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Abstract

Recently, implicit function (IF)-based methods for
clothed human reconstruction using a single image have
received a lot of attention. Most existing methods rely on
a 3D embedding branch using volume such as the skinned
multi-person linear (SMPL) model, to compensate for the
lack of information in a single image. Beyond the SMPL,
which provides skinned parametric human 3D information,
in this paper, we propose a new IF-based method, DIFu,
that utilizes a projected depth prior containing textured
and non-parametric human 3D information. In particu-
lar, DIFu consists of a generator, an occupancy prediction
network, and a texture prediction network. The generator
takes an RGB image of the human front-side as input, and
hallucinates the human back-side image. After that, depth
maps for front/back images are estimated and projected into
3D volume space. Finally, the occupancy prediction net-
work extracts a pixel-aligned feature and a voxel-aligned
feature through a 2D encoder and a 3D encoder, respec-
tively, and estimates occupancy using these features. Note
that voxel-aligned features are obtained from the projected
depth maps, thus it can contain detailed 3D information
such as hair and cloths. Also, colors of each query point
are also estimated with the texture inference branch. The
effectiveness of DIFu is demonstrated by comparing to re-
cent IF-based models quantitatively and qualitatively.

1. Introduction
In order to implement virtual reality and an immersive

metaverse environment, a method of reconstructing a realis-
tic human avatar is an important technology. In particular, if
there are methods that can create a complete 3D model with
only a single view image without specialized devices such
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Figure 1. (a) Front/back color images. (b) Parametric model vol-
ume. (c) Depth maps. (d) Projected depth volume.

as 3D scanning, it will be highly useful in various fields
such as education, video conference, and entertainment.
Recently, there have been approaches to clothed human re-
construction using a single-view image based on the im-
plicit function (IF) [1,3,9,10,12,13,22,34,35,43,53]. While
IF-based methods have shown promising results thus far,
their performance is limited in unobservable parts. Also, IF-
based methods often produce over-smoothed results, partic-
ularly in intricate areas such as clothing and hair. Without
proper conditions for occluded parts, clothed human recon-
struction is still an open and highly ill-posed problem.

To overcome the aforementioned issue, there are sev-
eral attempts using parametric models [17, 23, 30, 44] to
provide geometric patterns of the human. Leveraging
these benefits, Zheng et al. [53] proposed the parametric
model-conditioned implicit representation (PaMIR). Using
the skinned multi-person linear (SMPL) voxel from pre-
trained GCMR [19], PaMIR extracts 3D geometric features
to overcome depth ambiguity. Also, Xiu et al. [43] pro-
posed a method using the signed distance from the skinned
model to the query points. Their approach helps approxi-
mate the distance from the skinned model to the target sur-
face. While the skinned model can provide global and pose
information to condition occluded parts, it may struggle to
estimate surface that is far from the skin, such as long hair
or skirts. As shown in Figure 1-(b), significant discrepan-
cies exist between the detailed surface shape of the skinned
model and the target model. Considering that the parametric
model-based methods are trained by losses on the sampled
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query points, the over-smoothing becomes more severe.
Therefore, in this paper, we propose a new IF-based

method using projected depth maps. Specifically, our
method uses a generator to make a back-side color image
and front-/back-side depth maps from a front input image.
Then, we project the depth maps into 3D volume space as
shown in Figure 1-(d). All information, including RGB im-
ages, depth maps and projected depths are passed into the
occupancy prediction network to predict the occupancy of
each query point. The voxel-aligned features extracted from
the 3D encoder in the occupancy prediction network are
derived from projected depth maps rather than the SMPL
model. As a result, they are more effective at conveying 3D
information about the detailed surfaces of the target. To ob-
tain the final 3D mesh, the marching cubes algorithm [24] is
applied to these occupancies. Similar to the occupancy pre-
diction network, we can estimate the colors of each query
point via the texture inference network.

2. Related Works
2.1. Priors Knowledge for Novel Views

Generating prior knowledge for novel views, such as sil-
houettes [28], textures [20], and depths [37], can help over-
come the lack of observations. Moreover, we further extend
it by providing explicit guidance to the model through a pro-
jection method. Our experiments show the effectiveness of
explicitly empowered implicit functions in clothed human
reconstruction.

2.2. Statistical Mesh Reconstruction

Unlike implicit representations, parametric approaches
based on statistical templates [17, 23, 30, 44] reconstruct
skinned human 3D shapes and poses by regressing prede-
fined parameters, as introduced in [5, 7, 18, 19, 32, 38–40,
45, 50]. Although parametric models are relatively fast and
multi-human inferences are readily available, the skinned
models do not take information such as hair and garments
into account. Therefore, there is a gap between the skinned
3D model and the real 3D model.

2.3. Implicit Function-Based Reconstruction

Implicit representations [4, 21, 26, 29, 31, 46] were pro-
posed for 3D reconstruction that can learn continuous spa-
tial representation while having less complexity compared
to voxel or point cloud-based methods. For human 3D re-
construction, the IF-based methods have successfully re-
constructed a clothed human, as in [1, 9, 13, 34]. However,
under a single image input setting, IF-based approaches suf-
fer from depth ambiguity, occlusion, and over-smoothing.
Therefore, there were several attempts to solve these prob-
lems using the parametric model [10, 53], surface nor-
mals [22, 35, 43], and additional modules [3]. Zheng et

al. [53] proposed a method that utilizes the SMPL model
to extract 3D voxel features. When provided with a sin-
gle input image, the parametric model can serve as a ro-
bust indicator to infer the shape of a human, given its global
shapes and poses. However, the parametric model has only
3D skinned human information, thus it has a disadvantage
in detailed target surface inference. To mitigate this draw-
back, Xiu et al. [43] devised a branch that estimates the
clothed surface normal from the skinned one. For each
query point, the corresponding normal vector is used di-
rectly as one of the features. Further from those techniques,
we propose a depth-guided implicit function (DIFu) method
based on the projected depth prior. To this end, we project
estimated depth maps into 3D volume space, then extract
3D features using the 3D encoder. Since the 3D encoder is
based on 3D convolutional neural networks exploiting in-
ductive bias [2, 48, 51], 3D features in DIFu convey useful
information in the local region more than features of the
clothed normal vector. As far as we know, DIFu is the first
to successfully apply the depth projection for the IF-based
clothed human reconstruction.

3. Method
In this section, we review a baseline method for clothed

human reconstruction using an IF. Then, we describe the
pipeline of the DIFu, including the generator, depth projec-
tion, and occupancy/texture prediction networks. Lastly, the
training mechanisms are explained.

3.1. Baseline

For a continuous 3D query point x ∈ R3, an implicit
function f estimates a probability p of occupancy under
condition c as:

p = f(x, c), p ∈ [0, 1]. (1)

In PIFu [34], the IF for human reconstruction is defined as:

p = f(X(Fi, π(x)), z(x)), (2)

where Fi denotes the feature map from a 2D encoder, π(x)
the 2D projection of x on the Fi, z(x) the depth value of
x in the weak-perspective camera space, and X the bilinear
sampling interpolation to sample Fi at π(x). Furthermore,
Zheng et al. [53] add a 3D branch to condition the f instead
of z(x) as:

p = f(X(Fi, π(x)), X(Fv, x)), (3)

where Fv means volume feature map encoded by a 3D
encoder using SMPL volume VO. To extract Fv from a
single view RGB input, PaMIR [53] utilizes pre-trained
GCMR [19]. In DIFu, we adopt the architecture of PaMIR
as our baseline for the IF but VO is substituted with the pro-
jected depth to obtain 3D voxel-aligned features. Compared
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Figure 2. An Overview of our method. (a) First, the hallucinator generates a back-side image IB using IF . The depth estimator receives
IF and IB and estimates a front depth map DF and a back depth map DB simultaneously. (b) With IF , IB , DF , and DB , the 2D encoder
extracts a feature map to be transformed into the pixel-aligned feature. Meanwhile, DF and DB are projected to form a depth volume V .
A 3D feature map is extracted by the 3D encoder from V , and aligned to the voxel-aligned feature. Both aligned features are concatenated
in the channel axis and used by MLPs to estimate the final occupancy vector for given query points.

Figure 3. (a) The architecture of our hallucinator. (b) The structure
of the residual block in (a). γ and δ are learnable parameters.

to VO, the projected depth provides detailed information
about the surface. Therefore, we discuss how to estimate
depth maps, and to create a 3D volume by projecting them
into 3D space in Section 3.2 and Section 3.3.

3.2. Generator

Our generator consists of a hallucinator and a depth es-
timator. As shown in Figure 2-(a), the goal of the generator
is to make a back-side image as well as depth maps for both
sides. Then, the outputs of the generator are used as inputs
to the following networks as shown in Figure 2-(b).

Hallucinator. Inspired by previous studies that show ef-
fects of the hallucination on human reconstruction [22, 35,
43], we design a hallucinator fH that generates a back-side

image IB using a front-side image IF as the follows:

IB = fH(IF ). (4)

As shown in Figure 3-(a), fH is based on U-Net [33]. Un-
like pix2pix [15], we use GELU [11] instead of ReLU [27]
for the faster learning and stochastic representation as il-
lustrated in Figure 3-(b). Also, we adopt group normaliza-
tions [42] rather than batch normalizations [14] for robust
synthesis.
Depth Estimator. The proposed depth estimator consists
of an SMPL voxel encoder, an U-Net estimator, and a scale
regressor. The SMPL voxel encoder fS takes the estimated
SMPL volume VO and produces SMPL voxel features as:

Fs = fS(VO), (5)

where fS is composed of 2D depthwise convolutional lay-
ers [6]. In other words, 2D convolution is applied to each
depth layer of the 3D volume. Meanwhile, the U-Net con-
sists of an encoder fDenc and a decoder fDdec

. The fDenc

takes IF and IB as input and extracts features as follows:

Fd = fDenc
(IF , IB). (6)

Then, fDdec
takes Fd and Fs for the depth prediction as:

D̄F , D̄B = fDdec
(Fd, Fs), (7)

where D̄F and D̄B are depths of the front and back hu-
man images, respectively. Since predicted depth maps suf-
fer from scale ambiguity, we design a scale regressor fλ as:

λ = fλ(F
4
d , F

fin
s ), (8)
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Figure 4. An illustration of our depth estimator. Our depth esti-
mator consists of an U-Net fD , a voxel encoder fS , and a scale
regressor fλ.

where λ is the scale factor, while F 4
d and F fin

s refer to the
intermediate feature of the fourth layer in fDenc

and the fea-
ture from the last layer in fS , respectively. With λ, the scale
of D̄F and D̄B are compensated as:

DF = λD̄F , DB = λD̄B . (9)

The illustration of the depth estimator is in Figure 4 and the
effect of λ is shown in the supplementary materials.

3.3. Depth Projection

The estimated DF and DB need to be projected into a
3D space before being passed to the 3D encoder of the oc-
cupancy prediction network. Let us denote V F and V B as
3D volumes constructed by DF and DB . Note that DF and
DB range from 0 to 1. The height, width, and depth of V F

and V B are H , W , and R, respectively. Based on DF and
DB , we can make V F and V B as follows:

V F
i,j,k =

{
1 if k = R(DF (i, j) + ψF ),

0 otherwise,
(10)

V B
i,j,k =

{
1 if k = R(1− (DB(i, j) + ψB)),

0 otherwise,
(11)

where ψF and ψB are offsets for the projections of DF and
DB , respectively. As shown in Figure 5-(a), V F and V B

are properly gathered in the 3D space by using these offset
values. Specifically, ψF and ψB are computed as:

ψF = ψG − ψF
C , ψ

B = ψG − ψB
C , (12)

where ψG is a global offset to put query points into the cen-
ter of 3D volumes while ψF

C and ψB
C are compensation off-

sets for front and back volumes, respectively. The values of
ψG, ψF

C , and ψB
C are computed as follows. Let DF

max and
DB

max be the maximum depth values of DF and DB . Then,
we can obtain ψG as follows:

ψG =
1

2
(1−max (DF

max, D
B
max)). (13)

Figure 5. Side view descriptions of depth map projection. (a)
Visualization of the projection with offsets. (b) Operation of λ̂ at
the rendering stage.

Since ψG is computed based on the higher maximum value
of either front or back depth maps, the depth map with lower
maximum values requires an compensation offset as:

ψF
C =

{
ψN if DF

max ≥ DB
max,

1
2 |D

F
max −DB

max| otherwise,
(14)

ψB
C =

{
ψN if DF

max < DB
max,

1
2 |D

F
max −DB

max| otherwise,
(15)

where ψN is the random noise offset for data augmenta-
tion during the depth projection process. Note that ψN is
changed randomly in the training stage, and fixed to zero in
the test stage. Finally, based on (10) and (11), the volume
of projected depth using DF and DB can be computed as:

V = V F ∪ V B , (16)

where ∪ is a union operator.

3.4. Occupancy Prediction Network

As shown in Figure 2, the occupancy prediction network
consists of a 2D encoder, a 3D encoder, and MLPs. The
2D encoder f2d takes IF , IB , DF , and DB as inputs and
produces 2D feature maps as follows:

F2d = f2d(I
F , IB , DF , DB). (17)

The 3D encoder f3d utilizes the projected depth volume
in (16) and extracts 3D feature maps as:

F3d = f3d(V ). (18)

After that, F2d and F3d are passed into the geometry pre-
dictor fG based on MLP layers to estimate the occupancy
of each 3D query point as follows:

p = fG(X(F2d, π(x)), X(F3d, x)). (19)

Note that (19) is the same with (3) except for the input fea-
tures of the implicit function. Using the marching cubes al-
gorithm [24], the output occupancy p is converted to mesh.
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3.5. Texture Prediction Network

Similar to previous IF-based methods such as
PaMIR [53], the proposed DIFu can also predict tex-
tures using an additional texture branch. With F2d in (17),
the texture inference branch is defined as follows:

Fa2d = X(F2d, π(x))⊕X(Fc2d, π(x)), (20)
fC(Fa2d, X(Fc3d, x)) → (C(p)t, α, β), (21)

where ⊕ is a concatenation operation, and Fc2d and Fc3d are
2D and 3D features from the texture branch, respectively.
Note that Fc3d can be extracted by projecting color images
pixel-wisely using depth maps. In addition, Ct is a pre-
dicted color value for the query point and α and β are two
weight balancing factors. Since there are an input front and
hallucinated back RGB images, we can obtain color values
from inputs for the query point x as:

C(p)β = βX(IF , π(x)) + (1− β)X(IB , π(x)) (22)

Then, we compute the final color value as follows:

C(p) = αC(p)β + (1− α)C(p)t. (23)

That is, our texture prediction network utilizes IF and IB as
well asCt, to make a finer estimate of color values. Detailed
architectures are described in the supplementary materials.

3.6. Training Mechanisms

GT Data Preparation. GT occupancy label p̂ is sampled
from the GT scan, and utilized for supervising the occu-
pancy prediction. Then, we render pairs of the front/back
RGB images and the front/back depth maps from the GT
scans and GT texture maps. Note that the front RGB image
IF is used as the input for our network while the back RGB
image ÎB is utilized as a GT for the hallucinator. Also,
the rendered front/back depth maps are used for training the
depth estimator. Because of scale ambiguity of the depth
maps, we compensate them as follows. First, the range of
depth values are normalized from 0 to 1. Then, we multiply
a scale factor λ̂ to obtain the GT depth maps D̂F and D̂B .
The λ̂ is the ratio of depth to height for each scan as:

λ̂ =
Zmax

Ymax
, (24)

where Zmax and Ymax are the human z-axis thickness and
y-axis height, respectively, computed using a 3D clothed
human scan as shown in Figure 5-(b). Typically, Zmax

is smaller than Ymax, making λ̂ ≤ 1. The final rendered
depth maps include adjusted values that match the height-
to-thickness ratio of the GT human scan.
Loss for the Hallucinator. For training the hallucinator, we
utilize smoothed ℓ1 loss [8] and perceptual loss [16] as:

L1 =

{
E[0.5(ÎB − IB)2] if |ÎB − IB | < 1,

E[|ÎB − IB | − 0.5] otherwise,
(25)

Lp = E[
n∑

j=1

|ϕj(ÎB)− ϕj(I
B)|], (26)

where ÎB and IB denote the GT and hallucinated back-side
images, respectively. Also, ϕj(·) the activations of the jth
layer of pre-trained VGG-19 [36]. For the generalization
of unseen data, we also use the adversarial loss from LS-
GAN [25] with a patch discriminator fPD as follows:

min
fPD

Ladv(fPD) =
1

2
E[(fPD(ÎB)− b)2]

+
1

2
E[(fPD(fH(IF ))− a)2],

(27)

min
fH

Ladv(fH) =
1

2
E[(fPD(fH(IF ))− c)2], (28)

where a and b are the labels for fake and real data, and c
is the value that fH wants fPD to believe for fake data, re-
spectively. Through experiments, we find that it is better to
use the hallucinator trained without adversarial loss when
the occupancy prediction network is trained. In contrast,
the hallucinator trained with adversarial loss achieves better
performance during the inference stage. Relevant discus-
sion is covered in detail in Section 4.3.
Loss for the Depth Estimator. To supervise our depth es-
timator, we adopt the depth regression loss as follows:

Lreg = E[(logD̂ − logD)], (29)

where D̂ = {D̂F , D̂B} and D = {DF , DB}. Note that D̂
and D are the GT and predicted depths, respectively. fλ is
also trained with regression loss as follows:

Lscale = E[(λ̂− λ)2]. (30)

Therefore, total loss for Ldepth is defined as follows:

Ldepth = Lreg + ηLscale, (31)

where η is a weight which is set to 50 in our experiment.
Training Occupancy Prediction Network. To train occu-
pancy prediction, we sample n 3D points and compare the
output in (19) to GT via the mean squared error as follows:

Locc =
1

n

n∑
i=1

((p̂i − pi)
2). (32)

In addition, as mentioned in Section 3.3, we make ψN to be
a random number between −ψC and ψC during the train-
ing stage. With this augmentation, f3d in (18) adaptively
encodes V even the depths are somewhat inaccurate. ψN is
clipped by R/v, where v is set to 15 in our experiment.
Training Texture Prediction Network. For the texture
prediction network, we adopt schemes of PaMIR [53] as:

Lclr =
1

n

n∑
i=1

(|Ĉ(pi)−C(pi)|+ |Ĉ(pi)−C(pi)t|), (33)
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Figure 6. Qualitative Results for unseen data. (a) RGB inputs. (b) Ground-truth mesh. (c) PIFu. (d) PaMIR. (e) ICON. (f) Ours.

THuman2.0 BUFF

Models P2S ↓ Chamfer ↓ Normal ↓ MSE ↓ LPIPS ↓ P2S ↓ Chamfer ↓ Normal ↓ MSE ↓ LPIPS ↓

PIFu [34] 4.629 4.220 0.164 0.102 0.145 5.349 4.642 0.186 0.077 0.162
PaMIR [53] 4.071 4.080 0.150 0.098 0.141 5.010 4.620 0.165 0.038 0.156
ICON [43] 4.595 4.537 0.170 0.102 0.156 3.621 3.634 0.151 0.035 0.149

Ours 2.992 2.952 0.119 0.082 0.124 3.375 3.318 0.138 0.035 0.138

Table 1. Quantitative result of unseen datasets from THuman2.0 and BUFF. The unit of 3D distance is cm. bold: best.

where Ĉ(pi) is the GT color value while C(p)t and C(p)
are the predictions of the texture network and the final color
value, respectively. To exploit colors from both IF and IB

as much as possible, an alpha loss Lα is included as follows:

Lα = −E[log(α)]. (34)

The total loss of the texture network is defined as:

Ltex = Lclr + Lα. (35)

4. Experiments
4.1. Implementation Details

We evaluate DIFu with state-of-the-art methods:
PIFu [34], PaMIR [53], and ICON [43]. For fair compar-
isons, we reproduce all methods under the same implemen-
tal environment. We adopt the THuman2.0 [47] dataset that
includes 526 high-quality 3D clothed human scans and GT
SMPL [23] parameters. We use 495 scans for training and
the rest for evaluation. To verify the generality of DIFu,

we perform further experiments on 143 human scans of
the BUFF [49] dataset. All 3D scans are rendered by the
OpenGL script at every degree. Also, front images for eval-
uation are rendered from yaw angles of [0, 90, 180, 270]
degrees. For all models requiring SMPL, we utilize pre-
trained GCMR [19] to predict the parameters.

4.2. Evaluation

As evaluation metrics for the reconstructed 3D mesh, we
utilize point-to-surface (P2S) distance, Chamfer distance,
and re-projection errors with GT mesh. In addition, we use
mean squared error (MSE) and LPIPS [52] to check the per-
formance of the texture inference. Since there is no texture
branch in ICON, we implement it based on those of PaMIR.

As reported in Table 1, DIFu consistently outperforms
other existing methods with large margins in THuman2.0.
Even in the BUFF dataset, the performance gap with other
models is relatively small, but DIFu still achieves the best
performance. In addition, as shown in Figure 6, our model
produces more plausible results. In particular, the shape of
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THuman2.0 BUFF

Training Inference P2S ↓ Chamfer ↓ Normal ↓ MSE ↓ LPIPS ↓ P2S ↓ Chamfer ↓ Normal ↓ MSE ↓ LPIPS ↓

w/o Ladv w/o Ladv 3.331 3.282 0.129 0.087 0.129 3.465 3.399 0.137 0.034 0.138
w/o Ladv w Ladv 2.992 2.952 0.119 0.082 0.124 3.374 3.318 0.138 0.035 0.138
w Ladv w/o Ladv 3.484 3.479 0.134 0.090 0.130 3.525 3.540 0.139 0.037 0.139
w Ladv w Ladv 3.118 3.107 0.124 0.087 0.125 3.500 3.507 0.143 0.038 0.140

Table 2. An ablation result of Ladv and data augmentation. The unit of 3D distance is cm. bold: best.

Figure 7. Qualitative results for in-the-wild images. (a) Inputs. (b) PIFu. (c) PaMIR. (d) ICON. (e) Ours.

unobservable parts is generated plausibly. We guess that
this is due to the effect of the hallucinator that creates the
back-side image. Moreover, we test DIFu with images from
the internet. As shown in Figure 7, our method preserves
information well that is far from the skin such as hair and
clothes. Also, the shape and color of the back-side look
most realistic, and robust to geometric damage. Additional
inference results are in the supplementary materials.

4.3. Ablation Studies

Hallucinator for Training. In terms of the performance
of DIFu, we test the effect of Ladv on fH . When Ladv is ap-
plied, we also utilize data augmentation for further general-
ization. Specifically, we use flip, gamma correction, bright-
ness adjustment, and rotation up to 45 degrees. As reported
in Table 2, DIFu performs best when we use fH trained
without Ladv in the training phase and adopt fH trained
with Ladv in the test phase. We guess that there are many
unseen samples in the test stage, thus training fH withLadv ,
which is advantageous for generalization, has better perfor-

mance. Conversely, in the training phase, fH trained with
Ladv seems to confuse the prediction networks resulting in
over-smoothing.
Hallucinator Comparisons. To validate the effectiveness
of the proposed hallucinator in Section 3.2, we conduct ex-
periments using pix2pix [15] and pix2pixHD [41] as the
hallucinator. Note that the pix2pixHD is a promising model
that is employed in PIFuHD [35] and ICON [43] to trans-
late front/back surface normals from a front image. As re-
ported in Table 3, our architecture consistently shows bet-
ter quantitative performance than others. In addition, our
hallucinator trained with Ladv generates plausible halluci-
nations as shown in Figure 8-(g). Comparing Figure 8-
(f) and Figure 8-(g), applying data augmentation achieves
better performance on unseen data. Inspired by [43], we
test a hallucinator additionally receiving front/back normal
maps. However, it does not show particularly good quali-
tative results as shown in Figure 8-(h) and thus is not our
final model. Note that the pix2pixHD in the experiment has
180M parameters while ours has only 55M.
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Figure 8. Hallucinator comparisons for unseen data. (a) Front side RGB inputs. (b) Back side ground truth images. (c) Pix2Pix†. (d)
Pix2PixHD†. (e) Ours w/o Ladv . (f) Ours. (g) Ours†. (h) Ours w SMPL F/B normal†. † denotes the data augmentation is applied.

Metrics L1 (↓) LPIPS (↓) SSIM (↑)

Models THuman2.0

pix2pix† 0.0157 0.0663 0.9175
pix2pixHD† 0.0156 0.0615 0.9272

Ours w/o Ladv 0.0117 0.0609 0.9410
Ours 0.0127 0.0627 0.9252
Ours† 0.0128 0.0588 0.9295

Ours w SMPL F/B Normal† 0.0132 0.0613 0.9283

Models BUFF

pix2pix† 0.0123 0.0621 0.9376
pix2pixHD† 0.0119 0.0604 0.9421

Ours w/o Ladv 0.0101 0.0590 0.9512
Ours 0.0115 0.0616 0.9369
Ours† 0.0108 0.0568 0.9448

Ours w SMPL F/B Normal† 0.0106 0.0567 0.9448

Table 3. Comparisons for the hallucinator on THuman2.0 and
BUFF. For pix2pix and pix2pixHD, Ladv is applied. † denotes
the augmentation is applied. bold: best. underline: second best.

Metrics P2S Chamfer Normal MSE LPIPS

w/o fS 3.214 3.146 0.124 0.084 0.126
Ours 2.992 2.952 0.119 0.082 0.124

Table 4. A comparison with/without SMPL voxel embedding of
fS . The unit of 3D distance is cm. bold: best.

Depthwise Embedding. To check the effects of fS , we per-
form ablation studies depending on whether fS is included.

As reported in Table 4, fS helps generalize the depth esti-
mator for unseen data.

5. Conclusion
In this paper, we have proposed a DIFu for clothed hu-

man 3D reconstruction, which consists of a generator, an
occupancy prediction network, and a texture inference net-
work. Specifically, the generator network is composed of
the hallucinator and the depth estimator. The hallucina-
tor takes a front-side RGB image as an input, then creates
a back-side RGB image, and the depth estimator predicts
depth maps for both front-/back-side images. Then, pre-
dicted depth maps are projected into 3D volume space and
passed to the occupancy prediction network for estimating
the occupancy of each query point. In addition, the texture
inference network can estimate the color. Finally, with the
occupancy values for all query points, we can generate 3D
human mesh through the marching cubes algorithm.
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