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Abstract

We introduce a new family of deep neural networks,
where instead of the conventional representation of net-
work layers as N -dimensional weight tensors, we use a
continuous layer representation along the filter and chan-
nel dimensions. We call such networks Integral Neural Net-
works (INNs). In particular, the weights of INNs are rep-
resented as continuous functions defined on N -dimensional
hypercubes, and the discrete transformations of inputs to
the layers are replaced by continuous integration opera-
tions, accordingly. During the inference stage, our con-
tinuous layers can be converted into the traditional tensor
representation via numerical integral quadratures. Such
kind of representation allows the discretization of a net-
work to an arbitrary size with various discretization in-
tervals for the integral kernels. This approach can be ap-
plied to prune the model directly on an edge device while
suffering only a small performance loss at high rates of
structural pruning without any fine-tuning. To evaluate the
practical benefits of our proposed approach, we have con-
ducted experiments using various neural network architec-
tures on multiple tasks. Our reported results show that the
proposed INNs achieve the same performance with their
conventional discrete counterparts, while being able to pre-
serve approximately the same performance (2% accuracy
loss for ResNet18 on Imagenet) at a high rate (up to 30%)
of structural pruning without fine-tuning, compared to 65%
accuracy loss of the conventional pruning methods under
the same conditions. Code is available at gitee.

1. Introduction
Recently, deep neural networks (DNNs) have achieved

impressive breakthroughs in a wide range of practical ap-
plications in both computer vision [13, 20, 32] and natural
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language processing [7] tasks. This state-of-the-art perfor-
mance is mainly attributed to the huge representation ca-
pacity [2] of DNNs. According to the Kolmogorov su-
perposition theorem [14] and the universal approximation
theorem [29], a DNN is capable of approximating uni-
formly any continuous multivariate function with appropri-
ate weights. To achieve better performance, a large num-
ber of parameters and computations are assigned to the
DNN [10, 40], which seriously limits its application on
memory- and computation-constrained devices. Hence, nu-
merous approaches have been proposed to compress and ac-
celerate neural networks, including pruning [26, 38], quan-
tization [35, 41] and neural architecture search [34, 37].

DNNs are particularly successful in dealing with chal-
lenging transformations of natural signals such as images
or audio signals [27]. Since such analogue signals are in-
evitably discretized, neural networks conventionally per-
form discrete representations and transformations, such as
matrix multiplications and discrete convolutions. However,
for such kind of representations the size of neural networks
cannot be adjusted without suffering severe performance
degradation during the inference stage, once the training
procedure is completed. Although several network prun-
ing methods [26, 38] have been proposed to extract crucial
channels from the trained model and generate efficient mod-
els, they either suffer from a significant accuracy degrada-
tion or require to fine-tune the model on the whole train-
ing database. Along with the development of hardware,
there have been diverse edge devices with various capacities
for memory and computation, from ordinary processors to
dedicated neural network accelerators. The model size for
different devices varies significantly [4]. Moreover, many
tasks (e.g. autonomous driving) require different response
speeds on the same hardware according to various scenar-
ios or conditions (e.g. driving speed and weather condition).
The conventional way to deal with such problems is to de-
sign multiple model architectures for all possible scenarios
and store them together. However, the downside of such
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strategy is that it requires huge resources for training and
memory space for storage. Hence, it is crucial to design
neural networks that feature a self-resizing ability during
inference, while preserving the same level of performance.

Inspired by the inherently continuous nature of the in-
put signals, we challenge the discrete representation of neu-
ral networks by exploring a continuous representation along
the filters and channel dimensions. This leads to a new class
of networks which we refer to as Integral Neural Networks
(INNs). INNs employ the high-dimensional hypercube to
present the weights of one layer as a continuous surface.
Then, we define integral operators analogous to the conven-
tional discrete operators in neural networks. INNs can be
converted into the conventional tensor representation by nu-
merical integration quadratures for the forward pass. At the
inference stage, it is convenient to discretize such networks
into arbitrary size with various discretization intervals of the
integral kernels. Since the representation is composed of in-
tegral operators, discretizing the continuous networks could
be considered as the numerical quadrature approximation
procedure [9]. The estimated values with various discretiza-
tion intervals are close to the integral value when the inter-
val is small enough. Hence, when we discretize an INN with
different intervals to generate networks of various sizes, it
is capable of preserving the original performance to some
extent without the need of additional fine-tuning. Such kind
of representation of neural networks can play a crucial role
in dealing with the important problem of efficient network
deployment in diverse conditions and hardware setups.

To evaluate the performance of INNs, extensive exper-
iments were conducted on image classification and super-
resolution tasks. The results show that the proposed contin-
uous INNs achieve the same performance with their discrete
DNN counterparts, when the training procedure is finished.
Moreover, such kind of networks approximately preserve
the performance at a high rate of structural pruning without
the aid of additional fine-tuning.

2. Related Works
Continuous representations Continuous parameter rep-
resentations have already been utilized in deep neural net-
work architectures. In [31], the authors propose to use con-
tinuous convolutions to extend CNNs for non-uniform grid
data. In [30], the weights of convolution layers were con-
tinuously parameterized in each section defined by the filter
index and the channel index. Such parameterization allows
for a flexible image upsampling but not pruning, since fil-
ters and channels are not connected by a continuous func-
tion. In [5] the authors proposed continuous-depth neural
networks based on ordinary differential equations. The step
size of the numerical ODE solver defines the number of lay-
ers, i.e., depth. In our work, we have constructed the in-
tegral neural networks based on Riemann integrals, which

leads to continuous-width neural networks. In [24] the au-
thors proposed deep neural networks with layers defined as
functional operators. Such networks are designed for learn-
ing PDE solution operators, and its layers are continuously
parameterized by MLPs only along the kernel dimensions.
A re-discretization was investigated in terms of training on
smaller data resolution and testing on higher input resolu-
tion. However, the proposed framework in [24] does not in-
clude continuous connections between filters and channels
dimensions.

Structured pruning of neural networks Structured net-
work pruning aims at reducing the redundancy of a model
by removing channels with negligible impact on its per-
formance. The authors in [33] were the first to propose a
structured sparsity learning (SSL) method to regularize the
structures according to the magnitude of weights. However,
smaller norm weights do not always play a less informative
role in the performance. Hence, [38] explored the valid cri-
teria using a direct simplification of the channel-to-channel
computation graph. Further, in [26] a collaborative chan-
nel pruning method that takes the inter-channel dependency
into consideration was introduced. On the other hand, loss-
aware pruning methods [17, 23] have also been widely in-
vestigated by researchers. However, pruning methods re-
quire network fine-tuning to improve the accuracy of small
networks. To solve this issue, in the next section we propose
a self-resized DNN with a continuous underlying represen-
tation, which allows network compression without the need
of any fine-tuning.

3. Neural Networks and Integral Operators
The intuition behind our proposed idea is based on

the observation that fully-connected and convolution lay-
ers could be considered as numerical integration of specific
integrals. To illustrate this, we consider the following ex-
ample. Let W (x), S(x) be univariate functions, then we
have [11]:∫ 1

0

W (x)S(x)dx ≈
n∑

i=0

qiW (xi)S(xi) = w⃗q · s⃗, (1)

where w⃗q =
(
q0W (x0), . . . , qnW (xn)

)
, s⃗ =(

S(x0), . . . , S(xn)
)
, q⃗ = (q0, . . . , qn) are the weights of

the integration quadrature, and P⃗ x = (x0, . . . , xn) is the
segment partition that satisfies the following inequality:
0 = x0 < x1 < . . . < xn−1 < xn = 1. The
pair (P⃗ x, q⃗) is called a numerical integration method [16].
General numerical integration methods are built using
different approximations of input functions (we refer to the
examples depicted in Fig. 2). From Eq. (1) we can see that
the integral of a product of two univariate functions can
be approximated by the dot product of two vectors using a
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Figure 1. Visualization of different channels selection methods without fine-tuning compared with our proposed integral neural networks.
a) ResNet-18 on Cifar10. b) NIN architecture on Cifar10. c) ResNet-18 on ImageNet. d) 4x EDSR on Div2k validation set. By compression
we denote the percentage of deleted parameters.

specific numerical integration method. The size of vectors
w⃗q and s⃗ can change to arbitrary values by selecting a larger
or smaller partition P⃗ x. For more details on the numerical
integration of multiple integrals we refer to Appendix A.
The proposed use of these integrals for representing basic
network layers, such as convolution and fully-connected
ones, allows for various segment partition lengths along
filters and channels dimension or height and width. This
leads to the generation of layers with the desired number of
filters, channels, height, and width.

3.1. DNNs layers as integral operators

Commonly used linear network layers can be presented
as integral operators with a specific integral kernel. While
such layers act as linear operators on the real linear space
Rk, integral operators act as linear operators on the linear
space of integrable functions L2. Therefore, not all input
data could be considered as continuous integrable functions
in a meaningful way. Nevertheless, digital images and audio
signals are discretizations of analog signals and, therefore,
they can be naturally used in integral networks.

Convolution or cross-correlation layer The convolution
layer defines a transform of a multichannel signal to an-
other multichannel signal. In the case of integral operators,
weights of this layer are represented by an integrable func-
tion FW (λ, xout, xin,xs), where xs is a scalar or vector
representing the dimensions, over which the convolution is
performed, and λ is a vector of trainable parameters. Input
and output images are represented by integrable functions
FI(x

in,xs), FO(x
out,xs′) and are connected through the

weight function in the following way:

FO(x
out,xs′) =∫

Ω

FW (λ, xout, xin,xs)FI(x
in,xs + xs′)dxindxs.

(2)

Fully-connected layer A fully-connected layer defines a
transform of a vector to a vector by means of matrix mul-

tiplication. The weights of this layer are represented by an
integrable function FW (λ, xout, xin). Similar to the convo-
lution operator, λ defines a vector of trainable parameters
of the integral kernel. The input and output functions are
represented by the integrable functions FI(x

in), FO(x
out),

respectively, and are connected via the weight function as
follows:

FO(x
out) =

∫ 1

0

FW (λ, xout, xin)FI(x
in)dxin. (3)

Pooling and activation functions Pooling layers also ex-
hibit a meaningful interpretation in terms of integration or
signal discretization. Average pooling could be interpreted
as a convolution along the spatial dimensions with a piece-
wise constant function. MaxPooling could be interpreted as
a way of signal discretization. Activation functions in inte-
gral networks are naturally connected with activation func-
tions in conventional networks by the following equation:

D
(
ActFunction((x), Px) = ActFunction(D(x, Px)

)
, (4)

where by D we denote the discretization operation that
evaluates a scalar function on the given partition Px. This
equation implies that applying an activation function on a
discretized signal is equivalent to discretizing the output of
the activation function applied to the continuous signal.

Evaluation and backpropagation through integration
For fast integral evaluation, the integral kernel goes through
a discretization procedure and is then passed to a conven-
tional layer for numerical integration. It turns out that any
composite quadrature may be represented by such a conven-
tional layer evaluation. For backpropagation through inte-
gration we use the chain-rule to evaluate the gradients of the
trainable parameters λ as in discrete networks. The validity
of the described procedure is guaranteed by the following
lemma, whose proof can be found in Appendix A.
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Figure 2. Different integration quadratures: a) left Riemann quadrature, b) right Riemann quadrature, c) trapezoidal quadrature. Riemann
qudratures are first-order methods, while the trapezoidal quadrature is a second-order method. The trapezoidal quadrature computes the
integral more precisely than the Riemann quadratures with a fewer required number of points in the segment partition.

Figure 3. Visualization of the integral layer evaluation. Continuous weights go through discretization along the variables xin, xout and
adjusted by an element-wise product with the integration quadrature Q.

Lemma 1 (Neural Integral Lemma) Given that an inte-
gral kernel F (λ, x) is smooth and has continuous partial
derivatives ∂F (λ,x)

∂λ on the unit cube [0, 1]n, any composite
quadrature can be represented as a forward pass of the cor-
responding discrete operator. The backward pass of the dis-
crete operator corresponds to the evaluation of the integral
operator with the kernel ∂F (λ,x)

∂λ using the same quadrature
as in the forward pass.

3.2. Continuous parameters representation

The richer and more generalized continuous parameter
representation allows to sample discrete weights at infer-
ence time at any given resolution. We propose to compactly
parameterize the continuous weights as a linear combina-
tion of interpolation kernels with uniformly distributed in-
terpolation nodes on the line segment [0, 1]: FW (λ, x) =∑m

i=0 λiu(xm − i), where m and λi are the number of
interpolation nodes and their values, respectively. For ef-

ficiency purposes, we suggest to exploit the available hard-
ware and existing Deep Learning (DL) frameworks and rely
on the cubic convolutional interpolation as shown in Fig. 4,
which is used for efficient image interpolation on GPUs.
Despite its slight deviation from the cubic spline interpola-
tion, this approach is significantly faster and yet preserves
the details better than linear interpolation. In case of mul-
tiple dimensions, we propose to define the interpolation on
the cube [0, 1]n with separable kernels, which is fully com-
patible with the existing DL frameworks.

The continuous representation is discretized into a stan-
dard weight tensor W which is used by the corresponding
layer in the forward pass. A schematic visualization of a
continuous parameter representation and discretization is
depicted in Fig. 4.

Representation of weights for fully-connected and con-
volutional layers Fully-connected layers are defined by a
two-dimensional weight tensor and, thus, we represent them
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Figure 4. Visualization of continuous parameter representation and sampling along one dimension. The continuous representation (c) is
the result of a linear combination of a cubic convolutional kernel (a) with interpolation nodes (b). During the forward phase it is discretized
(d) and combined with an integration quadrature.

with a linear combination of two-dimensional kernels on a
uniform 2D grid within the square [0, 1]2:

FW (λ, xout, xin) =
∑
i,j

λiju
(
xoutmout−i

)
u
(
xinmin−j

)
.

(5)
The discretized weight tensor Wq of the fully-connected
layer is obtained by sampling the continuous representation
on partitions P⃗ out and P⃗ in and by weighting the result ac-
cording to the integration quadrature of Eq. (1):

Wq[k, l] = qlW [k, l] = qlFW (λ, P out
k , P in

l ). (6)

Uniform partitions with steps hout and hin are defined as
follows: P⃗ out = {khout}k and P⃗ in = {lhin}l. Fewer or
more filters and channels at inference time are obtained with
a varying partition size.

As for convolutional layers, in this study we omit re-
sampling convolution kernels along the spatial dimensions
xs. Therefore, the continuous representation of weights
could be viewed as already sampled at each spatial loca-
tion t and defined by FW with location dependent set of
interpolation nodes λ(t).
Trainable partition So far, we considered only uniform
partitions with a fixed sampling step. However, non-
uniform sampling can improve numerical integration with-
out increasing the partition size. This relaxation of the
fixed sampling points introduces new degrees of freedom
and leads to a trainable partition. By training the separable
partitions we can obtain an arbitrary rectangular partition in
a smooth and efficient way. Such a technique opens up the
opportunity for a new structured pruning approach. Com-
bined with the conversion strategy of Section 4, this can
reduce the size of pre-trained discrete DNNs without tuning
the rest of the parameters. Instead of using a direct partition
parameterization P⃗ we employ a latent representation by
the vector δ⃗ = (0, δ1, . . . , δn) so that the following holds:
δ⃗norm = δ⃗2

sum(δ⃗2)
, P⃗ = cumsum(δ⃗norm). Such param-

eterization guarantees that the result is a correctly defined
(sorted) partition P⃗ stretched over the whole segment [0, 1].

4. Training Integral Neural Networks
Nowadays, there exists a large variety of pre-trained dis-

crete networks. Therefore, it would be beneficial to have
in place a process of converting such networks to integral
ones. Such converted networks can serve as a better initial-
ization for the training of integral networks. To this end, we
propose an algorithm that permutes the filters and channels
of the weight tensors in order to obtain a smooth structure
in discrete networks. A visual illustration of this strategy is
provided in Fig. 5. We also propose an algorithm to opti-
mize the smooth parameters representation of INNs using
gradient descent. This allows us to obtain a network which
can be re-sampled (structurally pruned) without any fine-
tuning at inference time.

Conversion of DNNs to INNs To find a permutation that
leads to the smoothest structure possible, we minimize the
total variation along a specific dimension of the weight ten-
sor. This problem is equivalent to the well-known Traveling
Salesman Problem (TSP) [15]. In our task, the slices along
the cout dimension in the weight tensor (i.e., filters) corre-
spond to the “cities” and the total variation to the “distance”
between those cities. Then, the optimal permutation can be
considered as an optimal “route” in TSP terms. We use the
2-opt algorithm [6] to find the permutation of filters that
minimizes the total variation along that dimension:

min
σ∈Sn

∑∣∣W [σ(i)]−W [σ(i+ 1)]
∣∣, (7)

where W is the weight tensor, σ denotes the permutation,
σ(i) is the new position of the i-th element defined by the
permutation, and Sn is a set of all permutations of length n.
The permutation is performed in such a way so that the fil-
ters’ permutation in the preceding layer matches the chan-
nels’ permutation in the following layer. Since the model
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output stays exactly the same, our algorithm allows to ini-
tialize the integral neural network using a discrete one with-
out experiencing any quality degradation.
Optimization of continuous weights Any available gra-
dient descent-based method can be used for training the pro-
posed integral neural networks. We use Lemma 1 to con-
struct the training algorithm as described below. We train
our networks with random cout from a predefined range
(cout denotes the number of filters or rows in the convo-
lution or the fully-connected layer). Discretization of xin

of the next layer is therefore defined by discretization of
xout of the previous layer. Training integral neural net-
works using such an approach allows for a better general-
ization of the integral computation and avoids overfitting of
the weights to a fixed partition, since the size of the partition
changes at every training iteration. Formally, our training
algorithm minimizes the differences between different cube
partitions for each layer using the following objective:∣∣Net(X,P1)−Net(X,P2)

∣∣ ≤ ∣∣Net(X,P1)− Y
∣∣

+
∣∣Net(X,P2)− Y

∣∣, (8)

where Net(X,Pi) is the neural network evaluated on input
data X with labels Y , and P1, P2 are two different partitions
for each layer. One can note that the optimization under
stochastic sampling of the partition sizes leads to a reduc-
tion of differences between the outputs of integral neural
networks of different sizes. Such an optimization therefore
ensures that a trained integral neural network has a similar
performance when pruned to arbitrary sizes.

5. Experiments
We have implemented a general framework for numeri-

cal integration using the PyTorch library [25]. Our frame-
work allows to use custom integration quadratures for nu-
merical integration on Nvidia GPUs. Our integral neural
networks use PyTorch layers for fast evaluation of integral
operators. One could use our framework for numerical in-
tegration of multiple integrals independently on the integral
network. To validate INNs we have conducted experiments
for image classification and image super-resolution tasks.
For image classification the Cifar10 [12] and ImageNet [28]
datasets were used. For the image super-resolution task
we have selected the 4-x EDSR [19] and 3-x SRCNN [8]
models trained on the Div2k dataset [1] and the 91-image
dataset [36], respectively. Validation was performed on Set5
[3], Set14 [39] and B100 [21] datasets. A schematic de-
scription of the main validation pipelines is shown in Fig. 6.
Details of the implementation and the experiments setup
can be found in Appendix D.
Pipeline A. Comparison with discrete NNs We have
trained INNs with two different initializations: from scratch
and from a converted pre-trained discrete network. We can

Algorithm 1 Training of the integral neural network.

Require: Integral neural network IntegralNet.
Require: Dataset X .

1: P 0 := Partition(NumberOfInputChannels(X)) ▷ Input
partition

2: PL := Partition(NumberOfOutputChannels(X)) ▷
Output partition

3: while not converge do
4: x := SampleBatch(X)
5: for each layer l in Layers(IntegralNet) do ▷ l starts

from 1
6: P l := Partition(minl, maxl) ▷ Generate uniform

partition with random size
7: W l

q := DiscretizeWeight(λl, P l, P l−1) ▷ Obtain
weight tensor according to Eq. 6

8: bl := DiscretizeBias(λl, P l) ▷ Obtain 1D bias
tensor similar to Eq. 6

9: end for
10: L := Loss(IntegralNet, x) ▷ Forward pass
11: ∂L

∂λ := Backward(L) ▷ Backward pass
12: λ := OptimizerStep(λ, ∂L

∂λ ) ▷ Update parameters
13: end while

see that the INN fine-tuned from the pre-trained discrete
network has the same or higher performance as the corre-
sponding discrete network and significantly outperforms the
INN trained from scratch (see Table 1). The INN fine-tuned
using Algorithm 1 can be re-sampled to a corresponding
discrete network of any desired size. Figure 7 shows a com-
parison of the EDSR INN with its discrete counterpart. It
can be seen that even after 40% pruning the INN preserves
almost the same performance.
Pipeline B. Structured pruning without fine-tuning
through conversion to INN In this experiment, we have
pruned discrete networks through their conversion to INNs
using the method described in Section 4, and tuned the inte-
gration partition on a few samples. Results are presented in
Fig. 1 (denoted as INN + partition tuning). It is important to
note that the permutation step is very important in our con-
version algorithm. Indeed, we observe a higher accuracy
drop when partition tuning is deployed without the permu-
tation step. This is in line with the theoretical connection of
variation and integration errors (see Appendix A) and with
our empirical evaluation reported in Table 2.
Pipeline C. Structured pruning without fine-tuning of
discrete NNs A straightforward approach to obtain a
compact neural network is to remove some of the parame-
ters of a trained network in a structured way. Typically, the
importance of neurons or filters of each layer is assessed
based on various criteria ρ(W,X) that depend on the net-
work weights W and data X , such as the ℓ1-norm of the
weights [18] or the contribution to the loss [22]. In our
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Figure 5. Toy example illustrating the permutation of filters in a discrete weight tensor in order to obtain a smoother structure.

Figure 6. Illustration of the main validation experiments.

Figure 7. Example of 4x image super-resolution with 4 methods: bicubic interpolation, EDSR discrete neural network, EDSR integral
neural network of full-size and pruned by 40%.

study, structural pruning is applied to convolutional layers
as in [18]. The neurons to prune are selected based on the
ℓ1-norm of their kernels or various statistics of feature maps
estimated on the whole dataset. Finally, the results from all
3 pipelines are presented in Fig. 1. From these results we
can see that INNs significantly outperform other alternative
methods equipped with the ability of pruning without fine-
tuning. Further, we observe that the non-uniform trainable

partition outperforms pre-trained INNs with uniform sam-
pling, while the uniform sampling provides much faster and
data-free partition of the re-discretization.

Trainable partition for the improvement of continuous
representations Cubic convolution interpolation is typ-
ically applied to discrete data such as images or volume.
However, the uniformly sampled partition can limit the re-
construction quality. Therefore, a trainable partition pro-
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Figure 8. Image reconstruction with 3 methods (from left to right): original image, interpolation kernels with fixed partition, with separable
trainable partition and non-separable trainable partition.

Dataset Model Discrete INN INN-init

Cifar10
NIN 92.3 91.8 92.5
VGG-11 91.1 89.4 91.6
Resnet-18 95.3 93.1 95.3

ImageNet
VGG-19 72.3 68.5 72.4
ResNet-18 69.8 66.5 70.0
ResNet-50 74.1 71.2 74.1

(a)

Dataset Model Discrete INN INN-init

Set5
SRCNN 3x 32.9 32.6 32.9
EDSR 4x 32.4 32.2 32.4

Set14
SRCNN3x 29.4 29.0 29.4
EDSR 4x 28.7 28.2 28.7

B100
SRCNN 3x 26.8 26.1 26.8
EDSR 4x 27.6 27.2 27.6

(b)

Table 1. Comparison of INNs with discrete networks on classifi-
cation and image super-resolution tasks for different architectures.
Discrete refers to the conventional DNN, INN refers to the integral
network trained from scratch, while INN-init refers to the integral
network trained according to pipeline A indicated in Fig. 6. Table
(a) indicates accuracy [%] for classification tasks, whereas table
(b) indicates PSNR [dB] for super-resolution tasks.

w Perm., % w/o Perm., %

ResNet-18 93.0 91.3
NIN 89.4 84.71

VGG-11 88.7 85.2

Table 2. Tuning integration partition of INN with and without per-
mutation step during conversion from pre-trained DNN. All mod-
els were compressed at 40 %.

vides additional flexibility to enrich the signal reconstruc-
tion and may lead to a higher quality representation. We
assess the representation capability of interpolation kernels
with fixed and separable trainable partitions by performing
image reconstruction (Fig. 8). Additionally, we have tested
the reconstruction with the use of a non-separable trainable
partition parameterized by a set of independent 2D coordi-
nates. Since the partition parameterization introduces addi-
tional parameters, we equalize the total number of parame-
ters by adjusting the number of interpolation nodes and the
partition size.

6. Conclusions and open problems
In this paper, we proposed a novel integral representa-

tion of neural networks which allows us to generate conven-
tional neural networks of arbitrary shape at inference time
by a simple re-discretization of the integral kernel. Our
results show that the proposed continuous INNs achieve
the same performance as their discrete DNN counterparts,
while being stable under structured pruning without the use
of any fine-tuning. In this new direction, the following ques-
tions/problems are worth to be further investigated:

• INNs open up new possibilities for investigating the
capacity of neural networks. The Nyquist theorem can
be used to select the number of sampling points.

• Adaptive integral quadratures. In this work, we have
investigated only uniform partitions for training INNs.
Investigating data-free non-uniform partition estima-
tion could also have strong impact on INNs.

• Training INN from scratch requires improvement for
classification networks. Current accuracy drop proba-
bly caused by absence of batch-normalization layers.
Smooth analogue of normalization is required.
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