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Abstract

Geometric estimation problems in vision are often solved
via minimization of statistical loss functions which account
for the presence of outliers in the observations. The corre-
sponding energy landscape often has many local minima.
Many approaches attempt to avoid local minima by an-
nealing the scale parameter of loss functions using methods
such as graduated non-convexity (GNC). However, little at-
tention has been paid to the annealing schedule, which is of-
ten carried out in a fixed manner, resulting in a poor speed-
accuracy trade-off and unreliable convergence to the global
minimum. In this paper, we propose a principled approach
for adaptively annealing the scale for GNC by tracking the
positive-definiteness (i.e. local convexity) of the Hessian
of the cost function. We illustrate our approach using the
classic problem of registering 3D correspondences in the
presence of noise and outliers. We also develop approxima-
tions to the Hessian that significantly speeds up our method.
The effectiveness of our approach is validated by compar-
ing its performance with state-of-the-art 3D registration ap-
proaches on a number of synthetic and real datasets. Our
approach is accurate and efficient and converges to the
global solution more reliably than the state-of-the-art meth-
ods.

1. Introduction
Geometric estimation problems in computer vision use

point locations or correspondences extracted from images
or scans, e.g. epipolar geometry, bundle adjustment, 3D
registration etc. Such point observations are noisy and also
have a number of corrupting outliers. While RANSAC and
related approaches [11,22,40,53] work by removing obser-
vations classified as outliers, an important class of methods
use M-estimation [2,52,56,57], which reduces the influence
of outliers. Denoting the geometric model parameters as x
and the residual of the model fitting of the i-th observation
as ri(x), the robust estimation problem is

min
x

N∑
i=1

ρσ(∥ri(x)∥) (1)

Figure 1. Annealing of scale σ in GNC: We start with a large
value of σ that makes the problem easy to solve. The red curve
indicates the path of the minimum solution for robust estimation
as σ is gradually reduced. We desire an annealing scheme that will
ensure that we reach the final global minimum for σfinal.

where ρ(.) is a statistical loss function and σ is a scale
parameter. σ signifies the scale of the noise in the observa-
tions and defines the distinction between what we classify
as inliers and outliers.

Eqn. 1 is a non-linear optimization problem that is usu-
ally solved using a series of local optimization steps. A
common choice is the Iteratively Reweighted Least Squares
(IRLS) approach [28, 31]. In IRLS, we take the gradient of
the cost function and equate it to zero, resulting in

∇ρσ(x) =
∑N

i=1 ρ′(∥ri∥)∇(∥ri∥) = 0 (2)

⇒
∑N

i=1

ρ′(∥ri∥)
∥ri∥

∇
(
∥ri∥2

2

)
= 0 (3)

⇒
∑N

i=1 ϕ(∥ri∥)∇
(
∥ri∥2

2

)
= 0 (4)

In a given iteration, we treat the weights ϕi = ϕ(∥ri∥) as
constants, which gives us a weighted least squares problem.
Given a new estimate of x, these weights are updated, and
the process is repeated until convergence.
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Graduated Non-Convexity: Since the cost function in
Eqn. 1 can have a large number of local minima, a careful
initialization of IRLS is necessary to reach the global
minimum that we desire. To this end, a popular approach
developed in the computer vision literature is Graduated
Non-Convexity (GNC) [10, 47, 66, 71, 72]. In GNC, we
start with a large value, σ0, that smoothens the underlying
cost function making it easier to optimize. When σ0 → ∞,
ρσ0

(∥r∥) → ∥r∥2/2 leading to a least squares problem.
The initial cost is, thus, very smooth and is either convex or
has a large basin of convexity around the global minimum,
thereby enabling practical optimization algorithms to
reliably find the global minimum. In many cases, there
exist certifiable global solvers [12, 74], and in the special
case of 3D registration, there exists a closed-form solution
for the global minimum [55] of the initial cost. After
obtaining the global minimum for the initial smoothened
cost, we proceed by progressively annealing or reducing σ
and re-solving Eqn. 1. Given an estimate xk at scale σk at
the k-th stage, we update scale to σk+1 and solve Eqn. 1
using xk as the initialization, yielding the updated estimate
xk+1. This is repeated till we terminate our procedure at a
desired final scale σfinal.

If we incrementally update σ from σk to σk+1, we
can ensure that the resulting local minimum of the new
cost function, obtained using the previous solution as the
initialization, is a very good local minimum if not the global
minimum of the new cost. When the data is corrupted
with more than 50% outliers in an adversarial manner, any
robust method would give a model that is biased towards
the majority outlier observations. This is because the global
minimum of the robust cost is not close to the inlier model
parameters. Thus, it is reasonable for any GNC strategy to
focus on obtaining the global minimum of the robust cost
on data corrupted with < 50% outliers.

Fig. 1 illustrates a family of cost functions parametrized
by σ used in GNC. Starting from a very large σ which gives
us a smooth, easily optimizable cost function in Eqn. 1,
we can move x along the smooth red curve which is the
locus of the minimum of the cost function as we drive σ
down to its final value σfinal. The GNC procedure seeks to
ensure that at every stage (k + 1), the initialization xk falls
within the basin of convergence for the global minimum of
the current cost function for σk+1. This, in turn, increases
the likelihood that the final estimate of x at σfinal is the
global minimum, i.e. we try to avoid falling into the basin
of a local minimum. We note that as we anneal σ, the
cost function starts becoming non-convex with multiple
local minima in the cost function landscape. However, if
throughout we remain in the same basin of convergence
as we modify σ, we can reach the global minimum more

Figure 2. Adaptive annealing for GNC for line fitting in the pres-
ence of outliers. See text for details.

reliably for the desired cost function specified by σfinal,
in most of the cases with outliers < 50%. Even in cases
where the outlier corruption is ≥ 50%, the real-world data
is not always adversarial, thereby enabling GNC to perform
well. It will be noted that this is akin to the approach of
homotopy continuation [24, 37, 38, 41] in optimization.

Annealing Scheme: The inset in Fig. 1 further illus-
trates the GNC procedure. At the k-th stage, we are at the
minimum of Eqn. 1 for σk. We keep the current xk and
update σ to σk+1, as indicated by the downward vertical
arrow. Given this scale σk+1, we solve Eqn. 1, which
moves the current estimate of the model parameters to
xk+1 as indicated by the leftward horizontal arrow. This
procedure is repeated till we reach the desired scale σfinal.
The performance of this scheme critically depends on
the annealing steps used. While GNC is used in many
geometric estimation approaches [66, 68, 75], the majority
of them use a simple annealing scheme, wherein, at each
stage, the scale σ is decremented by a fixed factor, i.e.
σk+1 = σk

γ where γ > 1. It will be immediately noted that
the choice of γ has a significant impact on the performance
of GNC. If we take γ close to 1, say γ = 1 + ϵ for very
small ϵ > 0, we move slowly in the cost function landscape.
This will ensure that we stay on the red curve leading to
the global minimum for σfinal. However, this comes at the
cost of using a large number of annealing stages, thereby
making the computational cost prohibitive. In contrast, if
we take a large γ, we move rapidly in the scale space σ but
can possibly end up in a poor quality local minimum.

In this paper, we propose a principled approach to adap-
tively anneal the scale σ. At each stage, we seek to use
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GNC strategy # of stages in GNC Accuracy
Small γ (fixed) ↑ ↑
Large γ (fixed) ↓ ↓

Adaptive γ [Ours] ↓ ↑
Desirable ↓ ↑

Table 1. Impact of different annealing strategies. Our adaptive
approach achieves high accuracy with fewer annealing stages.

as large a γ as possible while ensuring that we always
stay within the desired basin of convergence of the global
minimum. While our approach is general, for simplic-
ity, throughout this paper, we use the Geman-McClure loss
function:

ρσ(e) =
e2

2(1 + e2

σ2 )
(5)

In Fig. 2, we illustrate the impact of our adaptive an-
nealing scheme for a simple problem of 2D line fitting in
the presence of outliers. When we set the annealing fac-
tor to a small value (γ = 2), GNC converges to the global
minimum but needs 14 stages. For a large annealing fac-
tor (γ = 10), GNC terminates in 4 stages but converges to
a poor local minimum. In contrast, our adaptive approach
uses 8 stages and converges to the correct solution at the
global minimum. We can summarize our observations as
shown in Table. 1.

1.1. Adaptive Annealing

In this subsection, we describe our adaptive annealing
scheme. From the above discussion, we have noted that at
each stage of GNC, we seek to anneal σ while ensuring that
we remain in the basin of convergence of the global mini-
mum. We propose to achieve this objective by examining
the Hessian of the cost function in Eqn. 1 with respect to
the parameters x. For an Np parameter model, the Np×Np

Hessian matrix is

[Hi](r,s) =
∂2ρσ(∥ri(x)∥)

∂xr∂xs

∣∣∣∣
xk

(6)

⇒ H =

N∑
i=1

Hi

where i is the index for the individual observations in
Eqn. 1. Thus, H is the Hessian of the robust cost function
evaluated at the k-th stage estimate xk. Since xk is a
minimum of the cost function in Eqn. 1 evaluated for σk,
we note that H is locally convex, i.e. positive-definite.
This is true since we have converged to xk through an
optimization of Eqn. 1.1 Additionally, in the (k + 1)-th

1We emphasize that the positive-definiteness of H indicates local con-
vexity of our cost function and does not imply that our cost function is
globally convex.

iteration, if we update the scale to σk+1 ensuring that the
Hessian H evaluated at σk+1 remains positive-definite,
then we have likely ensured that the new estimate, xk+1,
is in the same basin of convergence as that of the previous
iteration. This is true since we initialize our optimization
for the (k + 1)-th iteration at xk and converge to the
local minimum using IRLS. We finally note that we begin
the adaptive GNC procedure for a very large σ, thereby
ensuring that the cost function is very smooth and convex
over a larger domain. This makes it easier to obtain
the global minimum of the smoothened cost function,
which serves as the first estimate x0. To summarize, if
we iteratively choose σk and solve for xk, such that at
each stage, the corresponding Hessian H, in Eqn. 6, re-
mains positive-definite, then the resulting solution, xfinal,
is very likely to be the global minimum of the cost at σfinal.

In the (k + 1)-th iteration, in the interest of a faster
estimate, we seek to reduce σk+1 as much as possible while
maintaining local convexity of H. Since a positive-definite
H has all positive eigen values, we achieve our objective
by tracking the sign of the smallest eigen value λmin of
H. Therefore, our criteria for maintaining local convexity
translates to one of seeking the smallest σk+1 (i.e. the
largest annealing) while maintaining λmin(H) > 0. While
a λmin(H) close to zero can make H highly ill-conditioned,
we note that we never use H in our estimation process and
only use the criteria of λmin(H) > 0 to determine σk+1.
We can also choose to terminate our search when λmin(H)
is close to a threshold λT > 0, which will ensure that H is
never ill-conditioned and the optimization of Eqn. 1 using
σk+1 is a well-defined problem.

Binary Search: In general, we do not have closed-form
expressions for λmin(H). Consequently, we estimate σk+1

using a divide-and-conquer approach using the criteria
that λmin(H) > 0. We define a search interval below
σk and perform a binary search. We note that the cost of
evaluating λmin(H) is cheap since H is a small Np × Np

matrix. In the problem of interest in this paper, i.e. 3D
registration, Np = 6. We note here that while the cost
in Eqn. 1 is non-linear, it is smooth and differentiable.
Implicit to our binary search strategy is the assumption
that λmin is monotonically decreasing as we reduce σ in
the binary search interval. We observe that, in practice,
this assumption is true in most cases. We can also ensure
the reliability of this assumption by making the search
interval smaller, although that would increase the overall
computational time since now we will need more stages of
GNC to reach the desired scale σfinal.

Our approach of adaptive annealing of scale σ to solve
Eqn. 1 is general in nature. In the remainder of this paper,

21931



we illustrate our approach with a concrete example of solv-
ing for robust 3D registration given point correspondences
that are noisy and include a large number of outliers. Be-
fore we develop our method for 3D registration, we briefly
discuss some of the relevant literature.

2. Related Work on 3D Registration

There are primarily two types of methods for pairwise
registration of 3D point clouds. One direction of work
considers the problem of finding correspondences between
the point clouds and the registration of the correspondences
as a joint problem and solves it using alternating, iterative
[7, 14, 17, 32, 35, 39, 44, 48, 69, 70] methods. Another
direction that is of relevance to our approach deal with the
registration of point clouds given putative correspondences.

Robust Methods: Traditionally, Random Sampling
Consensus (RANSAC) [11, 22, 26, 40, 53] is used to
embed robustness into the registration problem. A few
methods [13, 45] perform preprocessing before RANSAC
to remove outliers using either deterministic geometric
methods [13] or stochastic game theoretical methods [1]. A
class of methods which are based on consensus maximiza-
tion [3, 18, 19, 25, 33, 43, 54, 63] and Branch-and-Bound
(BNB) techniques [6,15,29] perform robust rotation search
(also known as the Wahba problem). However, all the
aforementioned methods become intractable and inaccurate
in the presence of high outlier rates and/or large number of
correspondences.

M-estimation: Another class of methods pose the
robust registration problem as minimization of a robust
cost (e.g. [36]). [8] minimizes a ℓ 1

2
robust loss using

Lie-algebraic optimization on the SE(3) manifold. [75]
uses Graduated Non-Convexity (GNC) while exploiting
the equivalence of robust cost and line processes [9]. [68]
proposes a certifiably global optimal algorithm for solving
the registration problem along with the scale by filtering
outliers using a graph theoretical framework [49] and using
certifiably robust rotation estimation [67].

Deep Learning Methods: Many recent deep learning
methods [4,34,60,61] learn the end-to-end problem of find-
ing learnable features [46, 62], matching to get putative
correspondences, and registering them using differentiable
registration modules. [20] obtains putative correspondences
from FCGF [21] features and uses different modules for
correspondence weighting, differentiable registration and
refinement. [30] uses an overlap-attention block to register
point clouds with low overlap. Some methods [5,16,34] use
spatial consistency measure to eliminate outliers.

3. Proposed Method for 3D Registration
The optimization in Eqn. 1 can be specifically written for

the problem of robust 3D registration as

min
(R,t)

N∑
i=1

ρσ(∥ai −Rbi − t∥) (7)

where {ai}’s and {bi}’s are sets of 3D correspondences
(with noise and outliers) that need to be registered. Fur-
ther, the parameters x, in this case, are R ∈ SO(3) and
t ∈ R3, which are the rotation and translation, respectively,
that align the two point clouds A and B. In the context of
our approach of using GNC for optimization, we note that
for σ → ∞, we have the well-known least squares 3D reg-
istration problem i.e.

min
(R,t)

1

2

N∑
i=1

∥ai −Rbi − t∥2 (8)

for which the global minimum can be found in a closed form
(Umeyama’s method [55]). For other finite values of σ, the
resulting cost function can be solved using IRLS. For each
IRLS iteration, fixing the weights ϕi results in a weighted
least squares problem as follows:

min
(R,t)

1

2

N∑
i=1

ϕi∥ri∥2 =
1

2

N∑
i=1

ϕi∥ai −Rbi − t∥2 (9)

which can also be solved in a closed-form, that we
refer to as the ‘weighted Umeyama’ solution. The
weighted Umeyama algorithm is a variant of Umeyama’s
method [55], and the pseudo-code is provided in the sup-
plementary material. We summarize our adaptive annealing
GNC procedure for robust 3D registration in Algorithm 1.

Hessian of the Umeyama Costs: Unlike the general
case, the Hessian for the 3D registration cost functions in
Eqn. 7 and Eqn. 8 have a closed form solution that can be
stated as follows:

Theorem 3.1 The gradient gLSQ and Hessian HLSQ of
the least squares cost (Eqn. 8), at the point (R, t), are given
by:

gLSQ =

N∑
i=1

gLSQ,i; gLSQ,i =

[
− [bi]× R⊤ri

−ri

]
(10)

HLSQ =

N∑
i=1

HLSQ,i (11)

HLSQ,i =

[
(p⊤

i Rbi)I− bip
⊤
i R
2 − R⊤pib

⊤
i

2 [bi]× R⊤

−R [bi]× I

]
(12)

where pi = ai − t and I is the 3× 3 identity matrix.
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Algorithm 1: Robust 3D Registration using Adap-
tively Annealed GNC (GNCp)

Input: N corresponding points in the two point
clouds {ai}’s, {bi}’s; σfinal

Output: Rotation R, Translation t
1 Initialization: k = 0, σ = σ0

(No initialization required for R,t).
2 while σk ≥ σfinal do
3 ri = ai −Rbi − t

4 ϕi =
1(

1+
∥ri∥2

σ2
k

)2

/* Solve for R and t using
weighted Umeyama method */

5 R, t = weightedUmeyama({ai},{bi}, {ϕi})
6 Obtain H(σ) using Eqn. 6
7 Perform binary search on λmin (Happrox) to

obtain σk+1

8 k = k + 1

9 end

Theorem 3.2 The Hessian H of the robust Umeyama cost
(Eqn. 7), at the point (R, t), is given by:

H =

N∑
i=1

(
−li

gLSQ,ig
⊤
LSQ,i

∥ri∥2
+miHLSQ,i

)
, (13)

where li =
ρ′(∥ri∥)
∥ri∥

− ρ′′(∥ri∥),mi =
ρ′(∥ri∥)
∥ri∥

(14)

For the Geman-McClure loss, we have,

li =
4∥ri∥2

σ2
(
1 + ∥ri∥2

σ2

)3 , mi =
1(

1 + ∥ri∥2

σ2

)2 (15)

and the Hessian is

H =

N∑
i=1

−4gLSQ,ig
⊤
LSQ,i

σ2
(
1 + ∥ri∥2

σ2

)3 +
1(

1 + ∥ri∥2

σ2

)2HLSQ,i

(16)

The proofs for Theorems 3.1 and 3.2 are provided in the
supplementary material.

Piecewise Polynomial Approximation of li and mi:
Given the large number of points (N) summed over in
Eqn. 16, computing H in Eqn. 16 for different values of
σ can be expensive during binary search. However, we note
that the expressions for li and mi, in Eqn. 15, can be ap-
proximated by:

li =
αi

σ̂2
i

+ κi, mi =
ζi
σ̂2
i

+ χi (17)

Figure 3. Original and piecewise approximations of mi and li.

where σ̂i = σ/∥ri∥ and the terms {αi, κi, ζi, χi} are piece-
wise constant functions over the search interval for σ. In our
implementation, we choose 6 and 4 piecewise constant in-
tervals for li and mi, respectively, and search for the piece-
wise constant terms that best approximate li and mi over σ.
We illustrate our approximations for the expressions li and
mi in Fig. 3. Using this approximation, we can write the
approximated Hessian as

Happrox =
C

σ2
+D (18)

where C and D are matrices that are constant in the
piecewise constant intervals of li and mi. As a result,
during the binary search, we need to evaluate the matrices
C and D only a few times, which drastically reduces the
computational cost of our overall scheme.

To further increase the speed, after the first 5 iterations,
we perform a stochastic approximation to the Hessian (H)
at every annealing stage. We sample a subset of obser-
vations with probability proportional to the weights of the
observations. This is done because the contribution of the
lesser weighted observations to the Hessian is small. Also,
we reiterate the fact that the Hessian is used only for find-
ing the next σ and is not used in the optimization step. We
observe that this improves efficiency without any negative
impact on the accuracy of the solution.

4. Results
In this section, we evaluate the performance of our prin-

cipled GNC-based method (GNCp) with the state-of-the-
art methods on synthetic and real-world datasets. We com-
pare our method with Fast Global Registration (FGR) [75]2,

2https://github.com/isl-org/FastGlobalRegistration
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which uses fixed annealing scheme, GORE [13]3, which
is a RANSAC based method, SE3Reg [8], which uses ℓ 1

2

loss for robustness, and TEASER++ [68]4, which is a GNC
based method that uses maximum clique detection to prune
outliers. The source code made available by the authors are
mentioned in their respective footnotes. The implementa-
tion of SE3Reg was provided by the authors. Our method is
implemented in C++. For our method, we fix σfinal = 0.1
unless stated otherwise. All experiments are performed on
a PC with Intel Xeon Silver 4210 processor with 256 GB
RAM. Finally, MRE and MTE denote Mean Rotation Er-
rors and Mean Translation Errors, respectively.

4.1. Synthetic Data

We first carry out experiments on synthetic data to
validate our proposed method. We use datasets from the
Stanford 3-D Scanning repository [23] and create the
synthetic datasets as suggested in TEASER++ [68]. The
first point cloud B (containing {bi}’s) is obtained by
downsampling the original point cloud to N points and re-
sized to fit inside the [0, 1]3 cube. Then, we apply a random
transformation (R, t) on the point cloud B and then add a
random bounded noise ϵi ∼ N (0, η2I) (∥ϵi∥2 ≤ βi with
βi = 5.54η, as chosen in [68]) to obtain the second point
cloud A (containing {ai}’s), i.e. ai = Rbi + t+ ϵi, where
R ∈ SO(3) and 0 ≤ ∥t∥ ≤ 1. The outlier correspondences
are obtained by randomly sampling a percentage poutl of
the points ai’s and replacing them with vectors uniformly
sampled in the sphere of radius 5 units. We create two
types of datasets by choosing (N, η) as: (i) (100, 0.01)
i.e. small size with low noise level, called as Type-1, and
(ii) (10000, 0.1) i.e. large size with high noise level, called
as Type-2. Type-2 datasets are harder to solve than Type-1
datasets. We execute 40 randomized trials for each dataset
type.

From Tables 2 and 3, it can be seen that the rotation and
translation errors are the least when using our method for
both Type-1 and Type-2 datasets. Specifically, there is a
significant improvement in error metrics for Type-2 datasets
compared to other methods. This reveals that our method is
able to handle outliers effectively in both small and large
input sizes. Computation time for all methods is reported
in the supplementary material, where we observe that our
method scales very well with large input size (Type-2).
We note that GORE has a very high computation time on
Type-2 datasets due to a large number of correspondences
and thus not reported in Table 3.

We also perform experiments on the synthetic CAD
model dataset - ModelNet [64]. We use the features ob-

3https://cs.adelaide.edu.au/ aparra/project/gore/
4https://github.com/MIT-SPARK/TEASER-plusplus

Dataset FGR GORE SE3Reg TEASER++ GNCp
[75] [13] [8] [68] (Ours)

Mean Rotation Errors (deg) ↓
armadillo 1.04 3.36 0.88 0.77 0.70

bunny 0.87 3.42 0.72 0.66 0.59
buddha 1.34 4.21 1.05 0.95 0.88
dragon 0.87 3.50 0.71 0.65 0.58

Mean Translation Errors (×10−3) ↓
armadillo 11.31 26.52 7.58 6.38 6.23

bunny 10.06 32.54 7.18 6.20 5.90
buddha 10.81 24.88 6.79 5.74 5.80
dragon 10.18 30.44 6.73 5.84 5.56

Table 2. Rotation and translation mean errors (over all instances)
on Type-1 synthetic datasets for poutl = 50%. This dataset is
small with a low noise level and thus easy to solve.

Dataset FGR SE3Reg TEASER++ GNCp
[75] [8] [68] (Ours)

Mean Rotation Errors (deg) ↓
armadillo 0.89 1.12 13.87 0.79

bunny 0.93 1.27 13.63 0.81
buddha 1.22 1.32 22.32 1.02
dragon 0.88 1.05 13.05 0.76

Mean Translation Errors (×10−3) ↓
armadillo 16.68 48.06 106.59 9.27

bunny 14.53 46.76 152.33 9.18
buddha 18.97 45.57 148.82 11.09
dragon 15.89 47.21 119.91 9.08

Table 3. Rotation and translation mean errors (over all instances)
on Type-2 synthetic datasets for poutl = 50%. This dataset is large
with a high noise level and thus hard to solve.

Dataset Success % ↑ MRE ↓ MTE (×10−2) ↓ Time (ms)
FGR [75] 93.1 2.92 2.96 10

GORE [13] 93.3 2.87 2.86 2
SE3Reg [8] 93.0 2.60 2.59 3

TEASER++ [68] 94.2 2.40 2.28 7
GNCp (Ours) 94.1 2.26 2.26 8

Table 4. Evaluation on ModelNet dataset [64]. Our method has
the least mean errors.

tained from Predator [30] and match them using nearest
neighbour matching, which gives 1266 point cloud pairs.
The obtained correspondences have a lesser noise level.
Hence, we choose σfinal = 0.01 for our method. We use
the criteria of successful registration, defined in [68], as the
rotation error being less than 10◦ and the translation error
being less than 30 cm with respect to the ground truth. From
Table 4, it can be seen that our method has the least rotation
and translation errors compared to other methods. Also, our
method has a similar success percentage compared to the
highest one (TEASER++). GORE takes the least amount
of time due to the small input size (N ≈ 100 to 300) of the
ModelNet dataset. SE3Reg follows in terms of speed, while
other methods including ours take similar amounts of time.
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Dataset Success % ↑ Mean Rotation Errors (deg) ↓ Mean Translation Errors (m) ↓
FGR SE3Reg TEASER++ GNCp FGR SE3Reg TEASER++ GNCp FGR SE3Reg TEASER++ GNCp
[75] [8] [68] (Ours) [75] [8] [68] (Ours) [75] [8] [68] (Ours)

MIT lab 72.7 75.3 71.4 77.9 13.46 12.48 14.64 9.18 0.42 0.44 0.63 0.33
home1 93.6 92.9 92.9 96.1 5.91 6.21 8.74 4.21 0.19 0.19 0.29 0.15
home2 79.3 78.8 78.8 81.7 20.48 19.56 16.24 20.46 0.38 0.32 0.38 0.38
hotel1 93.8 93.8 94.7 95.1 6.95 7.13 7.14 6.63 0.18 0.18 0.18 0.18
hotel2 88.5 89.4 86.5 91.3 14.93 14.48 14.64 15.34 0.33 0.32 0.45 0.36
hotel3 85.2 87.0 85.2 88.9 23.38 20.98 13.43 20.81 0.46 0.40 0.38 0.40
kitchen 95.3 92.7 96.0 96.6 4.91 5.48 4.60 4.29 0.12 0.14 0.14 0.11
study 79.8 82.5 86.0 84.6 16.05 12.97 15.17 10.88 0.51 0.43 0.57 0.35

Table 5. Results on 3D Match dataset [73]. TEASER++ fails to converge in some instances even after 2 hours and the code fails to execute
in some instances. Such instances are considered as failure cases for TEASER++, and the mean is computed for the remaining instances.
GORE also fails to converge for data instances with a large set (>= 1000) of correspondences and hence is not reported.

4.2. Real Data

In this subsection, we present the results on real datasets.
First, we consider the 3DMatch dataset [73], which is con-
structed based on the 7-Scenes dataset [50] and the SUN3D
dataset [65]. The dataset comprises 62 real-world scenes,
which is split into 8 scenes for testing and 54 scenes for
training. We compute the FCGF features [21] and generate
correspondences for the testing split using nearest-neighbor
matching, as done in [75]. This leads to 1623 pairs of
matched point clouds. The putative correspondences
are directly given as inputs to the geometric registration
algorithms. The outlier percentage in the resulting corre-
spondences ranges from ≈ 0 to 99%. Therefore, there are
bound to be failures in a few data instances.

As evident from the results in Table 5, our method
achieves a higher percentage of successful registrations
(criteria for successful registration chosen to be the same as
in ModelNet) compared to the other methods. We observe
that our method achieves superior or similar performance
in terms of the rotation and translation errors for most of
the scenes. In Table 6, we can see that our method is the
fastest among all and also has the highest percentage of
successful registrations. We note that TEASER++ fails to
converge in some instances even after 2 hours of compute
time, and the code fails to execute in a few other instances.
We treat such instances as unsuccessful instances. The
mean errors are computed over the remaining instances,
thereby favouring TEASER++, due to which, the mean
errors for TEASER++ are lower in a few sequences. In
Fig. 4, we visually compare the alignment for an instance
of the MIT Lab sequence in the 3DMatch dataset where
the overlap is very low. It can be seen that our method
performs the best and is close to the ground truth alignment.

Next, we evaluate the performance on KITTI odome-
try [27] dataset. This dataset contains 11 sequences of
LiDAR-scanned outdoor driving scenarios. We extract

Dataset FGR [75] SE3Reg [8] TEASER++ [68] GNCp (Ours)
MIT lab 71.4 21.6 8216 7.4
home1 54.6 14.6 3964 5.6
home2 47.1 12.2 5555 6.0
hotel1 54.1 16 4416 6.4
hotel2 52.4 15.1 3969 7.6
hotel3 56.6 15.1 5849 6.3
kitchen 45.1 15.4 1978 6.0
study 55.2 16.2 3195 8.9

Table 6. Mean time taken (in ms) on 3DMatch dataset.

Success % ↑ MRE ↓ MTE (m) ↓ Time (ms)
FGR [75] 73.5 0.94 0.38 195

GORE [13] >= 30 minutes (per instance) -
SE3Reg [8] 84.7 0.88 0.32 40

TEASER++ [68] Code did not execute -
GNCp (Ours) 85.6 0.74 0.29 13

Table 7. Evaluation on KITTI dataset [27]. Our method performs
the best in all metrics.

FCGF features [21] on the test set (sequences 8-10), which
has 555 pairs of matched point clouds. In Table 7, we com-
pare performance on this dataset. It can be seen that our
method has the highest success percentage (< 5◦ rotation
errors and < 40 cm translation error) and has the least MRE
and MTE while being the fastest method. The criteria for
successful registration in this dataset is chosen based on the
fact that motions have a very small rotation component and
a large translation component. We note that TEASER++
fails to execute in most instances, and GORE takes longer
than 30 mins for each instance, hence they are not reported
here. We also perform experiments on the challenging low-
overlap dataset - 3DLoMatch [30] in which the global min-
imum of the robust cost is close to the ground truth only in
≈ 60% of the instances. Therefore, our method, which can
only guarantee convergence to the global minimum of the
robust cost, achieves 55.1% success percentage. More de-
tails can be found in the supplementary material.

Convergence to Global Minimum: In Table 8, we
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(a) SE3Reg (b) TEASER++ (c) GNCp (Ours) (d) Ground Truth

Figure 4. Two point clouds (red and green) with a low overlap in the MIT Lab sequence of 3D Match dataset. Our method registers
the point clouds correctly compared to the ground truth reference. FGR fails and is not included owing to space constraints. Refer to
supplementary material for comparison of all methods.

analyze adaptive and fixed annealing schemes in terms of
their relative success in reaching the global minimum of the
cost function. We use different γ values for fixed annealing
schemes on 3DMatch dataset (γ = 1.4, 2.0 for small and
large, respectively). The global minimum is computed
using 60 runs of a differential evolution algorithm with
basin hoping [42, 51, 59], which is implemented using
SciPy [58] in Python. We only consider the instances with
< 50% outliers. We declare that the global minimum
is attained if the difference between the solution and the
global minimum is within 1◦ rotation and 1 cm translation.
It can be seen that our adaptive annealing scheme reaches
the global minimum most frequently with the least number
of stages. We note that each stage in adaptive annealing
involves computing the Hessian of the cost, which has
some computational overheads.

Critical Failure Cases and their Remedy: Finally, we
observe that tracking the local minimum using our strategy
sometimes leads to a solution far away (> 10◦ rotation er-
ror) from the ground truth, especially in high outlier scenar-
ios. These are observed in ≈ 12%, 0.36% and 0.08% of the
instances in 3DMatch, KITTI and ModelNet datasets, re-
spectively. To overcome these failure cases, at every stage
of GNC, we perturb the current estimate by a large random
rotation in order to jump out of a local minimum. Then,
we apply local optimization at the perturbed point to get a
new estimate. If the cost function at the new estimate re-
duces compared to the current estimate, we accept the new
estimate and continue with our adaptive annealing strategy.
We note that this modification does not influence the work-
ing of our strategy in any of the successful instances. Ac-
ceptance of the new estimate occurs at most once in the
failure instances during the entire sequence of σ’s, even-
tually reducing the failures to ∼ 9% in 3DMatch and 0% in
other datasets. We note that perturbation applied at the ini-
tial stages of GNC is beneficial due to the lesser number of

Dataset Small γ (Fixed) Large γ (Fixed) GNCp (Ours)
S% #Stages S% #Stages S% #Stages

MIT lab 89.3 14 80.4 7 91.1 6.5
home1 94.8 14 84.3 7 100 6.1
home2 99.3 14 95.8 7 99.3 5.4
hotel1 97.9 14 94.7 7 100 5.8
hotel2 100 14 98.8 7 100 5.9
hotel3 95.7 14 87 7 100 6.7
kitchen 97.7 14 94 7 99.7 5.4
study 90.9 14 75.5 7 96.2 7.9

Table 8. Comparison of different annealing schemes for instances
with < 50% outliers. S% refers to percentage of instances reach-
ing global minimum.

local minima compared to the final stages of GNC, where
the cost is highly non-convex. Therefore, in practice, we
observe that the reduction in failure instances is consistent
across multiple runs despite having stochasticity.

5. Conclusion

We propose a principled approach for adaptively an-
nealing the scale in Graduated Non-Convexity (GNC) by
tracking the positive definiteness of the Hessian of the cost
function. We apply the scheme to the problem of robust
pairwise registration of 3D point clouds. This approach
is shown to be efficient and accurate and achieves better
results compared to state-of-the-art methods.
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