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Figure 1. Overview. We propose a novel stroke based guided image synthesis framework which (Left) resolves the intrinsic domain shift
problem in prior works (b), wherein the final images lack details and often resemble simplistic representations of the target domain (e)
(generated using only text-conditioning). Iteratively reperforming the guided synthesis with the generated outputs (c) seems to improve
realism but it is expensive and the generated outputs might lose faithfulness with the reference (a) with each iteration. (Right) Additionally,
the user is also able to specify the semantics of different painted regions without requiring any additional training or finetuning.

Abstract
Controllable image synthesis with user scribbles has

gained huge public interest with the recent advent of text-
conditioned latent diffusion models. The user scribbles con-
trol the color composition while the text prompt provides
control over the overall image semantics. However, we note
that prior works in this direction suffer from an intrinsic
domain shift problem wherein the generated outputs often
lack details and resemble simplistic representations of the
target domain. In this paper, we propose a novel guided im-
age synthesis framework, which addresses this problem by
modelling the output image as the solution of a constrained
optimization problem. We show that while computing an
exact solution to the optimization is infeasible, an approx-
imation of the same can be achieved while just requiring a
single pass of the reverse diffusion process. Additionally,

we show that by simply defining a cross-attention based
correspondence between the input text tokens and the user
stroke-painting, the user is also able to control the seman-
tics of different painted regions without requiring any con-
ditional training or finetuning. Human user study results
show that the proposed approach outperforms the previous
state-of-the-art by over 85.32% on the overall user satis-
faction scores. Project page for our paper is available at
https://1jsingh.github.io/gradop.

1. Introduction

Guided image synthesis with user scribbles has gained
widespread public attention with the recent advent of large-
scale language-image (LLI) models [23, 26, 28, 30, 40]. A
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novice user can gain significant control over the final image
contents by combining text-based conditioning with unsu-
pervised guidance from a reference image (usually a coarse
stroke painting). The text prompt controls the overall image
semantics, while the provided coarse stroke painting allows
the user to define the color composition in the output scene.

Existing methods often aim attempt to achieve this
through two means. The first category leverages condi-
tional training using semantic segmentation maps [8, 28,
39]. However, the conditional training itself is quite time-
consuming and requires a large scale collection of dense se-
mantic segmentation labels across diverse data modalities.
The second category, typically leverages an inversion based
approach for mapping the input stroke painting to the tar-
get data manifold without requiring any paired annotations.
For instance, a popular solution by [22, 35] introduces the
painting based generative prior by considering a noisy ver-
sion of the original image as the start of the reverse diffusion
process. However, the use of an inversion based approach
causes an intrinsic domain shift problem if the domain gap
between the provided stroke painting and the target domain
is too high. In particular, we observe that the resulting out-
puts often lack details and resemble simplistic representa-
tions of the target domain. For instance, in Fig. 1, we notice
that while the target domain consists of realistic photos of a
landscape, the generated outputs resemble simple pictorial
arts which are not very realistic. Iteratively reperforming
the guided synthesis with the generated outputs [4] seems
to improve realism but it is costly, some blurry details still
persist (refer Fig. 4), and the generated outputs tend to lose
faithfulness to the reference with each successive iteration.

To address this, we propose a diffusion-based guided im-
age synthesis framework which models the output image as
the solution of a constrained optimization problem (Sec. 3).
Given a reference painting y, the constrained optimization
is posed so as to find a solution x with two constraints: 1)
upon painting x with an autonomous painting function we
should recover a painting similar to reference y, and, 2) the
output x should lie in the target data subspace defined by the
text prompt (i.e., if the prompt says “photo” then we want
the output images to be realistic photos instead of cartoon-
like representations of the same concept). Subsequently, we
show that while the computation of an exact solution for
this optimization is infeasible, a practical approximation of
the same can be achieved through simple gradient descent.

Finally, while the proposed optimization allows the user
to generate image outputs with high realism and faithful-
ness (with reference y), the fine-grain semantics of differ-
ent painting regions are inferred implicitly by the diffusion
model. Such inference is typically dependent on the gener-
ative priors learned by the diffusion model, and might not
accurately reflect the user’s intent in drawing a particular
region. For instance, in Fig. 1, we see that the light blue re-

gions can be inferred as blue-green grass instead of a river.
To address this, we show that by simply defining a cross-
attention based correspondence between the input text to-
kens and user stroke-painting, the user can control seman-
tics of different painted regions without requiring semantic-
segmentation based conditional training or finetuning.

2. Related Work
GAN-based methods have been extensively explored

for performing guided image synthesis from coarse user
scribbles. [1–3, 14, 27, 37, 42] use GAN-inversion for pro-
jecting user scribbles on to manifold of real images. While
good for performing small scale inferences these methods
fail to generate highly photorealistic outputs when the given
stroke image is too far from the real image manifold. Con-
ditional GANs [7,13,18,21,24,36,43] learn to directly gen-
erate realistic outputs based on user-editable semantic seg-
mentation maps. In another work, Singh et al. [34] propose
an image synthesis framework which leverages autonomous
painting agents [19, 32, 33, 44] for inferring photorealistic
outputs from rudimentary user scribbles. Despite its effi-
cacy, this requires the creation of a new dataset and condi-
tional training for each target domain, which is expensive.

Guided image synthesis with LLI models [6,23,26,28,
30,40,41] has gained widespread attention [9,12,15,17,20,
29, 31] due to their ability to perform high quality image
generation from diverse target modalities. Of particular in-
terest are works wherein the guidance is provided using a
coarse stroke painting and the model learns to generate out-
puts conditioned on both text and painting. Current works in
this direction typically 1) use semantic segmentation based
conditional training [8, 28, 39] which is expensive, or, 2)
adopt an inversion-based approach for mapping the input
stroke painting to the target data manifold without requiring
paired annotations. For instance, Meng et al. [22] propose
guided image synthesis framework, wherein the generative
prior is introduced by simply considering a noisy version
of the original sketch input as the start of the reverse dif-
fusion process. Choi et al. [5] propose an iterative con-
ditioning strategy wherein the intermediate diffusion out-
puts are successively refined to move towards the reference
image. While effective, the use of an inversion-like ap-
proach causes an implicit domain shift problem, wherein
the output images though faithful to the provided reference
show blurry or less textured details. Iteratively reperform-
ing guided synthesis with generated outputs [4] seems to
improve realism but it is costly. In contrast, we show that it
is possible to perform highly photorealistic image synthesis
while just requiring a single reverse diffusion pass.

Cross-attention control. Recently, Hertz et al. [10] pro-
pose a prompt-to-prompt image editing approach with text-
conditioned diffusion models. By constraining the cross-
attention features of all non-targeted text tokens to remain
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(a) Constrained Optimization Formulation (b) Obtaining an Approximate Solution

Figure 2. Method Overview. (a) Given a reference painting y and text prompt τtext, we formulate the guided synthesis output as the
solution x⋆ of a constrained optimization problem with 2 properties: 1) x⋆ lies in the subspace Sτtext of outputs conditioned only on the
text, and, 2) upon painting x we should recover reference painting y. While computing an exact solution of this optimization is infeasible,
we show that an approximation can be obtained in (b). Here we first solve an unconstrained approximation of the original optimization to
compute a point x⋆ which is close to a random sample xτtext ∈ Sτtext in the latent space, while still being faithful to the reference y. This
x⋆ is then mapped back to the target subspace Sτtext using the diffusion based inversion from [35] to get the final image output.

the same, they show that by only modifying the text prompt,
it is possible to perform diverse image editing without
changing the underlying structure of the original input im-
age. In contrast, we use cross-attention control for from-
scratch synthesis and show that by simply defining a cross-
attention based correspondence between input text tokens
and the user stroke-painting, it is possible to control and
define the fine-grain semantics of different painted regions.

3. Our Method
Let f : Dreal → Dpaint be a function mapping a real in-

put image x to its painted image f(x). Then given a colored
stroke image y and input text prompt τtext, we formulate
the computation of guided image synthesis output x⋆ as the
solution to the following constrained optimization problem,

x⋆ = argminx L (f(x), y) (1)
subject to x ∈ Sτtext

(2)

where L (f(x), y) represents a distance measure between
the painted output f(x) of image x and the target painting
y, while Sτtext represents the subspace of output images
conditioned only on the text input.

In other words, by additionally conditioning on a stroke
image y, we wish to find a solution x⋆ such that 1) the dis-
tance between the painted image of x and reference painting
y is minimized, while at the same time ensuring 2) the final
solution lies in the subspace of images conditioned only on
the text prompt τtext. For instance, if the text says “a real-
istic photo of a tree” then the use of stroke-based guidance
should still produce a “realistic photo”, wherein the com-
position of the tree regions is controlled by the painting y.

3.1. GradOP: Obtaining an Approximate Solution

The optimization problem in Eq. 1 can be reformulated
as an unconstrained optimization problem as,

x⋆ = argminx L (f(x), y) + γ d(x,Sτtext
), (3)

where d(x,Sτtext) represents a distance measure between x
and subspace Sτtext

, and γ is a hyperparameter.
A cursory glance at the above formulation should make

it evident that the computation of an exact solution is infea-
sible without first generating a large enough sample size for
the Sτtext subspace, which will be quite time consuming.

To address this, we propose to obtain an approximate
solution by estimating d(x,Sτtext

) through the distance of
x from a single random sample xτtext

∈ Sτtext
. Thus, we

can approximate the optimization problem as follows,

x⋆ = argminx L (f(x), y) + γ d(x, xτtext
). (4)

Assuming a latent diffusion model with decoder D, we can
rewrite the above above optimization in latent space as,

z⋆ = argminz L (f(D(z)), y) + γ ∥z − zτtext
∥2. (5)

where the image output x⋆ can be computed as x⋆ = D(z⋆).
In order to solve the above optimization problem, we first

use the diffusion model to sample xτtext
∈ Sτtext

. Initializ-
ing z = E(xτtext

), where E represents the encoder, we solve
the above optimization using gradient descent (assuming f
and L are differentiable). Finally, we note that the solution
x⋆ = D(z⋆) to the above approximation of the optimization
problem might be non-photorealistic, as Eq. 5 has no ex-
plicit constraint for enforcing x ∈ Sτtext

(Eq. 2). We there-
fore use the diffusion-based-inversion approach from [35]
in order to map it to the target image subspace Sτtext .
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Algorithm 1 GradOP: Solution Approximation
Input: Stroke Painting y, text prompt τtext
Require: Differentiable painting function f , differentiable
distance measure L, hyperparameter γ, t0.

1: Sample xτtext ∈ Sτtext ;
2: Initialize z = zτtext = E(xτtext);
3: for 0 ≤ i ≤ M do
4: Ltotal = L (f(D(z)), y) + γ ∥z − zτtext

∥2;
5: z = z − λ∇zLtotal;
6: end for
7: zt0 = FORWARDDIFF(z⋆ = z, 0 → t0);
8: z = REVERSEDIFF(zt0 , t0 → 0);
9: return xout = D(z).

In other words, unlike prior works [5, 22] which directly
perform an inversion-like operation on the reference paint-
ing y (high domain gap with the target subspace e.g. real
images), GradOP first uses the unconstrained optimization
from Eq. 5 to compute a point x⋆ which is close to target
subspace in the latent space z, while still being faithful to
the reference y. Since x⋆ is closer to target domain than y,
the inversion operation leads to more realistic outputs (refer
Fig. 4). Please refer Alg. 1 for the detailed implementation.

3.2. GradOP+ : Improving Sampling Efficiency

While the guided synthesis solution in Alg. 1 leads to
high output realism, for each output it first requires the sam-
pling of a text-only conditioned image xτtext

∈ Sτtext
. To

address this, we propose a modified guided image synthe-
sis approach which allows for equally high quality outputs
while requiring just a single reverse diffusion pass for each
output. Our key insight is that a lot of information in z⋆

is discarded during the forward diffusion from z⋆ → zt0 .
Thus, instead of performing the optimization to first com-
pute z⋆, we would like to directly optimize the intermedi-
ate latent states zt by injecting the optimization gradients
within the reverse diffusion process itself (refer Fig. 3).

In particular, at any timestep t during the reverse diffu-
sion, we wish to introduce optimization gradients in order
to solve the following optimization problem,

z⋆t = argminz L (f(D(z)), y) + γ ∥z − zt∥2. (6)

However, the introduction of gradients will cause z⋆t to not
conform with the expected latent distribution at timestep t.
We therefore pass it through the forward diffusion process
in order to map it back to the expected latent variable distri-
bution. Please refer Alg. 2 for the detailed implementation.

3.3. Controlling Semantics of Painted Regions

Finally, while the above approximate guided image syn-
thesis algorithm allows for generation of image outputs with

Painting Recovery Set

Optimization Step

Forward Diff. Step

Reverse Diff. Step

Latent Variables

Generation Output

Figure 3. GradOP+ Overview. At any timestep t, the optimiza-
tion in Eq. 6 (zt → z⋆t ) reduces the painting recovery loss, while
the forward diffusion step z⋆t → z̃t maps it back to the expected
latent distribution. By iteratively performing this optimization,
GradOP+ modifies the reverse sampling trajectory to lead to out-
put xout = D(z0) which is also faithful to the target painting y.

Algorithm 2 GradOP+ : Improving Sampling Efficiency
Input: Stroke Painting y, text prompt τtext
Require: Differentiable painting function f , distance mea-
sure L, hyperparameter γ, t0, tstart, tend.

1: Sample zT ∼ N (0, I);
2: for t = T − 1, T − 2 . . . 0 do
3: zt = REVERSEDIFF(zt+1, t+ 1 → t);
4: if tstart ≤ t ≤ tend then
5: Initialize z = zt;
6: for 0 ≤ i ≤ M do
7: Ltotal = L (f(D(z)), y) + γ ∥z − zt∥2;
8: z = z − λ∇zLtotal;
9: end for

10: zt = FORWARDDIFF(z⋆t = z, 0 → t)
11: end if
12: end for
13: return xout = D(z0).

high faithfulness and realism, the semantics of different
painted regions are inferred in an implicit manner. Such
inference is typically based on the cross-attention priors
(learned by the diffusion model) between the provided text
tokens and the input painting throughout the reverse diffu-
sion process. For instance, in the first example from Fig. 5,
we note that for different outputs, the blue region can be in-
ferred as a river, waterfall, or a valley. Also note that some
painting regions might be entirely omitted (e.g. the brown
strokes for the hut), if the model does not understand that
the corresponding strokes indicate a distinct semantic entity
e.g. a hut, small castle etc. Moreover, as shown in Fig. 5
such discrepancies persist even if the corresponding text to-
kens (e.g. a hut) are added to the textual prompt.

Our key motivation is that the when generated faithfully,
the average attention maps across different cross-attention
layers show high overlap with the target object segmenta-
tion during the initial to intermediate parts of the reverse
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diffusion process. In our experiments, we found the reverse
to also be true. That is, by constraining the cross attention
map corresponding to a target semantic label to have a high
overlap with the desired painting region, it is possible to
control the semantics of different painting regions without
the need for segmentation based conditional training.

In particular, given the binary masks corresponding to
different painting regions {B1, . . .BN} and the correspond-
ing semantic labels {u1, . . . uN}, we first modify the input
text tokens as follows,

τmodified = τ + {CLIP(ui) | i ∈ [1, N ]} , (7)

where τ is the set of CLIP [25] tokens for input text prompt.
At any timestep t ∈ [0, T ] during the reverse diffusion

process, we then enforce semantic control by modifying the
cross-attention map Ai

t corresponding to label ui as follows,

Ãi
t = wi

[
(1− κt) Ai

t + κt
Bi

∥Bi∥F
∥Ai

t∥F
]

(8)

where ∥.∥F represents the Frobenius norm, κt = t/T ∈
[0, 1] helps regulate the overlap between the cross-attention
output Ãi

t and the desired painting region Bi during the re-
verse diffusion process, and, weights wi, i ∈ [1, N ] help
the user to control the relative importance of expressing dif-
ferent semantic concepts in the final image.

4. Experiments
Implementation Details. We use publicly available text-

conditioned latent diffusion models [28,38] for implement-
ing the purposed approach in Sec. 3. The constrained op-
timization is performed using gradient descent with the
Adam [16] optimizer and number of gradient steps Ngrad ∈
[20, 60] (please refer Sec. 5.2 for detailed analysis). While
several formulations of the distance measure L and painting
function f are possible (refer supp. material for details), we
find that simply approximating the function L using mean
squared distance and f as a convolution operation with a
gaussian kernel seems to give the fastest inference time per-
formance with our method. For consistency reasons, we use
the non-differentiable painting function from SDEdit [22]
while reporting quantitative results (refer Sec. 4.1).

4.1. Stroke Guided Image Synthesis

Evaluation metrics. Given an input stroke painting, we
compare the performance of our approach with prior works
in guided image synthesis when no paired data is available.
The performance of the final outputs is measured in terms
of both faithfulness of the generated image with the target
stroke painting as well as the realism of the final output dis-
tribution. In particular, given an input painting y and output
real image prediction x, we define faithfulness F(x, y) as,

F(x, y) = L2(f(x), y) (9)

Method
Evaluation criteria User Study Results
F(x, y) ↓ R(.) ↓ Realism ↑ Satisfaction ↑

SDEdit [22] 88.93 223.8 94.09 % 91.98%
Loopback [4] 104.6 132.9 54.28 % 85.32%
ILVR [5] 108.2 161.7 76.54 % 93.47%
Ours 94.40 134.2 N/A N/A

Table 1. Quantitative Evaluations. (Left) Method comparison
w.r.t faithfulness F to the reference painting and realism R to the
target domain. (Right) User-study results, showing % of inputs for
which human subjects prefer our approach over prior works.

where f(.) is the painting function. Thus an output image x
is said to have high faithfulness with the given painting y if
upon painting the final output x we get a painting ỹ = f(x)
which is similar to the original target painting y.

Similarly, given a set of output data samples S(y, τtext)
conditioned on both painting y and text τtext, and, S(τtext)
conditioned only on the text, the realism R is defined as,

R(S(y, τtext)) = FID (S(y, τtext),S(τtext)) (10)

where FID represents the Fisher inception distance [11].
Baselines. We compare our approach with prior works

on guided image synthesis from stroke paintings with no
paired data. In particular we show comparisons with, 1)
SDEdit [22] wherein the generative prior is introduced by
first passing the painting y through the forward diffusion
pass y → yt0 [15, 35], and then performing reverse diffu-
sion yt0 → y0 to get the output image x = y0

1. 2) SDEdit +
Loopback [4] which reuses the last diffusion output to itera-
tively increase the realism of the final output. 3) ILVR2 [5]:
which uses an iterative refinement approach for condition-
ing the output x of the diffusion model with a guidance im-
age y. Unless otherwise specified, we use the GradOP+
algorithm (refer Alg. 2) when reporting evaluation results.

Qualitative Results. Results are shown in Fig. 4. We
observe that both proposed approximate optimization meth-
ods (i.e. GradOP in row-1,2 and GradOP+ in row-3,4) lead
to output images which are both highly photorealistic as
well as faithful with reference painting. In contrast, while
SDEdit [22] shows high faithfulness to the input painting,
the final outputs lack details and resemble more of a pic-
torial art rather than realistic photos. Iteratively reperform-
ing the guided synthesis with the generated outputs (SDEdit
+ Loopback [4]) helps improve the realism of output im-
ages, however, we find that this has two main disadvan-
tages. First, the iterative loop increases the effective time
required for generating each data sample (e.g. four reverse

1We use standard hyperparameter value of t0 = 0.8 in the main paper.
Please refer supp. material for detailed comparisons for t0 ∈ [0, 1].

2Please note that the original ILVR [5] algorithm was proposed for iter-
ative refinement with diffusion models in pixel space. We adapt the ILVR
implementation for inference with latent diffusion models [28] for the pur-
poses of this paper. Please refer supp. material for further details.
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Figure 4. Qualitative comparisons. We compare the performance of our approach with prior works [4, 5, 22] based on their faithfulness to
the provided reference, and the realism with respect to the target domain (generated by conditioning only on the text prompt). Please note
that for our results, we show the GradOP (Alg. 1) and GradOP+ (Alg. 2) outputs in row 1,2 and row-3,4 respectively.

sampling steps instead of just one). Second, we note that
as the number of successive iterations increase the final out-
puts become less and less faithful to the original painting in-
put. Finally, ILVR [5] leads to more realistic outputs, how-
ever, the final outputs are not fully faithful to the reference
painting in terms of the overall color composition.

Quantitative Results. In addition to qualitative results
we also quantitatively evaluate the final outputs on the faith-

fulness F(x, y) and targeted-realism R(.) metrics defined
earlier. Additionally, similar to [22] we also perform a hu-
man user study wherein the realism and the overall satis-
faction score (faithfulness + realism) are evaluated by hu-
man subjects (please refer supp. material for details). Re-
sults are shown in Tab. 1. We find that as expected, while
SDEdit [22] leads to the best faithfulness with the target
painting, it exhibits very poor performance in terms of the
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Figure 5. Controlling semantics of different painted regions. We compare image generation outputs (Col 3-5) using the cross-attention
control approach from Sec. 3.3 with outputs (Col 6-8) generated by only modifying the input text prompt. Note that for each semantic
guide (Col 2), the text prompt modification is performed by adding the corresponding semantic labels at the end of the text prompt. For
instance, the modified text prompt for examples in row-1 would be “a fantasy landscape, trending on artstation showing a hut”.

realism score. SDEdit with loopback [4] improves the real-
ism score but the resulting images start loosing faithfulness
with the given reference. In contrast, our approach leads
to the best tradeoff between faithfulness to the target im-
age and realism with respect to the target domain. These
findings are also reflected in the user-study results wherein
our method is preferred by > 85.32% of human subjects in
terms of the overall satisfaction scores.

4.2. Controlling Semantics of Painted Regions

Results are shown in Fig. 5. We observe that in absence
of semantic attention control, the model tries to infer the se-
mantics of different painting regions in an implicit manner.
For instance, the orange strokes in the sky region can be in-
ferred as the sun, moon, or even as a yellow tree. Similarly,
the brown strokes in the lower-left region (intended to draw
a hut or small castle) are often inferred as muddy or rocky
parts of the terrain. Moreover, such disparity continues even
after modifying the input prompt to describe the intended
semantic labels. For instance, in row-1 from Fig. 5, while
changing the text prompt to include the text “hut” leads to
the emergence of “hut” like structures, the inference is often
done in a manner that is not intended by the user.

In contrast, by ensuring a high overlap between the in-
tended painting regions and the cross-attention maps for
the corresponding semantic labels (refer Sec. 3.3), we are
able to generate outputs which follow the intended seman-
tic guide in a much more accurate manner. For instance, the
user is able to explicitly specify that the brown regions on

the ground describes a hut (row 1) or castle (row 2-4). Sim-
ilarly, the semantics of different regions can be controlled,
e.g. the blue region is specified as a river or waterfall, the
orange strokes in the sky is specified as moon or sun etc.

5. Analysis
5.1. Variation in Target Domain

In this section, we analyse the generalizability of the
our approach across different target domains (e.g. children
drawings, disney scenes) and compare the output perfor-
mance with prior works. Results are shown in Fig. 6-a. We
observe that our approach is able to adapt the final image
outputs reliably across a range of target domains while still
maintaining a high level of faithfulness with the target im-
age. In contrast, SDEdit [22] generates outputs which lack
details and thereby look very similar across a range of target
domains. SDEdit + Loopback [4] addresses this problem to
some extent, but it requires multiple reverse diffusion passes
and the generated outputs tend to lose their faithfulness to
the provided reference with each iteration.

5.2. Variation with Number of Gradient Steps

In this section, we analyse the variation in output perfor-
mance as we change the number of gradient descent steps
Ngrad used to solve the unconstrained optimization prob-
lem in Sec. 3. Results are shown in Fig. 6-b. As expected,
we find that for Ngrad = 0, the generated outputs are sam-
pled randomly from the subspace of outputs (Sτtext

) condi-
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Figure 6. Method Analysis. Comparing guided image synthesis performance across (left) variation in target domain, and (right) variation
in number of gradient descent steps Ngrad used for performing the proposed optimization. Please zoom-in for best comparisons.
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Figure 7. Out-of-distribution performance. Analysing success
(top) and failure (bottom) cases for out-of-distribution prompts.

tioned only on the text. As the number of gradient-descent
steps increase, the model converges to a subset of solutions
within the target subsapce Sτtext

which exhibit higher faith-
fulness with the provided reference. Please note that this
behaviour is in contrast with SDEdit [22], wherein the in-
crease in faithfulness to the reference is corresponded with
a decrease in the realism of the generated outputs [22].

5.3. Out-of-Distribution Generalization

As shown in Sec. 4, 5, we find that the proposed ap-
proach allows for a high level of semantic control (both
color composition and fine-grain semantics) over the output

image attributes, while still maintaining the realism with re-
spect to the target domain. Thus a natural question arises:
Can we use the proposed approach to generate realistic
photos with out-of-distribution text prompts?

As shown in Fig. 7, we observe that both success and
failure cases exist for out-of-distribution prompts. For in-
stance, while the model was able to generate “realistic pho-
tos of cats with six legs” (note that for the same inputs prior
works either generate faithful but cartoon-like outputs, or,
simply generate regular cats), it shows poor performance
while generating “a photo of a rat chasing a lion”.

6. Conclusions
In this paper, we present a novel framework for perform-

ing guided image synthesis synthesis with user scribbles,
without the need for paired annotation data. We point that
prior works in this direction [4, 5, 22], typically adopt an
inversion-like approach which leads to outputs which lack
details and are often simplistic representations of the tar-
get domain. To address this, we propose a novel formula-
tion which models the guided synthesis output as the solu-
tion of a constrained optimization problem. While obtain-
ing an exact solution to this optimization is infeasible, we
propose two methods GradOP and GradOP+ which try to
obtain an approximate solution to the constrained optimiza-
tion in a sample-efficient manner. Additionally, we show
that by defining a cross-attention based correspondence be-
tween the input text tokens and user painting, it is possible
to control semantics of different painted regions without the
need for semantic segmentation based conditional training.
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