
Advancing Visual Grounding with Scene Knowledge: Benchmark and Method

Zhihong Chen1,2,3* Ruifei Zhang2* Yibing Song4,5 Xiang Wan3 Guanbin Li2†

1The Chinese University of Hong Kong, Shenzhen 2Sun Yat-sen University
3Shenzhen Research Institute of Big Data 4Tencent AI Lab 5AI3 Institute, Fudan University

zhihongchen@link.cuhk.edu.cn zhangrf23@mail2.sysu.edu.cn

yibingsong.cv@gmail.com wanxiang@sribd.com liguanbin@mail.sysu.edu.cn

Abstract

Visual grounding (VG) aims to establish fine-grained
alignment between vision and language. Ideally, it can be
a testbed for vision-and-language models to evaluate their
understanding of the images and texts and their reason-
ing abilities over their joint space. However, most existing
VG datasets are constructed using simple description texts,
which do not require sufficient reasoning over the images
and texts. This has been demonstrated in a recent study [27],
where a simple LSTM-based text encoder without pretrain-
ing can achieve state-of-the-art performance on mainstream
VG datasets. Therefore, in this paper, we propose a novel
benchmark of Scene Knowledge-guided Visual Grounding
(SK-VG), where the image content and referring expressions
are not sufficient to ground the target objects, forcing the
models to have a reasoning ability on the long-form scene
knowledge. To perform this task, we propose two approaches
to accept the triple-type input, where the former embeds
knowledge into the image features before the image-query
interaction; the latter leverages linguistic structure to assist
in computing the image-text matching. We conduct exten-
sive experiments to analyze the above methods and show
that the proposed approaches achieve promising results but
still leave room for improvement, including performance
and interpretability. The dataset and code are available at
https://github.com/zhjohnchan/SK-VG.

1. Introduction

Visual grounding (VG), aiming to locate an object re-
ferred to by a description phrase/text in an image, has
emerged as a prominent attractive research direction. It can
be applied to various tasks (e.g., visual question answering
[4,13,38,51] and vision-and-language navigation [1,11,35])
and also be treated as a proxy to evaluate machines for
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The man Jake is celebrating Christmas
with his friends. Jake puts his left hand
on the glasses and holds a wine glass in
his right hand. His friend Alan is sitting
on his right in a suit. Carol, Jake's
another friend, stands on Jake's left
with a wine glass in his left hand,
grinning with white teeth.

Q1: The black glasses

Q2: Jake’s wine glass
(Traditional)

(SK-VG (Ours))

Image Query
Scene Knowledge

Figure 1. An example from the proposed SK-VG dataset for scene
knowledge-guided visual grounding. The task requires a model to
reason over the (image, scene knowledge, query) triple to locate
the target object referred to by the query.

open-ended scene recognition. Typically, VG requires mod-
els to reason over vision and language and build connec-
tions through single-modal understanding and cross-modal
matching. Yet, current VG benchmarks (e.g., RefCOCO [47],
RefCOCO+ [47], RefCOCOg [29], ReferItGame [17], and
CLEVR-Ref+ [23]) can not serve as a good test bed to eval-
uate the reasoning ability since they only focus on simple
vision-language alignment. In addition to the simple nature
of constructed referring expressions, this can be reflected in
the recent state-of-the-art study [27], where they showed that
VG models are less affected by language modeling through
extensive empirical analyses.

In this paper, we believe that the intrinsic difficulty of VG
lies in the difference between perceptual representations of
images and cognitive representations of texts. Specifically, vi-
sual features are obtained through perceptual learning, which
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Figure 2. Illustrations of four categories of grounding tasks, including categories, phrases, linguistic expressions, and linguistic expres-
sion+scene knowledge. The height of the input green and blue rectangles denotes its relative information.

only maps visual appearances in images to semantic con-
cepts. However, open-ended queries might require VG mod-
els to understand the whole scene knowledge before perform-
ing reasoning to locate the target object. As shown in Figure
1, the perceptual features can encode the information about
“a wine glass”, but it would struggle to locate “Jake’s wine
glass” without the scene knowledge about “who is Jake?”.
This is a challenging task owing to two facts: (i) From the
dataset perspective, there are no relevant benchmarks for
the VG researchers to evaluate their models; (ii) From the
model/algorithm perspective, it is not easy to design models
to perform reasoning among images, scene knowledge, and
open-ended querying texts.

Therefore, we propose to break this limitation of cur-
rent VG research and construct a new benchmark requir-
ing VG to perform reasoning over Scene Knowledge (i.e.,
text-based stories). The benchmark named SK-VG contains
∼40,000 referring expressions and 8,000 scene stories from
4,000 images, where each image contains 2 scene stories
with 5 referring expressions for each story. Moreover, to
evaluate the difficulty levels of queries, we curate the test
set by splitting the samples into easy/medium/hard cate-
gories to provide a detailed evaluation of the vision-language
models. Under this new setting, we develop a one-stage ap-
proach (i.e., Knowledge-embedded Vision-Language Inter-
action (KeViLI)) and a two-stage approach (i.e., Linguistic-
enhanced Vision-Language Matching (LeViLM)). In KeViLI,
the scene knowledge is firstly embedded into the image fea-
tures, and then the interaction between the image and the
query is performed; In LeViLM, the image features and
the text features are first extracted, and then the match-
ing between the (image) regions and the (text) entities are
computed, assisted by the structured linguistic information.
Through extensive experiments, we show that the proposed
approaches can achieve the best performance but still leave
room for improvement, especially in the hard split. It chal-
lenges the models from three perspectives: First, it is an

open-ended grounding task; Second, the scene stories are
long narratives consisting of multiple sentences; Third, it
might require the multi-hop reasoning ability of the models.
In summary, the contributions of this paper are three-fold:

• We introduce a challenging task that requires VG mod-
els to reason over (image, scene knowledge, query)
triples and build a new dataset named SK-VG on top of
real images through manual annotations.

• We propose two approaches to enhance the reasoning in
SK-VG, i.e., one one-stage approach KeViLI and one
two-stage approach LeViLM.

• Extensive experiments demonstrate the effectiveness of
the proposed approaches. Further analyses and discus-
sions could be a good starting point for future study in
the vision-and-language field.

2. Background
2.1. Taxonomy of Visual Grounding Datasets

In the past few years, a variety of datasets have been
proposed for visual grounding. We propose a taxonomy of
existing (generalized) VG datasets along with the proposed
dataset based on types of queries, as shown in Figure 2.

The datasets of the first type use fixed categories as
queries.1 Grounding categories in images are a fundamental
task in computer vision and has attracted much attention.
One of the most representative examples is the MS-COCO
dataset [20], which contains 80 categories. Besides, PASCAL
VOC 2007 [12], Visual Genome [18], and Object365 [34]
are also popular datasets of this type.

The Flickr30K Entities dataset2 [30] belongs to the sec-
ond type, where the queries are short phrases. Similar to the

1Generally, it is called object detection. We generalize it to visual grounding
to summarize and classify existing grounding datasets better.

2Although there are some studies locating the entities using the context
provided by the dataset, we refer in particular to those using only the
phrases as in [27].

15040



first type, an image might contain multiple objects referred
to by a phrase following the one-to-many mappings. The
most distinct characteristic of this type from the first type
is that it is an open-vocabulary grounding problem instead
of using fixed categories. Most recently, researchers con-
structed relevant datasets of this type, i.e., PhraseCut [39]
and LVIS [14], with a larger scale.

The third type aims at localizing a specific object in the
image based on an expression in the form of natural lan-
guage. In the narrow sense, the term visual grounding refers
to this type of dataset in previous studies. Various bench-
mark datasets (e.g., RefCOCO [47], RefCOCO+ [47], Ref-
COCOg [29], and CLEVR-Ref+ [23]) have been constructed
to test the ability to refer expression comprehension of exist-
ing vision-language models. In general, expressions in these
datasets are written according to the visual appearance and
spatial location of an object, where the visual appearance
includes visual categories, color, and other visual attributes,
and the spatial location describes the absolute or relative
location. Different from the aforementioned two types, an
expression in this type of dataset points to a unique object in
the image following the one-to-one mapping.

Our proposed SK-VG is the first dataset of the fourth
type, where for each image, we provide human-written scene
knowledge to describe its content. By doing so, the VG
models need to have a good understanding of the scene
stories and then locate the queried object in the image ac-
cording to both querying expressions and scene stories. Al-
though there exists a dataset [36] introducing knowledge
to the visual grounding model, it only focuses on the com-
monsense knowledge, which interprets the concept in the
referring expressions, e.g., the interpretation of the target
object ‘banana’. There are also some datasets on grounding
complex/compositional visual description, e.g., the human-
centric HumanCog dataset [45] and the Cops-Ref dataset [5].
HumanCog requires the model to understand human-centric
commonsense (e.g., the mental aspect), and Cops-Ref pro-
posed a difficult task to require a model to identify an object
described by a compositional referring expression from a
curated set of images. We can still classify them into the
first three categories since the knowledge is more about re-
ferring expressions, while the knowledge in our dataset is a
comprehensive description of the scene.

2.2. Visual Grounding Models

Existing methods can be categorized into two classes:
(i) two-stage methods [2, 21, 25, 37, 46] and (ii) one-stage
methods [8, 15, 28, 42, 44, 50].3 The former generates region
proposals first and then exploits the language expression to
select the best-matching region; The latter directly predicts

3Grounding categories is a very hot topic, where there are many research
works [22, 24, 31, 32]. Yet we mainly discuss existing studies of grounding
phrases/expressions, which are more related to this work.

the bounding boxes through vision-and-language interaction
to avoid the computation-intensive object proposal genera-
tion and region feature extraction in the two-stage paradigm.
Among these methods, some work [6, 10, 37, 40, 41] per-
form explicit reasoning by modeling the attributes of objects
and the relations between objects to improve interpretability.
However, limited by the simplicity of existing datasets, they
can not take full advantage of their algorithms and do not
model complicated semantic relations in images and texts.
Besides, pretraining-based methods [16,19,43,49] have been
applied to VG to improve the open-vocabulary grounding
ability.

3. Dataset Construction

In this section, we present the SK-VG dataset. Compared
to existing VG tasks, the key difference is that each image is
paired with scene knowledge to describe its content. We de-
tail the image collection, the annotation process, the dataset
statistics, and splits in the following subsections.

3.1. Image Collection

To facilitate and ease the writing of a text story, we iden-
tify three significant aspects a qualified image should fulfill:

• Humans are the main body of a story. A satisfying im-
age is better full of multiple characters with interactions
to create complex and dramatic stories.

• Objects are also essential and necessary to comple-
ment the details of a story. The number and category of
objects also impact our SK-VG task, making it more
challenging and interesting.

• Scenes are the third factors we can not ignore since the
scenes determine the background and starting point of
stories. Complex and real scenes (e.g., theaters, class-
rooms, and parks) can inspire diverse stories.

Based on the above consideration, we select the existing
Visual Commonsense Reasoning dataset [48], which is de-
signed for the visual question answering task and contains
more than 110,000 movie scene images. Thanks to the movie
attribute of these images, they are more likely to meet our re-
quirements and are suitable for our task. Therefore, through
careful manual filtering and selection, 4,000 images serve as
the ingredients of our SK-VG dataset.

3.2. Image Annotation

To facilitate the annotation process, we develop software.
For each image, the annotation mainly includes two phases:
(i) Annotators are asked to create two different story descrip-
tions based on a given image; (ii) Given each story, the an-
notators are asked to write five referring expressions related
to the given image and story and annotate the corresponding
object bounding boxes as the ground truth. The required
rules for each step are detailed as follows: (i) Knowledge
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(ii)(iii)

(i)

Figure 3. Statistics of the proposed SK-VG dataset: (i) the length distribution of the knowledge description; (ii) the referred objects of
high-frequency; (iii) the size distribution of referred objects.

Annotation serves as a foundation stone of our annotation,
determining the scope and quality of query sentences. A sat-
isfying story should be related but beyond the image content.
Specifically, the story should cover the person who occurred
in one image with accurate visual descriptions, thus pro-
viding significant clues and evidence to match the image
object and knowledge entity. Besides, the story is required
to contain more context beyond the image, such as back-
ground, character relationship, mental state, and emotion, so
as to promote the design of more challenging and flexible
query expression. (ii) Query Expression Annotation plays
an essential role in our task and ought to obey the following
criteria:

• Knowledge Relevance: The main insight of our SK-
VG task is to advance the traditional VG task by intro-
ducing extra scene knowledge descriptions. Based on
this consideration and prospect, the first principle is that
query sentences must be highly relevant to knowledge
instead of directly visually distinguishable. Taking Fig-
ure 1 as an example, “The black glasses” is not qualified
since it does not involve knowledge information.

• Uniqueness: To give a unique bounding box of the
referred object, the query should be clear and unam-
biguous. For instance, queries like “The person holding
a wine glass” or “Jake’s friend” are not satisfied in
Figure 1 since they involve several objects in the image.

• Diversity: For one thing, the referring objects should be

diverse; For another, the lexical expression of the query
sentence is also required to be diversified. For example,
the general terms (e.g., “person”) could be replaced by
other specific alternatives (e.g., “colleague”).

3.3. Dataset Statistics

To further dive into the proposed SK-VG dataset, we
demonstrate its characteristics from three aspects:

• Length of scene knowledge: As shown in Figure 3(i),
the word-based length of most stories ranges from 50
to 70. This puts high demands on models to capture
long-range dependency to understand text content.

• Categories of referred objects: As an open-world task,
referred objects of our dataset are not limited to a fixed
number of categories. Figure 3(ii) exhibits 100 referred
object classes with the highest frequency. Benefiting
from the diverse stories and scenes, we introduce exten-
sive referred targets with various expressions, increas-
ing the difficulty of recognition and localization.

• Size of referred objects: We report the size of referred
objects in Figure 3(iii), which indicates that the objects
in our dataset fall into a wide range of sizes. Further,
we define small, medium, and large concepts according
to the area of the objects, following the boundary of
64 × 64 and 128 × 128. We can observe that large
objects dominate our dataset, while small and medium
instances hold a small proportion.
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Figure 4. Illustration of the proposed approaches: (i) the one-stage algorithm, where the knowledge is embedded into the image features
before the image-query interaction; (ii) the two-stage algorithm, where the image features and text features are firstly extracted, and then the
structured linguistic information is leveraged to assist in computing the region-entity similarities.

3.4. Dataset Splits

We randomly sample 60% of images and their annota-
tions as the training set. For the remaining (image, scene
knowledge, query) triples, we sample parts of them for anno-
tating their difficulty levels and use them as the test set while
the remaining triples are used as the validation set.4 We fol-
low the following rule to annotate the difficulty level. The
core principle is that more knowledge-related but less visual-
distinguishable expressions deserve a higher difficulty level:
(i) Easy: The referring expression contains obvious appear-
ance, object relationship, or other visual clues; (ii) Medium:
The expression only mentions weak visual information; (iii)
Hard: The answer is required to be entirely derived from the
scene knowledge without visual bias. We show examples of
different difficulty levels in §4.5.

4. Algorithmic Analysis
4.1. Algorithm 1: KeViLI

To perform SK-VG, we introduce a one-stage algo-
rithm: Knowledge-embedded Vision-Language Interaction
(KeViLI). Given an image I and its corresponding scene
knowledge K, the goal is to locate the object referred to
by a querying text T by predicting the coordinates of its
corresponding bounding box directly.

In detail, given I , we use an image encoder to encode I to
the image patch features HI ; given K and T , we use a lan-
guage encoder to encode them to the knowledge features HK

and the text subword features HT , respectively. Afterward,
we embed the scene knowledge into the image features be-
fore the image-query interaction. As an intuitive illustration,
in Figure 1, the visual features of “person” in the image is not
only about the concept “person” but also about the specific
refer “Jake” after embedding knowledge, which can assist in
grounding “Jake’s wine glasses”. The embedding procedure
is implemented using a cross-attention Transformer, which is
4The images in the training set have no overlap with those in the validation
and test sets.

stacked by self-attention, cross-attention, and feed-forward
sub-layers. The attention mechanism is applied in the self-
attention and cross-attention sub-layers and is defined as

ATTN(Q,K,V ) = Softmax
(
QK⊤/

√
Dk

)
· V , (1)

In the self-attention sub-layer, the patch features interact
with each other through HI = ATTN(HI , HI , HI); In the
cross-attention sub-layer, the knowledge is embedded into
the image features by HI = ATTN(HI , HK , HK).5 Subse-
quently, HI and HT are input to a Transformer with a learn-
able regression token [REG] to perform the image-query
interaction. The output of [REG] is input to a two-layer
multilayer perceptron (MLP) to produce to predict the co-
ordinates directly without region proposals. The model is
trained to minimize the generalized IoU loss [33] (GIoU
loss):

L = Lsmooth l1(b, b̂) + Lgiou(b, b̂), (2)

where b and b̂ refer to the ground-truth and prediction boxes,
respectively and Lsmooth l1(·) and Lgiou(·) are the smooth L1
loss and GIoU loss, respectively.

4.2. Algorithm 2: LeViLM

We further introduce a two-stage algorithm: Linguistic-
enhanced Vision-Language Matching (LeViLM). In LeV-
iLM, we follow GLIP [19] to initialize the backbone model,
which had been trained from large-scale datasets to detect
objects of open-vocabulary classes.

In detail, the grounding process is disentangled into two
stages, i.e., region proposal and scoring, where the for-
mer aims to find all the objects in the image, and the lat-
ter aims to score the proposal regions. In the region pro-
posal stage, given the scene knowledge K and the query
T , we construct a manual prompt text P : “Query: T.
Knowledge: K.”. Then we use a language encoder to

5We overload the notations here for simplicity.
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encode P into the prompt features HP and an image en-
coder to encode I to the image features HI . Afterward,
we perform the image-text fusion using a stack of L lay-
ers. In each layer, there is one self-attention layer for
text encoding and one Dynamic Head layer [7] for im-
age encoding, and two cross-attention layers for cross-
modal fusion. The text encoding and image encoding pro-
cess can be formulated as HP = ATTN(HP , HP , HP )
and HI = DynamicHead(HI), respectively. The cross-
modal information fusion process can be formalized as
HP = ATTN(HP , HI , HI), HI = ATTN(HI , HP , HP ),
where the cross-attention mechanism is applied to exchange
the image and text information. Subsequently, a region pro-
posal layer is applied to HI to obtain the region features.
For simplicity, we denote the after-fusion image (region)
features and text (subword) features as ZI ∈ RN×d and
ZP ∈ RM×d, where N refers to the number of proposed
regions and M represents the number of subwords. In the
region scoring stage, we extract structured linguistic informa-
tion from the query T and the scene knowledge K. Specifi-
cally, given T , we perform syntactic dependency parsing to
obtain its dependency tree and apply a set of rules to extract
the subject of T , which we denote as the head entity Eh.
Besides, we also build the connection between T and K
through coreference resolution to find all mentions Em in
K refer to the same underlying entity Eh. Therefore, during
the training procedure, we have the bounding box annotation
for Eh and its co-referred Em since Eh and Em share the
same object. Then we can take the representations of Eh

and Em from ZP , denoted as ZE ∈ R(E+1)×d, where E
represents the number of co-referred mentions. Afterward,
we can compute the alignment scores between the image
regions and the entities in the prompt:

Score = ZIZ
⊤
e , (3)

where Score ∈ RN×(E+1). Finally, the model is trained to
minimize the following loss:

L = Lxe(Score, Target), (4)

where Lxe is the cross entropy loss and Target ∈
RN×(E+1), where each element indicates if a region and
an entity are matched or not.

4.3. Implementation Details

For KeViLI, the input image is resized to 640× 640, and
the max (token-based) length for T and K are set to 32 and
256, respectively. During training, the model is optimized
with the batch size set to 64 using AdamW optimizer [26],
where the initial learning rate of the vision encoder and
language encoder is set to 10−5 and the learning rate of the
remaining parameters are set to 10−4. Similar to [8], the
vision encoder is initialized from the DETR model [3], and

Method [46] [21] [25] [44] [42] KeViLI LeViLM

Acc 25.28 25.24 26.08 16.3 36.68 30.01 72.57

Table 1. Comparisons of our approaches with existing studies.

the language encoder is initialized with the BERT model [9].
The model is trained for 90 epochs with a learning rate
dropped by a factor of 10 after the 60th epoch. For LeViLM,
we initialize the backbone model from [19]. We train the
model with the batch size set to 32. Similarly, the learning
rate is set to 10−5 for the text encoder and 10−4 for the
remaining parameters. During training, the learning rate is
decayed at 67% and 89% of the total training steps.

To evaluate LeViLM on the SK-VG dataset, we testify
different experimental settings:

• Data: Query-only (Q), Query-knowledge (Q+K), and
Query-knowledge-linguistic-structure (Q+K+S);

• Training: (i) Zero-shot (ZS): We directly evaluated
the pre-trained model without finetuning; (ii) Linear-
probing (LP): We fixed the backbone model; (iii) Fine-
tuning (FT): We tuned all the parameters of the model.

• Evaluation6: (i) Selecting the prediction with the high-
est score (H), (ii) Randomly picking the prediction
whose score is over 0.5 (R), (iii) Selecting the ground-
truth one if its score is larger than 0.5 (U).7

For the evaluation metric, we adopt Intersection-over-
Union (IoU), which measures the overlap degree between the
prediction and the ground truth. Following previous studies
[8, 29, 47], we use IOU@0.5 as the prediction accuracy.

4.4. Experimental Results and Analyses

To analyze the performance of different baselines, we
consider the following questions and conduct analyses to
answer them with the results reported in Table 1 and 2.
Q1: Is SK-VG a hard task for traditional VG models? As
shown in Table 1, existing models did not achieve promis-
ing results An interesting finding is that ReSC, which uses
texts to recursively refine the text-conditional visual fea-
tures, achieved the best result (∼36%) among these existing
models, which matches our intuition that it can better use
long-form story information.
Q2: Which one is better, KeViLI or LeViLM? It can be ob-
served in Table 2 that the performance of LeViLM (ID 3-26)
is consistently better than KeViLI (ID 1-2), even without any
finetuning (ID 3-4). We can explain this by the reason that
the task’s inherent difficulty is understanding open-ended sto-
ries, queries, and their relations with the images. For KeViL,
the one-stage optimization to directly output bounding boxes
of such open-ended target objects could be difficult. Instead,

6Since the LeViLM model might predict multiple bounding boxes, we adapt
different evaluation strategies for analysis.

7The U strategy is adopted to analyze the reasoning error of the model.
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Difficulty-level Area-levelMethod Text Criteria ID Overall Acc Accde Accdm Accdh Accas Accam Accal

Q - 1 28.71 32.53 25.23 25.70 0.80 14.44 34.02KeViLI Q + K - 2 30.01 33.75 26.55 27.14 1.20 12.85 35.94

H 3 29.75 49.97 18.23 6.71 24.20 33.33 29.64
R 4 29.77 48.28 18.88 9.01 23.20 33.12 29.79Q
U 5 38.13 54.23 29.56 19.16 30.20 39.38 38.67

H 6 7.55 13.08 4.38 1.26 2.20 5.94 8.36
R 7 7.78 12.88 4.71 2.12 2.20 5.73 8.69

LeViLM (ZS)

Q + K
U 8 8.79 13.34 6.02 3.79 2.20 6.05 9.93

H 9 44.97 72.03 31.86 11.70 50.60 57.54 42.13
R 10 44.82 66.91 32.68 19.16 48.20 56.48 42.36Q
U 11 63.09 77.51 54.90 46.64 52.60 64.86 63.79

H 12 35.71 60.40 25.07 3.96 41.20 48.51 32.84
R 13 35.89 57.00 24.41 11.24 39.40 47.13 33.49Q + K
U 14 47.71 64.40 41.43 25.30 43.20 55.52 46.72

H 15 37.25 62.09 26.98 4.88 42.20 49.47 34.54
R 16 36.91 58.03 25.83 11.82 40.20 46.92 34.76

LeViLM (LP)

Q + K + S
U 17 50.47 66.61 44.77 28.40 44.40 56.69 49.92

H 18 57.18 80.35 46.80 27.83 65.00 66.77 54.67
R 19 57.29 80.15 46.63 28.74 65.00 65.39 55.06Q
U 20 63.79 83.45 55.17 38.67 68.60 71.23 61.97

H 21 70.70 84.51 63.16 54.62 68.20 72.51 70.62
R 22 70.49 84.28 62.67 54.73 68.80 72.51 70.29Q + K
U 23 74.95 86.49 68.20 61.96 71.00 76.11 75.12

H 24 72.57 84.08 65.52 59.95 70.00 71.02 73.10
R 25 71.93 83.72 64.97 58.75 70.00 71.44 72.21

LeViLM (FT)

Q + K + S
U 26 77.31 86.59 71.59 67.18 72.60 76.96 77.83

Table 2. The performance of two proposed approaches. In the text column, Q, K, and S represent query, knowledge, and linguistic structure,
respectively. In the criteria column, H, R, and U represent the criteria to pick the detected bounding boxes by adopting the boxes with the
highest scores, the random boxes, and the upper-bound scores that can be achieved, respectively. For the metrics, the overall accuracy, the
difficulty-level accuracy, and the area-level accuracy are shown.

for LeViLM, after dividing and conquering the process (i.e.,
region proposing and scoring), it is easier to ensure each
stage works well, e.g., to guarantee its basic detection ability
before complex grounding using a pre-trained VG backbone.
Q3: Are linear-probing or finetuning necessary for LeViLM?
We can investigate the effects of linear probing and finetun-
ing by comparing the results (ID 3-8, ID 9-14, and ID 18-23).
When adapting LeViLM on this dataset, the performance
follows this pattern: finetuning > linear-probing > zero-shot.
The reason behind this is that finetuning can guide the model
to use the scene knowledge in a better way.
Q4: Is the scene knowledge critical for accurate prediction?
To answer this question, we need to take the different eval-
uation strategies into account. Specifically, in the ZS and
LP setting, it can be observed that the knowledge is harmful
to the model performance by comparing ID 3-5 and ID 6-8
(or comparing ID 9-11 and ID 12-17). This is due to two
reasons: (i) The texts of the pretraining datasets of LeViLM
are relatively short, yet the length of scene knowledge in our
dataset is much longer than that; (ii) The majority of the LeV-
iLM pretraining datasets are about perception, i.e., detecting

all the objects in the images instead of reasoning over the
images and texts. Therefore, it is not enough to exploit the
knowledge under the zero-shot and linear-probing settings.
On the contrary, the knowledge has a considerably positive
effect when full-finetuning LeViLM on the proposed dataset,
which can be explained by the fact that LeViLM learns to
reason over the images, knowledge, and querying texts after
adaptation. Besides, bridging the scene knowledge and the
queries in an appropriate way (ID 24-25) can further promote
performance. The conclusion is that knowledge is critical
for finetuning but can not be exploited appropriately in the
zero-shot and linear-probing settings.
Q5: What is the advantage of exploiting the knowledge? For
this question, there are two interesting observations from
the results. First, when using the knowledge, the model can
achieve a higher upper-bound result (comparing ID 20, 23,
and 26), which means that the model can detect more ob-
jects in the images. We can explain this phenomenon by one
of the possible instances: the querying text might contain
different names of persons, and the model might not know
the name refers to a person, which can be inferred from the
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The man on the far right
of the image is Spider-
Man Bruce. A spider is
painted on his back. His
enemy Brandon is
floating in the air across
from him, wearing
sunglasses. Brandon's
servant Tom is behind
Brandon, holding a cane
in his hand. Bruce comes
to destroy them today.

Scene Knowledge LeViLM (ZS):
Q

LeViLM (FT):
Q

LeViLM (FT):
Q + K /
Q + K + S

The cane in Tom’s hand
(Easy)

Brandon’s servant
(Hard)

Bruce’s enemy Brandon
(Hard)

The Spider-Man Bruce
(Medium)

Figure 5. The illustration of samples from the proposed SK-VG dataset, where a scene story and its four referring expressions are shown
with the grounding results from four baseline methods.

knowledge. Second, with the knowledge, the model is able
to perform more accurate reasoning, which can be observed
by comparing the reasoning errors (the results of U −H) of
Q and Q+K (or Q+K+S). This is because the knowledge can
alleviate the reasoning uncertainty when grounding the ob-
jects. The answer is that scene knowledge can not only assist
in detecting more objects but also reduce the uncertainty of
locating/reasoning the target objects.
Q6: What do the approaches still struggle to do? Before
answering this question, we can investigate the effects of the
area of objects. As shown in Table 2, it is not challenging for
LeViLM to detect small objects. By observing the difficulty-
level accuracy, we can obtain the message that LeViLM
is not capable of performing complicated (multi-hop) rea-
soning over the scene knowledge and producing accurate
predictions. Besides, the prediction process is black-box and
can not be explainable, which can be further studied in the
future. The answer is that (i) The current baselines can only
achieve strong results on easy or medium tasks and are un-
able to perform well on the hard task; (ii) The interpretability
of the baselines is poor.

4.5. Case Study

To further investigate the effects of knowledge, we per-
form qualitative analysis on four cases in the SK-VG dataset.
Figure 5 shows the grounding results of four baselines on
four referring expressions. It is observed that in the first
case, all the baselines can ground the “cane” in the image
even without the knowledge since there is only one cane
presented. In the second case, the finetuned LeViLM can
detect the target object even without knowledge, while it can
not detect the “Brandon’s servant” without knowledge in the
third case. In the last case, all the baselines can not ground
the referred object correctly, and the last three baselines all
treat the “Spider-Man” as the “enemy”. This shows that the
baseline models can not perform accurate reasoning in some

complicated cases, demonstrating the challenges.

5. Concluding Remarks
The visual grounding field has emerged as a prominent

attractive research direction, where the models are required
to reason over vision and language to ground the target ob-
jects. Yet, the language part of the existing VG benchmarks
is only simple description texts, which can not evaluate the
reasoning capability of the models comprehensively. To take
a step in this direction, we propose a new benchmark dataset
called SK-VG, which requires models to reason over the
(image, scene knowledge, query) triples to perform accu-
rate reasoning. We propose two approaches to perform this
new task: Knowledge-embedded Vision-Language Interac-
tion and Linguistic-enhanced Vision-Language Matching.
Experimental results confirm the validity of the proposed
approaches but also show that there is still substantial room
for improvement, e.g., reasoning and interpretability.
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