with a single part,
the model can perform 3D reconstruction and novel view
synthesis. When more parts are used, our method allows us
to not only identify meaningful object parts, but to perform
non-rigid animation and novel view synthesis at the same

time. Examples of images animated using our Unsupervised
Volumetric Animation (UVA) are given in Fig. 1.

We train our framework on three datasets containing
images or videos of various objects. We first show that
our method learns meaningful 3D geometry when trained
on still images of cat faces [79]. We then train our method
on the VoxCeleb [38] and TEDXPeople [17] video datasets
to evaluate 3D animation. Since our method is the first to
consider unsupervised 3D animation, we further introduce
evaluation metrics assessing novel view synthesis and ani-
mation quality when only single-view data is available.

2. Related work
3D-aware image and video synthesis experienced sub-
stantial progress over the last two years. Early works [40,
41, 51] used Neural Radiance Fields (NeRFs) [37] as a 3D
representation to synthesize simple objects and often con-
sidered synthetic datasets [51, 70]. They spurred a line of
works that scaled the generator and increased its efficiency
to attain high-resolution 3D synthesis [5, 18, 45, 58, 72].
These works rely on different types of volumetric repre-
sentations such as a coordinate-MLP [6], voxel-grids [39],
tri-planes [5, 58], generative manifolds [10], multi-plane
representations [82], and signed distance functions [42].
Further works combined implicit video synthesis [57, 76]
techniques with that of volumetric rendering [18] to gener-
ate 3D-aware videos [1]. A common requirement of these
methods is access to the ground truth camera distribution
(e.g., [6, 18, 45, 51, 80]) or even the known camera poses
for each training image [5, 10, 58, 82]. This gives a strong
inductive bias towards recovering the proper 3D geome-
try [58, 82]. Our work shows that it is possible to learn rich
geometry and object parts decomposition in a completely
unsupervised manner in a non-adversarial framework.
3D reconstruction from 2D data. Reconstruction of 3D
objects from image or video collections is a long standing
problem [23, 32, 67, 68, 73–75]. Initial attempts [23]
utilize image collections and try to predict camera, mesh
displacement parameters and texture, render the mesh and
use reconstruction as the main guiding signal. Later
work [68] proposes to further improve this pipeline by
incorporating additional knowledge about object symmetry.
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However, those works did not model deformations, which
was addressed later in works [32, 67, 73–75] that propose
to train on video datasets. Most of them [32, 73–75]
optimize the object parameters for each frame, and thus
can not be trained on a large dataset of videos. On the
contrary, Dove [67] infers the articulation parameters from
individual frames, which allows training on large video
dataset. However, Dove [67] is a mesh based method, thus
rendering quality is limited. Moreover, all of these methods
utilize additional annotations such as template shapes [32],
camera poses [75], 2D keypoints [75], optical flow [73–75]
or ground truth object masks [32,67,73–75]. Instead, in our
method everything, including object masks, was obtained in
an purely unsupervised way from video data only.
Supervised image animation requires an off-the-shelf
keypoint predictor [62, 77, 78] or a 3D morphable model
(3DMM) estimator [14, 15] run through the training dataset
prior to training. To train such an estimator, one needs to
have large amounts of labeled data for the task at a hand.
Supervised animation works are typically designed for only
one object category, such as bodies [33, 62] or faces [78].
Among them, some support only a single object identity [4],
others single- or few-shot cases [46, 62].

Thanks to significant advances in neural rendering and
3D-aware synthesis, several works extended supervised
animation to the 3D domain. Initially, a dataset with
multiview videos was required to train animatable radiance
fields [43]. Later, HumanNeRF [65] and NeuMan [21]
showed the feasibility of leveraging only a monocular video
of the same subject. However, these models require fitting
of a 3D model of human bodies to every frame of a
video. With some exceptions [46], such methods do not
support multiple identities with the same framework. In
contrast, our method features a space in which all objects
are represented in their canonical, animation-ready form.
Unsupervised image animation is the most related group
of works to ours. These works do not require supervision
beyond photometric reconstruction loss and, hence, support
a variety of object categories with one framework [36, 52,
53, 55]. A key focus area of such works is to design appro-
priate motion representations for animation [35, 52, 55, 66].
A number of improved representations have been proposed,
such as those setting additional constraints on a kinematic
tree [59], and thin-plate spline motion modelling [81]. A
further work, titled Latent Image Animator [64], learned
a latent space for possible motions. Interestingly, a di-
rection in the latent space is found to be responsible for
generating novel views of the same subject. As we confirm
experimentally, similarly to 2D image generators [24], the
direction cannot be reliably used to synthesize the novel
views. Several recent works [11, 63], propose to use
mixed schemes where pose of the object is supervised and
expression is learned, such approaches works well for faces

however did not generalize to other categories.

3. Method
This section presents our method for unsupervised 3D

animation of non-rigid deformable objects. Our model
trains on a set of images {Fi,↵i}

Nf

i=1, where Fi 2 RH⇥W⇥3

is an image frame, ↵i 2 N is an object identifier2, and Nf

is the number of frames in a video. The primary training
objective of our framework is the reconstruction task. Given
a frame Fi with identity ↵i, we reconstruct it using four core
components (see Fig. 2). First, Canonical Voxel Generator
G maps a learnable identity-specific embedding e 2 RNe

to an object’s volumetric representation in the canonical
pose, parametrized as a voxel grid. Following [52, 53, 55],
we assume that each non-rigid object can be represented
as a set of moving rigid parts. In this way, our voxel
generator segments the volume and assigns each 3D point
to its corresponding object’s part (Sec. 3.1). Next, we
define 2D keypoint predictor C with and the differentiable
PnP [28] algorithm to estimate each part’s pose (position
and orientation) in a given RGB frame Fi (Sec. 3.2).
Subsequently, we employ a method based on linear blend
skinning [29] to map the canonical object volume into a
deformed one which represents the object in the current
frame (Sec. 3.3). Finally, we use volumetric rendering [37]
to render the colors to the image space (Sec. 3.4).
3.1. Canonical Voxel Generator

We use a voxel grid V to parametrize the volume since
we found it to provide the best trade-off between generation
efficiency, expressivity and rendering speed. Given an
object’s embedding e 2 RNe , we use Canonical Voxel
Generator G to produce a volume cube of size S:

G(e) = V =
⇥
V

DensitykV RGBkV LBS
⇤
, (1)

where V
Density 2 RS

3

is the object’s (discretized) density
field in the canonical pose and V

RGB 2 RS
3⇥3 is its

(discretized) RGB radiance field. To animate an object, we
assume that it can be modeled as a set of rigid moving parts
p 2 {1, 2, ..., Np} [52, 53, 55], so we use V

LBS 2 RS
3⇥Np

to model a soft assignment of each point of the volume to
one of the Np parts. Notably, we do not use any encoder to
produce identity embeddings e and instead optimize them
directly during training [3]. Examples of canonical density,
parts, and rendered canonical radiance are shown in Fig. 2.
3.2. Unsupervised Pose Estimation

As described in Sec. 3.1, we assume that an object
movement can be factorized into a set of rigid movements
of each individual object’s part p. However, detecting
3D part poses, especially in an unsupervised way, is a

2We assume that we know which object instance appears in a video. In
practice, this assumption is easily satisfied by assigning the same identity
to all the frames of a given video.
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G

Embedding space

Figure 2. Unsupervised Volumetric Animation consists of a canonical voxel generator G mapping a point in the latent space to the
canonical density, radiance and canonical parts. In the embedding space we show canonical shapes rendered under identity camera (faces
have the same pose with mouth open). For each part, a set of canonical 3D keypoints K3D is learnt during training. The 2D keypoint
predictor uses a driving image to predict a set of 2D keypoints K2D , corresponding to K3D . The differentiable PnP algorithm is used to
predict the pose of each part. Canonical density, radiance, poses and parts are then used to compute the deformed density and radiance via
volumetric skinning. We then volumetrically render the deformed radiance to produce the rendered image. Note, that our approach does
not use any knowledge about the object being animated, and is supervised using the reconstruction loss. Zoom-in for greater detail.

difficult task. MRAA [55] shows that estimating 2D parts
and their poses in an unsupervised fashion is an under-
constrained problem, which requires specialized inductive
biases to guide the pose estimation towards the proper
solution. We incorporate such an inductive bias by framing
pose prediction as a 2D landmark detection problem which
CNNs can solve proficiently due to their natural ability to
detect local patterns [20].

To lift this 2D bias into 3D, we estimate the poses of
3D parts by learning a set of 3D keypoints in the canonical
space and detecting their 2D projections in the current frame
using a 2D CNN. We then use a differentiable Perspective-
n-Point (PnP) formulation to recover the pose of each part
since we know its corresponding 2D and 3D keypoints.
More formally, PnP is a problem where, given a set of
the 3D keypoints K

3D 2 RNk⇥3, a set of corresponding
2D projections K

2D 2 RNk⇥2 and the camera intrinsics
parameters, one need to find a camera pose T = [R, t] 2
R3⇥4, such that K3D project to K

2D when viewed from
this pose. Note that, while T represents the pose of the
camera with respect to the part, in our framework we
consider the camera extrinsics to be constant and equal to
the identity matrix, i.e. a part moves while the camera
remains fixed. Recovering a part’s pose with respect to the
camera is performed by inverting the estimated pose matrix
Tp = [Rp, tp] = [R�1

,�R
�1

t].

To implement this idea, we introduce Nk learnable
canonical 3D keypoints K

3D
p

for each part, totaling Nk ⇥

Np. These 3D keypoints are shared among all the objects
in a dataset, which are directly optimized with the rest of
the model’s parameters. Then, we define a 2D keypoints
prediction network C, which takes frame Fi as input and
outputs Nk 2D keypoints K2D

p
for each part p, where each

2D keypoint corresponds to its respective 3D keypoint. The
pose of part p is thus recovered as:

T
�1
p

= PnP
�
K

2D
p

,K
3D
p

�
= PnP

�
C(Fi),K

3D
p

�
. (2)

Crucially, in this formulation K
3D
p

are shared for all the
objects in the dataset, thus all objects will share the same
canonical space for poses. This property is essential
for performing cross-subject animations, where poses are
estimated on frames depicting a different identity.

We used the EPnP [28] implementation from Py-
torch3D [44], since we found it to be faster and more stable
than the methods based on declarative layers [8, 16].
3.3. Volumetric Skinning

In this section, we describe the procedure to deform
the canonical volumetric object representation into its rep-
resentation in the driving pose. The deformation can
be completely described by establishing correspondences
between each point xd in the deformed space and points xc

in the canonical space. We establish such correspondence
through Linear Blend Skinning (LBS) [29]:

xd =

NpX

p=1

w
c

p
(xc) (Rpxc + tp) , (3)

4661



where wc

p
(x) is a weight assigned to each part p. Intuitively,

LBS weights segment the object into different parts. As an
example, a point with LBS weight equal to 1.0 for the left
hand, will always move according to the transformation for
the left hand. Unfortunately, during volumetric rendering
we typically need to query canonical points using points in
the deformed space, requiring solving Eq. (3) for xc. This
procedure is prohibitively expensive [30], so we rely on
the approximate solution introduced in HumanNeRF [65],
which defines inverse LBS weights wd

p
such that:

xc =

NpX

p=1

wp(xd)
�
R

�1
p

xd �R
�1
p

tp

�
, (4)

where weights wd

p
are defined as follows:

wp(xd) =
w

c

p
(R�1

p
xd �R

�1
p

tp)
PNp

p=1 w
c
p
(R�1

p xd �R
�1
p tp)

. (5)

This approximation has an intuitive explanation, i.e. given
the deformed point, we project it using the inverse Tp to the
canonical pose and check if it corresponds to the part p in
canonical pose. It is easy to see that if each point has a strict
assignment to a single part and there is no self-penetration
in the deformed space, the approximation is exact. In our
work, we parametrize w

c

p
as the channel-wise softmax of

V
LBS. Examples of the parts are given in Figs. 1 & 2.

3.4. Volumetric Rendering
We render the deformed object using differentiable

volumetric rendering [37]. Given camera intrinsics and
extrinsics, we cast a ray r through each pixel in the image
plane and compute the color c associated to each ray by
integration as:

c(r) =

Z
tf

tn

e
�

R t
tn

�(r(s))ds
�(r(t))c(r(t))dt, (6)

where � and c are functions mapping each 3D point along
each ray r(t) to the respective volume density and radiance.
In our framework, we parametrize � as V

Density and c

as V
RGB which can be efficiently queried using trilinear

interpolation. We train the model using a camera with
fixed extrinsics initialized to the identity matrix, and fixed
intrinsics. Note that, to reduce computational resources, we
render images directly from voxels without any additional
MLP, nor did we employ any upsampling technique.

We assume that the background is flat and it is not
moving. We model it as a plate of fixed, high density. This
density is modeled with a single dedicated volume, while
the color is obtained from V

RGB.

3.5. Training
Learning a 3D representation of an articulated object

from 2D observations without additional supervision is a

highly ambiguous task, prone to spurious solutions with
poor underlying geometry that leads to corrupted renderings
if the camera is moved away from the origin. We devise a
two-stage training strategy that promotes learning of correct
3D representations. First, we train the model with only a
single part, i.e. Np = 1. This allows the model to obtain
meaningful estimation of the object geometry. Thus we
name this pretraining a Geometry phase or G-phase. During
the second phase, we introduce Np = 10 parts, allowing
the model to learn the pose of each part. We copy all the
weights from the G-phase. Moreover, for C the weight of
the final layer is extended such that all the part predictions
are the same as in the first stage, while for G, we just add
additional weights for V LBS initialized to zero.

The model is trained using a range of losses.
Reconstruction loss. We use perceptual reconstruction
loss [22] as the main driving loss. Similarly to FOMM [52]
we use a pyramid of resolutions:

Lr =
X

l

X

i

���VGGi(Dl � F̂ )�VGGi(Dl � F )
��� , (7)

where VGGi is the i
th-layer of a pretrained VGG-19 [56]

network, and Dl is a downsampling operator corresponding
to the current resolution in the pyramid.
Unsupervised background loss. Contrary to 2D frame-
works for unsupervised animation that use motion cues to
separate background from foreground objects, our generator
G mostly relies on appearance features, thus it is harder for
it to disentangle the background from the foreground. In the
first stage, we encourage the model to correctly disentangle
the background from the foreground leveraging a coarse
background mask B that we obtain in an unsupervised
manner from MRAA [55]. Given the occupancy map O

for the foreground part obtainable by evaluating Eq. (6)
excluding the background, we enforce a cross entropy loss:

Lbkg =
X

i

O log(1�B) + (1�O) log(B), (8)

the background mask B is very coarse and we observe is
necessary only in the earliest iterations to avoid degenerate
solutions, thus we reduce the contribution of this loss each
epoch, we specify the exact schedule in Appx A.
Pose losses. Finally, to regularize the PnP-based pose
prediction we add two regularization terms: equivariance
and projection. First one is a standard technique for
regularizing unsupervised keypoints [52, 55]:

Leq = |A � C(F )� C(W(F,A))| , (9)

where A is a random affine transformation, and W is a
warping operation. The intuition behind this loss is that
when an image is deformed, its keypoints should undergo
a similar deformation. Second, we explicitly minimize the
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K
3D reprojection error with K

2D:

Lproj =
X

p

��K2D
p

�⇧(K3D
p

, Tp)
�� , (10)

where ⇧p projects the points according to the estimated
camera pose Tp. This loss enforces keypoints to comply
with the predicted camera transformation Tp, improving the
stability of the PnP algorithm. The final loss is the sum of
all terms with equal weights.

3.6. Inference
Despite our model learns the embedding space for the

identities in the training set only, it can be used to model
previously unseen identities. Given an image of an unseen
identity Ftest and a randomly initialized embedding etest,
we optimize the reconstruction loss Lr (Eq. 7) with respect
to the embedding etest. This procedure produces a volu-
metric representation with detailed geometry, but imperfect
textures. We address this issue by finetuning the generator
G, following the pivotal tuning procedure [49]. In order
to avoid significant distortions to the geometry, during this
finetuning stage we regularize V

Density and V
LBS to stay

close to their values prior to finetuning. Note that we
only optimize with respect to the appearance and do not
modify the 2D keypoint predictor C, ensuring that motion
can be transferred from different objects. Additional details
concerning this embedding are provided in Appx A.

4. Experiments
Evaluating animation, whether 2D or 3D, is a challeng-

ing task as there is no ground truth for the animated images.
We are not aware of prior works in unsupervised volumetric
animation, hence, in this section we establish an evaluation
protocol for this task. Our protocol makes use of established
metrics in unsupervised 2D animation, when applicable,
and introduces procedures to evaluate the quality of the
synthesized 3D geometry and animation under novel views.
Datasets. To evaluate our method we use three publicly
available datasets: 1) Cats [79], consisting of 9,993 images
of cat faces. We used 9,793 for training and 200 for
testing. 2) For VoxCeleb [38], we employed the same pre-
processing as FOMM [52], using 19522 face videos for
training and 100 for testing. 3) TEDXPeople [17] is a video
dataset of TEDx speakers. Using timestamps provided
by [17], we extract continuous video chunks. More details
can be found in Appx B. In total, we employ 40896 videos
for training, and retain 100 videos for testing.
4.1. Geometry from Image Data

Our method learns high-fidelity geometry from images
or videos without camera or geometry supervision. This
is a challenging setting, even for recent 3D-GANs, as they
require camera supervision. In this setting, we compare
the quality of inferred geometry to a state-of-the-art 3D-
GAN, EpiGRAF [58], trained with ground truth camera

poses. As both UVA and EpiGRAF render non-absolute
depth, to evaluate its quality, we use the Pearson correlation
coefficient. Given a test image, we reconstruct it by
inversion, and obtain depth using volumetric rendering.
We then measure the correlation between the predicted
depth and the depth estimated with an off-the-shell depth
estimator [12]. For a fair comparison, during inversion,
we do not provide camera poses to EpiGRAF and instead
find them during the optimization, in combination with the
rest of the parameters. UVA provides higher-quality depth,
while not requiring camera supervision during training,
reaching a correlation value of 0.63. EpiGRAF reaches only
0.53, often failing to render accurate depth for non-frontal
cameras (see Fig. 3a).

4.2. Animation Evaluation
Unsupervised animation in 3D is a new task introduced

in this work. A key feature of 3D animation is the ability
to change the viewpoint from which the object is rendered
during animation. Commonly used animation datasets,
however, do not typically offer multi-view data. To evaluate
viewpoint consistency without access to multi-view data,
we introduce three new metrics: Average Yaw Deviation
(AYD), Average Shape Consistency (ASC), and Average
Pose Consistency (APC). In more detail, given an object,
we rotate it along the y-axis using a set of predefined
angles. We then fit an SMPL [9] model for humans and
a 3DMM [13] for faces to the frontal and rotated views of
the objects. These models estimate the root angle, defining
how the object is oriented with respect to the camera; a
shape parameter, defining the identity of the object; and
a parameter defining its pose (in terms of joint rotations
for SMPL and facial expression parameters for 3DMM).
To evaluate the ability of the model to rotate the object by
the required angle to produce novel views, we use AYD.
In particular, we compute the y-axis component of the
root angle between the rotated and non-rotated object, and
compare it with the known yaw of the camera, used to
render that view. We use ASC to compare the consistency
of the shape parameters between the frontal and the rotated
views. A lower ASC indicates that the identity is better
preserved during rotation. APC is used to measure how
much the pose is altered during rotation, with a lower APC
indicating better preservation of the object pose. These
metrics enable evaluating the capabilities of competing
models in generating view-consistent results. Appx C
contains full details on these metrics.

No prior unsupervised animation method [52, 55, 64]
offers a built-in ability to generate the data under novel
views. Thus, for [52,55] we introduce a simple, depth-based
method to generate novel views. First, we predict the depth
from a monocular depth predictor [12] and normalize it to
make it compatible with our camera intrinsics. Then, for
each method, we estimate parts and their affine transforma-

4663



Input UVA EpiGRAF

Our Np=10 Our Np=1 No G-phase Np=10

Our full model Our with only 1 part No geometry-phase

No BG Np=1 Direct Np=1

No unsupervised background Directly predict poses

(a) Depth comparisons (b) Qualitative ablation results of methods in Tab. 2

Figure 3. (a) Typical depth examples of embedded images using our method (UVA) and EpiGRAF [58]. Note, UVA’s depth contains
sharper details regardless of the pose. (b) We show a block for each method, with novel views (top), and depth, normals, parts (bottom).
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Figure 4. 2D animation. Example 2D animations on bodies and faces from our method (UVA) and a state-of-the-art work, MRAA [55].
As UVA models objects in canonical 3D space, it better preserves an object’s shapes when animated. Zoom-in for greater detail.

tions. We choose a central 2D keypoint for each part, and
augment it with 4 additional keypoints in its neighborhood.
Using the depth, we lift the keypoints in 3D and re-project
them into the novel view. From these new keypoints, a
new affine transformation is estimated and used to drive
the view synthesis. We then evaluate against LIA [64],
which expresses animation as linear navigation in a latent
space. For the VoxCeleb [38] dataset, we found one of the
components of its latent space to correlate with the rotation
of the head along the y-axis. Exploiting this finding, we
fit a linear model mapping the magnitude of the movement
along this latent component to the produced head rotation,
and use it to generate the head under novel viewpoints.

We also use the standard 2D reconstruction metrics: L1,
AKD/MKR [53], AED [53]. However, we emphasize that
such metrics favor 2D methods, which can solve the 2D
animation problem by copying pixels from the source to
the target view, at the cost of limited 3D understanding
and consistency. In contrast, UVA renders view-consistent
pixel values from a 3D representation, making this shortcut
unavailable. A significant gap may also be introduced by

the single-image embedding procedure we adopt. Note,
however, that as our embedding procedure seamlessly sup-
ports the use of multiple source frames at inference time,
a shared representation can be optimized, pooling infor-
mation from all available frames to improve performance.
We demonstrate the results of our model with one and
five frames. We also note that, despite a wide range of a
viewpoints in different videos, subjects in each individual
video in VoxCeleb and TEDXPeople have very limited 3D
rotations, as they primarily face towards the camera. Thus,
standard reconstruction metrics do not reflect the model’s
capacity to perform complex 3D transformations.

We provide the quantitative results in Tab. 1. As the
affine transformations of FOMM [52] are mostly based on
edge detection that is not very robust, any minor modi-
fication of this transformations for novel view synthesis
leads to significant movement. Thus, FOMM has the
worst AYD among all methods. Affine estimation in
MRAA, in contrast, is significantly more robust, and thus
it has a significantly lower AYD. However, we observe
that MRAA does not have enough knowledge about the 3D
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Figure 5. Novel view synthesis. We report typical examples of novel views synthesized using a single input image. For bodies, we show a
narrower range, as the TEDXPeople dataset is biased towards frontal poses.

VoxCeleb TEDXPeople

Method AYD# ASC# APC# L1# AKD# AED# AYD# ASC# APC# L1# (AKD#, MKR#) AED#

FOMM [52] 0.655 0.129 0.177 0.0413 1.289 0.134 0.507 0.028 1.07 0.0318 (3.248, 0.009) 0.120
MRAA [55] 0.173 0.123 0.174 0.0424 1.250 0.131 0.181 0.023 0.702 0.0262 (2.282, 0.007) 0.101

LIA [64] 0.207 0.130 0.190 0.0529 1.437 0.138 - - - - - -
Our 1 frame 0.051 0.078 0.144 0.0655 1.737 0.226 0.128 0.019 0.635 0.0474 (3.571, 0.017) 0.163
Our 5 frame 0.045 0.091 0.112 0.0418 1.378 0.111 0.107 0.021 0.571 0.029 (2.373, 0.014) 0.086

Table 1. Comparison with 2D animation methods. Novel view synthesis for AYD, ASC & APC from yaw in range �45� to +45�.

Method AYD# ASC# APC# L1# AKD# AED#

Direct Np = 1 0.707 0.160 0.239 0.0723 3.582 0.326
No BG Np = 1 0.301 0.117 0.216 0.0702 2.410 0.263

Our Np = 1 0.141 0.113 0.210 0.0637 2.170 0.242

No G-phase Np = 10 1.08 0.145 0.226 0.0620 1.993 0.243
Our Np = 10 0.051 0.078 0.144 0.0655 1.737 0.226

Table 2. Ablation results on the VoxCeleb dataset.
structure of the objects, treating them as planes—while they
roughly preserve the shape and pose for small angles, for
larger angles objects become thinner, until they eventually
disappear. LIA has a rotation direction that is entangled
with the other movements, and thus it has the lowest ASC
and APC. Finally, our model is the best at preserving
shape and expressions, as judged by the ASC and APC.
Moreover, our model also provides the most meaningful
rotations as judged by the AYD. With respect to standard
reconstruction metrics, we hypothesize that they provide
unfair advantage to the models that can copy the pixels
directly. To quantify the error introduced by the embedding,
we embed, reconstruct the same frame and compute L1
error: Our � 0.0298, MRAA � 0.0015 (compare with L1
for the full sequence in Tab. 1). Thus the difference in
reconstruction performance is mainly due to the embedding
procedure. Note however, that the results of our 5 frame
model performs on par with the baselines.

However, as previously mentioned, these metrics do not
reflect the ability of the model to preform complex 3D
movements. This point is further highlighted in Fig. 4,
when the pose of the source and driving images differ
significantly, MRAA fails to properly reflect that, while our
model produces more consistent results. Interesting, we
also note that, as our model is based on learning a 3D prior
and not copying pixels, it can filter out some occlusions, as
seen in the third column in Fig. 4, while MRAA produces
artifacts in the occluded region.

4.3. Ablation Studies
We evaluate the key design choices made in our frame-

work. First, we compare our PnP-based part pose predictor

with direct part pose prediction (Direct). As directly
predicting an R3⇥3 rotation matrix could produce solutions
not corresponding to a rigid rotation, we adopt the 6D
rotation parameterization from [83]. The geometry learned
by this approach is essentially flat. We compare our
method and Direct only in the geometry phase of training
(e.g., when Np = 1), as it does not produce sufficiently
accurate geometry to proceed with the next phase. We
also demonstrate the effect of the unsupervised background
loss Lbkg by training the model without this loss (No

BG). Finally, we investigate the importance of two-phase
training, learning a model with multiple parts without the
geometry phase No G-phase. We show numerical results in
Tab. 2 and qualitative examples in Fig. 3b. Our full model
achieves the best scores, and generates higher fidelity novel
views and geometric details. The utility of the geometry
phase is clearly demonstrated by the scores and qualitative
results, which, without this phase, produce corrupted results
and do not learn representative parts. While it produces
meaningful depth, the model trained without Lbkg fails to
separate the background and foreground.

5. Conclusion
Our approach for unsupervised volumetric animation

demonstrates a significant step towards 3D animation of
dynamic objects. While trained exclusively on real-world
monocular 2D videos, our method obtains high quality
geometry, object parts and 3D segmentation and normals.
Due to the unsupervised nature of our work, the same
approach applies to a variety of object categories without
using explicit labels or other cumbersome supervision. This
understanding of the underlying geometry and structure of
the object, allows our method to perform animation and
novel view synthesis at the same time. These properties
open exciting possibilities for employing this information
for future exploration, e.g. controlling an object’s fine-
grained shape, or relighting it for composition into novel
environments.
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