
Efficient Hierarchical Entropy Model for Learned Point Cloud Compression

Rui Song1, Chunyang Fu1, Shan Liu2, Ge Li1*

School of Electronic and Computer Engineering, Shenzhen Graduate Scool, Peking University1

Tencent America2

rsong@stu.pku.edu.cn, fuchy@stu.pku.edu.cn, shanl@tencent.com, geli@ece.pku.edu.cn

Abstract

Learning an accurate entropy model is a fundamental
way to remove the redundancy in point cloud compression.
Recently, the octree-based auto-regressive entropy model
which adopts the self-attention mechanism to explore de-
pendencies in a large-scale context is proved to be promis-
ing. However, heavy global attention computations and
auto-regressive contexts are inefficient for practical appli-
cations. To improve the efficiency of the attention model,
we propose a hierarchical attention structure that has a lin-
ear complexity to the context scale and maintains the global
receptive field. Furthermore, we present a grouped context
structure to address the serial decoding issue caused by the
auto-regression while preserving the compression perfor-
mance. Experiments demonstrate that the proposed entropy
model achieves superior rate-distortion performance and
significant decoding latency reduction compared with the
state-of-the-art large-scale auto-regressive entropy model.

1. Introduction

Point cloud is a fundamental data structure to represent
3D scenes. It has been widely applied in 3D vision systems
such as autonomous driving and immersive applications.
The large-scale point cloud typically contains millions of
points [36]. It is challenging to store and transmit such
massive data. Hence, efficient point cloud compression that
reduces memory footprints and transmission bandwidth is
necessary to develop practical point cloud applications.

Recently, deep learning methods have promoted the de-
velopment of point cloud compression [4, 9, 10, 16, 31, 36,
40,43]. It is a common pipeline to learn an octree-based en-
tropy model to estimate octree node symbol (i.e., occupancy
symbol) distributions. The point cloud is first organized as
an octree, and occupancy symbols are then encoded into
the bitstream losslessly by an entropy coder (e.g., arithmetic

*Corresponding author.

0.1  1    10   100  1000 

Decoding Latency (s)

-10

-5

0

5

10

15

20

25

30

35

40

45

B
itr

at
e 

R
ed

uc
tio

n 
ov

er
 G

-P
C

C
 (%

)

EHEM

Light EHEM

OctAttention

SparsePCGC

OctSqueeze

G-PCC

Figure 1. Bitrate and decoding speed in the log scale for lossless
compression on 16-bit quantized SemanticKITTI. The proposed
method EHEM yields state-of-the-art performance with a compa-
rable decoding latency to the efficient traditional method G-PCC.

coder [47]). An accurate entropy model is required since it
reduces the cross entropy between the estimated distribution
and ground truth, which is corresponding to actual bitrates.
Various attempts have been made to improve the accuracy
by designing different context structures [4,10,16,37]. The
key of these advances is to increase the context capacity and
introduce references from high-resolution octree represen-
tations. For example, the context in OctAttention [10] in-
cludes hundreds of previously decoded siblings (i.e., nodes
at the same octree level). The large-scale context incorpo-
rates more references for the entropy coder, and the high-
resolution context preserves detailed features of the point
cloud. Both of them contribute to building informative con-
texts and effective entropy models.

However, large-scale context requires heavy computa-
tions to model dependencies among numerous references.
The previous work [10] uses the global self-attention mech-
anism to model long-range dependencies within the con-
text, and its complexity is quadratic to the length of the

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14368



large-scale context. Furthermore, considering the efficiency
issue, it is infeasible to build a deeper entropy model or
extend the context scale to enhance the modeling capabil-
ity based on global attention. Another concern is the serial
decoding process caused by the inclusion of previously de-
coded siblings. This auto-regressive context structure incurs
a practically unacceptable decoding latency (e.g., around
700 seconds per frame).

To address these issues, we build an entropy model
with an efficient hierarchical attention model and a parallel-
friendly grouped context structure. The hierarchical atten-
tion model partitions the context into local windows and
computes attention within these windows independently.
Therefore, the complexity is linear to the context scale,
which allows the further extension of network depth and
context capacity to improve performance. Since the recep-
tive field of the localized attention is limited, we adopt a
multi-scale network structure to query features across dif-
ferent windows. The context is progressively downsam-
pled by merging neighboring nodes to generate a new to-
ken. Then, cross-window dependencies can be captured by
incorporating these new tokens in the same window. The
grouped context divides the occupancy symbol sequence
into two groups. Each group is conditioned on ancestral
features and previously decoded groups, and hence nodes
in the same group can be coded in parallel. Furthermore, in
contrast to the previous auto-regressive context that only ex-
ploits causal parts of the ancestral context [10], the grouped
context allows to make use of a complete ancestral context.

The proposed efficient hierarchical entropy model called
EHEM is evaluated on SemanticKITTI [3] and Ford [32]
benchmarks. It surpasses state-of-the-art methods in terms
of both compression performance and efficiency. Contribu-
tions of this work can be summarized from the following
perspectives:

• We propose a hierarchical attention model, which
yields improved compression performance by extend-
ing model and context while keeping the efficiency.

• We design a grouped context structure that enables par-
allel decoding. It adapts the entropy model using high-
resolution references to practical applications.

• The proposed method achieves state-of-the-art RD per-
formance with a practically applicable coding speed.

2. Related Work
2.1. Learned Point Cloud Compression

Point cloud compression is an active research area in
both industry and academia. Traditional point cloud com-
pression codecs are generally interpretable, robust, and ef-
ficient [11, 25, 39, 41]. However, neural codecs have shown
better rate-distortion performance recently.

Various data structures and models have been developed
to boost the rate-distortion performance for learned point
cloud compression. The pioneering works [15,17,36,44,48]
construct analysis and synthesis transforms to compress
point clouds to latent representations. These transforms are
learned on point sets with the PointNet backbone [33, 34]
or on the voxel structure using 3D convolution. However,
distortions are inevitable in these transforms. It is there-
fore difficult to preserve high-frequency information in la-
tent vectors. Hence, these structures are preferable to lossy
compression at low bitrates.

Learned entropy model is another effective pipeline to
reduce bitrates without introducing distortion. Since the in-
ference of the entropy model depends on the context, it is
important to build an informative context. A typical entropy
model predicts the binary occupancy status of the voxel
based on the context of several adjacent voxels [30, 31].
Similarly, entropy model can be established on the octree
by estimating occupancy symbol distributions. Early tree-
structured entropy models exploit references from ancestor
nodes [4,16,37]. Later works introduce adjacent voxels that
have the same resolution as the currently coded octree node
to provide high-resolution references [18]. A recent work
replaces neighboring voxels with decoded siblings to extend
the context [10], and it yields state-of-the-art performance.
However, its efficiency is limited by the expensive global
attention computation and auto-regressive processing.

2.2. Learned Image Compression

The typical learned image compression pipeline is based
on non-linear transforms and hyperprior-based entropy
models [1,2,5,19,21,26,27,35,49]. In addition, decoded la-
tent elements also can be introduced into the context to gen-
erate parameters for entropy coding, leading to improved
performance with an auto-regressive coding process [28].
To accelerate the coding, a few parallel solutions have been
developed [13, 14, 29]. The key of these modifications is
performing auto-regression at the level of groups instead of
pixels to parallelize coding within each group. For exam-
ple, the checkerboard context model divides latent elements
into two groups in the spatial domain [14]. A checkerboard
mask is employed to constrain that the inference of the sec-
ond group only refers to the decoded first group. Despite
the data structures of point clouds and images are differ-
ent, these strategies are instructive to solve the serial coding
problem in point cloud compression.

3. Preliminary
3.1. Octree Structure

The octree [24] provides a progressive representation of
the point cloud, where each level represents the point cloud
with a certain resolution. An octree recursively divides oc-

14369



cupied voxels into 8 equal-sized subvoxels until the required
resolution is reached. The occupancy symbol is composed
of 8 bits (1 to 255 in decimal), where each bit indicates
the occupancy status of the corresponding subvoxel. It is
an effective data structure to represent large regions, since
neighboring nodes in the breadth-first traversal order might
locate at distant locations.

The octree-based point cloud compression transmits an
octree to the receiver instead of point coordinates [38, 39].
The octree is represented by a breadth-first traversed occu-
pancy symbol sequence. An entropy coder is adopted to
encode these symbols into the bitstream losslessly. At the
receiver, an identical octree is reconstructed, which restores
the geometry structure of the original point cloud.

3.2. Large-scale Auto-regressive Entropy Model

The entropy coder encodes the occupancy symbol se-
quence x = {x1, . . . , xn} according to the distribution p̃(x)
estimated by a learned entropy model. The joint distribution
is factorized as the product of probability of each node:

p̃(x) =
∏
i

p̃i(xi | Ci), (1)

where Ci is the contextual information for predicting xi.
Here, nodes are considered to be conditionally independent.
Consumed bitrates are given by the cross entropy between
the estimated distribution p̃(x) and ground truth p(x), for-
mulated as Ex∼p [− log2 p̃(x)]. An accurate entropy model
that minimizes this entropy is helpful to reduce bitrates.

To formulate the context structure, we characterize each
octree node ni by features ui including its occupancy sym-
bol xi, level index, octant index, and parent bounding box
coordinates. The ancestral context collects features from
the currently coded node and its K ancestors as:

ai =
{
u∅
i ,uanc(i), . . . ,uanc(...anc(i))

}
, (2)

where u∅
i excludes xi from ui since it is unknown when

decoding xi. The ancestor-dependent methods [4, 16] pre-
dict the occupancy distribution p̃i(xi) based on the ancestral
context ai.

The large-scale auto-regressive entropy model [10] con-
structs an extensive context to incorporate more information
for inference. It combines the occupancy symbol of the pre-
vious sibling with the ancestral context as vi = {xi−1,ai}.
Besides, the context is extended by introducing features
from N − 1 previously decoded sibling nodes and their an-
cestors to build a context window with length N :

Ci = {vi−N+1, . . . ,vi} . (3)

Ci is then embedded to features Fi = {fi−N+1, . . . , fi},
and a self-attention module [42] is adopted to model de-
pendencies among N embedded features. A mask is em-
ployed to constrain that only causal contexts f<i are visible.

Finally, attention-weighted features f̃i are projected to the
distribution p̃i(xi), which is used for entropy coding.

Since the octree is coded in a breadth-first manner, an-
cestral contexts are completely known while coding any
node. Therefore, the ancestor-dependent entropy model can
decode multiple nodes at the same octree level in parallel.
In contrast, the auto-regressive context model is conditioned
on previously decoded siblings (e.g., xi−1). It hence re-
quires a serial decoding process. The global attention com-
putation among N elements in Fi also limits its efficiency.
However, large-scale contexts and sibling references are
still effective to improve performance. Therefore, we aim
to build an efficient entropy model while preserving these
advantages.

4. Efficient Hierarchical Entropy Model

4.1. Overall Architecture

The overview of the proposed entropy model is shown in
Fig. 2. It is composed of a grouped context structure and
a hierarchical attention model. The occupancy sequence
x is divided into a series of non-overlapped subsequences
xi = {xi−N+1, . . . , xi} with length N . Contextual infor-
mation for each subsequence is called a context window.
The grouped context equally partitions xi into two groups
xi1 and xi2 . The first group xi1 is only conditioned on the
ancestral context Ai = {ai−N+1, . . . ,ai}, where ai is de-
fined in Eq. (2). The second group xi2 is conditioned on
both siblings xi1 and ancestors Ai.

The hierarchical attention model computes dependencies
within local windows to improve the efficiency. The self-
attention model discovers dependencies among N ances-
tral features. The ancestral context Ai is partitioned into
N
L non-overlapped local windows with length L. Then we
regard parent coordinates in the same window as a point
cloud, and feed Ai to a DGCNN-based [46] feature extrac-
tor to generate C-dimensional geometry-aware features Fa

i

from local windows separately. Fa
i is then passed to suc-

cessive localized self-attention blocks. Weighted ancestral
features of the first group are projected to occupancy distri-
butions p̃(xi1) using a multi-layer perceptron (MLP). Then
xi1 is coded and we predict the second group xi2 . xi1 is
embedded to Fs

i1
and concatenated to its ancestral features

F̃a
i1

as Fi1 . Subsequently, we adopt a hierarchical cross-
attention model to introduce sibling-involved features Fi1

to ancestral features F̃a
i2

. Finally, an MLP produces distri-
butions p̃(xi2) based on sibling features F̃s

i2
and ancestral

features F̃a
i2

.

4.2. Grouped Context

The auto-regressive context model requires serial de-
coding since it depends on the previous sibling xi−1. To

14370



M
L

P

L
oc

al
iz

ed
S

el
f-

at
te

n
ti

on

4

3

2

1

Ancestral Feature Processing

3,4

1,2

c

c

Sibling Feature Processing

c

2

1

c

Arithmetic Decoder

4321

Ancestral Feature 
Processing

1 3

Sibling Feature 
Processing

2 4

Arithmetic Decoder

2 41 3

1 3
Decoder

Arithmetic Encoder

1 34321

Ancestral Feature 
Processing

1 3

Sibling Feature 
Processing

2 4

Encoder

M
L

P

4

2

3

1

M
L

P

4

3

2

1

M
L

P

3

1

4

2

3

1

3

4 G
eo

m
et

ri
c 

F
ea

tu
re

E
xt

ra
ct

or

Q

K, V

K, V

Q

L
oc

al
iz

ed
 

C
ro

ss
-a

tt
en

ti
on

N
od

e 
M

er
gi

n
g

3

4

2

1
H

ie
r.

 A
tt

en
ti

on
L

 ×
 L

3

4

2

1

L
oc

al
iz

ed
 

S
el

f-
at

te
n

ti
on

N
od

e 
M

er
gi

n
g

Self-attntion Block 1 Self-attention Block 2

Cross-attention Block 1 Cross-attention Block 2

K, V

Q L
oc

al
iz

ed
C

ro
ss

-a
tt

en
ti

on1,3

2,4

Figure 2. Left: The architecture of EHEM for context window length N = 4 and local window length L = 2. Red, blue, and yellow nodes
denote ancestral features, sibling-involved features, and estimated distributions, respectively. Attention is computed within local windows
(dashed boxes). Right: The encoding and decoding process following the grouped context structure. The occupancy sequence xi is split
into two disjoint groups and coded in turn.

...1 2 3 4

...

1

2

3

4

...

...

Figure 3. Illustration of auto-regressive (left) and grouped (right)
context structures.

address this issue, we decompose the occupancy subse-
quence into two groups and remove dependencies within
each group. As shown in Fig. 3, xi1 is first decoded based
on the ancestral context Ai, then it is introduced as sib-
ling priors to predict xi2 . Since the required contexts are
completely known before decoding each group, nodes in the
same group can be decoded in parallel. The auto-regressive
entropy model requires N sequential steps to decode the
subsequence xi, while the grouped context only takes 2
steps to decode two groups in turn.

The prediction of xi2 depends on xi1 , and hence it is im-
portant to design an effective decomposition pattern. We
visualize ancestral dependencies among the first 16 sib-
lings in the context window in Fig. 4b. Dependencies are
represented by normalized attention scores computed on
Fa

i , and results are averaged over all self-attention layers
from around 200 SemanticKITTI scans. Fig. 4b reveals
that closer neighbors have stronger dependencies, and de-
pendency activations at more distant locations are weak and
uniform. This distribution is consistent with both intuitions
and experiences in learned image compression [14]. We as-
sume that dependencies computed on ancestral and sibling-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(a) OctAttention [10]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(b) Ours

Figure 4. Visualization of dependencies discovered by different
methods. Deep colors indicate strong dependencies.

involved contexts have similar distributions. With this prop-
erty, we use a uniform decomposition pattern expressed as:{

xi1 = {x1, . . . , x2j−1, . . . , xi−1} ,Ci1 = {Ai} ,
xi2 = {x2, . . . , x2j , . . . , xi} , Ci2 = {Ai,xi1} .

(4)

It preserves two most important neighbors x2j−1 and x2j+1

for x2j and uniformly samples xi1 at more distant locations.
In addition, the grouped context separates ancestral and

sibling priors to utilize a complete ancestral context. For
the auto-regressive context in OctAttention, ancestral and
sibling features are concatenated when computing depen-
dencies (see Eq. (3)). To keep the causality, both ancestral
and sibling features from non-causal positions (i.e., f>i) are
discarded, as shown in Fig. 4a. However, these ancestral
features are actually available. As illustrated in Fig. 4b, fa>i

have similar dependency activations to fa<i. Therefore, they
are equivalently important to compute dependencies. The
grouped context structure accesses to more ancestral fea-
tures, which leads to better compression performance.

14371



MLP

1 2 43 65 7 8

MLP

Reverse Window ShiftingWindow Shifting

1 2 43 65 7 81 2 3 4 5 6 78

1 2 3 4 5 6 78

MSA MSA MSA MSA MSA MSA MSAMSA

Figure 5. Illustration of two successive localized attention layers
for the case of N = 8 and L = 2. MSA represents the multi-head
self-attention.

From the perspective of context modeling, this grouped
context can be interpreted as the space-channel context in
image compression [13]. As shown in Eq. (3), N nodes
constitute the spatial domain, and each spatial position has
K + 1 channels, consisting of K ancestors and 1 sibling.
The grouped context partitions on both channel and spatial
dimensions. Available contexts for each element are de-
coded channels (ancestors) from all spatial positions, and
elements in the same channel (siblings) at decoded spatial
positions. Therefore, it is feasible to use similar context
structures for point cloud and image compression, and both
domains might benefit from advances of each other.

4.3. Hierarchical Attention

To reduce the complexity, we discover dependencies
within local windows and model long-range dependencies
with a multi-scale network structure. It is inspired by vi-
sion transformers designed for 2D images [8, 22, 23, 45].
Since the localized attention can not exploit long-range de-
pendencies in the large-scale context, we gradually down-
sample the context to represent numerous nodes with L to-
kens. The downsampling is implemented by a node merging
operation. Two neighboring nodes are merged by concate-
nating their features on the channel dimension. Then, 2C-
dimensional concatenated features are passed to an MLP to
shrink the channel dimension to C. In this way, features
from distant nodes can be computed in the same window
and the receptive field is increased. Furthermore, depen-
dencies are estimated at different scales, and closer neigh-
bors are computed with fine-grained representations. It is
reasonable since closer neighbors are more informative. In
contrast, distant nodes can be coarsely characterized. We
further introduce the shifted window strategy [23] to cap-
ture dependencies across neighboring local windows. De-
pendencies are computed with a window partition alternat-
ing between two patterns, as shown in Fig. 5.

A self-attention block is composed of various localized
attention layers and one node merging module (except for
the last block). The hierarchical attention model is a stack
of log2

N
L +1 blocks to capture all N nodes in the last block.

The number of blocks can be further reduced by aggregat-
ing more than two nodes in a single node merging module.
We produce a hierarchical representation F̃a

i by aggregating
features and dependencies from different scales. Therefore,
we refer to this model as a hierarchical attention model.

By performing attention operations within local win-
dows, the hierarchical attention model reduces the complex-
ity from quadratic to linear scale. Complexities of attention
computations in global and localized self-attention are:

Ω(Global) = 2N2C, Ω(Localized) = 2LNC. (5)

It allows us to build a much deeper entropy model with rea-
sonable computational costs to enhance the modeling capa-
bility, or substantially expand the context scale to introduce
more potentially useful references.

The hierarchical cross-attention follows a similar local-
ized attention practice. Since the decomposition pattern is
uniform, each local window includes L

2 nodes from xi1

and another L
2 nodes from xi2 . They are regarded as key

and query features, respectively. We compute dependen-
cies among keys and queries within each local window, and
weight keys according to their dependencies to queries. To
extend the receptive field, neighboring keys (and queries)
are progressively merged into new key (and query) tokens.
Finally, features from different scales are concatenated,
which are then exploited to predict xi2 with ancestral fea-
tures F̃a

i2
jointly.

4.4. Learning

The optimization objective of the octree-based entropy
model is to minimize the total bitrates for communicating
octree nodes. The bitrate is given by the cross entropy be-
tween the estimated distribution p̃(x) and the ground truth
p(x) at each node:

ℓ = −
∑
i

log p̃i(xi | Ci), (6)

where p̃i(xi | Ci) is the distribution estimated by the pro-
posed entropy model based on the context Ci.

5. Experiments
5.1. Experimental Settings

Datasets Experiments are conducted on two large-scale
point cloud datasets SemanticKITTI [3] and Ford [32]. Se-
manticKITTI is composed of 43552 LiDAR scans acquired
from autonomous driving scenes, which are divided into 22
sequences. We follow the default split to perform training
on sequences 00 to 10 and evaluation on sequences 11 to 21.
Ford is another LiDAR point cloud dataset used in MPEG
point cloud compression standardization. It includes 3 se-
quences, each consists of 1500 scans. On the Ford dataset,

14372



0 2 4 6 8 10 12

Bits Per Point

60

65

70

75

80

85

90

D
1 

PS
N

R
 (d

B
)

Bitrate vs. D1 PSNR (KITTI)

EHEM
Light EHEM
SparsePCGC
OctAttention
G-PCC

0 2 4 6 8 10 12

Bits Per Point

65

70

75

80

85

90

95

D
2 

PS
N

R
 (d

B
)

Bitrate vs. D2 PSNR (KITTI)

EHEM
Light EHEM
SparsePCGC
OctAttention
G-PCC

0 2 4 6 8 10 12

Bits Per Point

0

10

20

30

40

50

60

70

80

90

100

C
ha

m
fe

r D
is

ta
nc

e 
(m

m
)

Bitrate vs. CD (KITTI)
EHEM
Light EHEM
SparsePCGC
OctAttention
G-PCC

0 5 10 15 20 25

Bits Per Point

55

60

65

70

75

80

85

90

95

100

D
1 

PS
N

R
 (d

B
)

Bitrate vs. D1 PSNR (Ford)

Lossless Quality

EHEM
Light EHEM
OctAttention
SparsePCGC
G-PCC

0 5 10 15 20 25

Bits Per Point

60

65

70

75

80

85

90

95

100

105
D

2 
PS

N
R

 (d
B

)
Bitrate vs. D2 PSNR (Ford)

Lossless Quality

EHEM
Light EHEM
OctAttention
SparsePCGC
G-PCC

0 5 10 15 20 25

Bits Per Point

0

10

20

30

40

50

60

C
ha

m
fe

r D
is

ta
nc

e 
(m

m
)

Bitrate vs. CD (Ford)
EHEM
Light EHEM
OctAttention
SparsePCGC
G-PCC

Figure 6. Rate-distortion performance of different methods on SemanticKITTI (top) and Ford (bottom).

we follow the suggested dataset partition in MPEG stan-
dardization [7], where sequence 01 is used for training and
sequences 02 and 03 are used for evaluation.

Baselines To verify the effectiveness of the proposed
model, we compare it with the state-of-the-art octree-based
learned entropy model OctAttention [10] and the compet-
itive voxel-based learned method SparsePCGC [43]. We
also provide comparisons with the representative hand-
crafted compression method MPEG G-PCC [12].

Implementation settings Quantization is necessary to con-
struct octrees from point clouds. For SemanticKITTI, we
follow the quantization settings in OctSqueeze [16], where
the quantization step is set to 400

2D−1
to build an octree with

the depth of D. Octrees are truncated with a maximum
depth of 16 for training and evaluation. We set the quantiza-
tion step to 218−D and construct octrees with the maximum
depth of 18 on Ford. Since the original Ford dataset has
been quantized with 18-bit precision, compression is loss-
less at the highest octree level.

The hierarchical self-attention model has 5 blocks in-
cluding 4, 4, 4, 4, 2 layers, respectively. The hierarchical
cross-attention model consists of 4 blocks with 2, 2, 1, 1 lay-
ers. The head number is set to 4 for all attention layers. The
channel dimension C is set to 256, and the ancestor depth
K is set to 3. The context window length N is set to 8192,
which is initially divided into 16 local windows with the
length L of 512. To further achieve speed-accuracy trade-

Table 1. Inference times (in seconds) for encoding/decoding a D-
depth octree on SemanticKITTI. Runtimes for G-PCC are total
times.

Method D=12 D=14 D=16
G-PCC 0.25 / 0.12 0.66 / 0.32 1.07 / 0.54

SparsePCGC 1.14 / 0.86 1.76 / 1.43 2.43 / 2.04
OctAttention 0.08 / 83 0.31 / 321 0.66 / 708

EHEM 0.40 / 0.43 1.21 / 1.39 2.53 / 3.01
Light EHEM 0.29 / 0.33 0.79 / 0.92 1.63 / 1.94

offs, we present a lightweight EHEM model called Light
EHEM. It has the same network structure as EHEM except
that its 5 self-attention blocks have 2, 2, 2, 2, 2 layers and its
channel dimension C is set to 192.

We adopt an Adam optimizer [20] with a learning rate
of 10−4 to train two models for 10 and 50 epochs on Se-
manticKITTI and Ford datasets, respectively. The evalua-
tion is implemented on the NVIDIA V100 GPU.

Metrics We adopt the point-to-point PSNR (D1 PSNR),
point-to-plane PSNR (D2 PSNR) [6], and Chamfer dis-
tance (CD) to measure the distortion. Experiments on Se-
manticKITTI follow the PSNR calculations in OctSqueeze
and MuSCLE [4, 16], where the peak value is set to 59.70.
On the Ford dataset, we set the peak value to 30000 [6].
Consumed bitrates are measured by bits per point (bpp).

14373



Table 2. Complexity comparison on encoding/decoding time, the-
oretical computation cost (FLOPs), parameters, and memory us-
age among OctAttention, EHEM, and Light EHEM.

Method Enc / Dec FLOPs #param. Mem.
OctAttn 0.66s / 708s 124.3G 4.23M 1.3G
EHEM 2.53s / 3.01s 184.4G 13.01M 2.9G

L-EHEM 1.63s / 1.94s 102.9G 6.34M 2.6G

Table 3. Comparison of FLOPs among OctAttention, EHEM, and
Light EHEM with respect to the context length N .

Method 512 1024 2048 4096 8192
OctAttn 6.0G 15.5G 45.0G 145.7G 514.0G
EHEM 9.0G 18.4G 38.1G 81.5G 184.4G

L-EHEM 5.2G 10.7G 21.9G 46.4G 102.9G

5.2. Performance Evaluation

The quantitative results of the rate-distortion perfor-
mance are shown in Fig. 6. The proposed method EHEM
achieves significant improvements over other baselines. For
example, on SemanticKITTI, EHEM achieves an average
gain of 28.89% to G-PCC, and 19.47% bitrate reduction on
average compared with OctAttention. Furthermore, Light
EHEM also preserves satisfactory performance and outper-
forms other baselines.

To evaluate the efficiency of EHEM, we report infer-
ence times at different quantization steps in Tab. 1. EHEM
achieves notable decoding time reduction over the auto-
regressive context model OctAttention. The encoding time
increases compared with OctAttention since the grouped
context requires a two-step inference (for xi1 and xi2 ),
while OctAttention only requires one step. However, this
encoding time is still practically acceptable and the grouped
context is effective to speed up decoding. We further repre-
sent both rate-distortion performance and decoding time in
Fig. 1. It is shown that EHEM is effective regarding both
compression performance and decoding speed.

We provide the complexity analysis of EHEM and Oc-
tAttention in Tab. 2 and Tab. 3. Here, we report required
FLOPs to infer a single context window. Note that larger
context predicts more nodes with one forward pass. For ex-
ample, EHEM requires 81.5 × 2 and 184.4 × 1 GFLOPs
to predict 8192 nodes when N is set to 4096 and 8192, re-
spectively. It is shown that EHEM has comparable FLOPs
to OctAttention when the context capacity is 1024, which
is the default setting for OctAttention. However, EHEM
contains 24 hierarchical attention layers while OctAttention
only includes 2 global attention layers. It proves the superi-
ority of the localized attention structure in terms of extend-
ing the network depth. Furthermore, localized attention is
also effective to enlarge the context due to the linear com-

0 1 2 3 4 5 6 7 8 9

Bits Per Point

60

65

70

75

80

85

90

D
1 

PS
N

R
 (d

B
)

Bitrate vs. D1 PSNR (KITTI)

EHEM, N=8192
EHEM, N=1024
Global Self-Attn
AR Context
Grouped Context

Figure 7. Ablation studies on attention models, context scales, and
context structures.

Ours, Depth 16N = 8192N = 1024

Figure 8. Contexts with different capacities N on 16-bit quantized
SemanticKITTI. Points in the context are colored in blue.

plexity. FLOPs of EHEM increase 2.26 times as the context
is enlarged from 4096 to 8192. In contrast, the complexity
of OctAttention increases 3.53 times with the same exten-
sion. Besides, Light EHEM achieves lower FLOPs at all
context window length settings compared to OctAttention.
EHEM has slightly larger model size and memory usage
compared with OctAttention. These increases are due to
the extension of model capacity and context scale, but it is
still reasonable for practical use.

5.3. Ablation Studies and Analysis

Hierarchical attention structure To verify the effective-
ness of the hierarchical attention structure, we replace the
hierarchical self-attention model with global self-attention
layers to build a counterpart with similar FLOPs. Since it
is impractical to compute global self-attention with N =
8192, we conduct experiments with N = 1024. Here,
EHEM still has 18 localized self-attention layers, and the
global-attention counterpart contains 5 layers. The compar-
ison between EHEM (N = 1024) and Global Self-Attn in
Fig. 7 proves that the hierarchical attention model with a
much deeper network achieves considerable improvements.
Network depth With the same network structure, the com-
parison between EHEM and Light EHEM shows that the

14374



GT (KITTI) OctAttn: D1 83.28, Bitrate 7.18G-PCC: D1 80.62, Bitrate 7.19 Ours: D1 90.61, Bitrate 7.18

GT (KITTI) OctAttn: D1 83.02, Bitrate 7.82G-PCC: D1 80.76, Bitrate 7.82 Ours: D1 90.59, Bitrate 7.78

Error Colormap
(m)

Figure 9. Visualized compression results of G-PCC, OctAttention, and our method on the SemanticKITTI dataset.

deeper network leads to better performance. Therefore, it
is helpful to enhance the expressiveness of the model by
stacking more layers within a reasonable range.

Context scale The linear complexity of the hierarchical
attention also allows the further extension of the context
scale N . Contexts with different capacities are visualized in
Fig. 8. It is shown that captured regions are significantly en-
larged when N increases from 1024 to 8192. The extended
context includes the complete geometry pattern of the vehi-
cle and introduces references from the neighboring similar
vehicle. This is beneficial to improve the rate-distortion per-
formance, as shown in Fig. 7.

Grouped context structure The grouped context structure
allows a two-step parallel decoding procedure. Here, we ex-
amine its influence on rate-distortion performance. To this
end, we train a baseline with an auto-regressive context used
in OctAttention. The hierarchical attention is unavailable
to this context structure since the node merging operation
uses non-causal ancestral references. For a fair compari-
son, we use global attention to compute dependencies for
both grouped and auto-regressive context structures. The
grouped context introduces features from the first group via
global cross-attention layers. The comparison between AR
Context and Grouped Context in Fig. 7 demonstrates that al-
though only half of the nodes access to siblings, the grouped
context structure achieves comparable performance. It is
because the grouped context preserves ancestral features
from non-causal references, as shown in Fig. 4b. Besides,
it proves that the grouped context structure does not signif-
icantly improve compression performance. Therefore, im-

provements of EHEM are mainly due to stronger hierarchi-
cal attention blocks.

5.4. Qualitative Results

In Fig. 9, we show the visualized compression distor-
tions of different methods at similar bitrates. It indicates
that our method provides better reconstructions compared
with other baselines. For example, EHEM outperforms G-
PCC by roughly 10 dB D1 PSNR improvements.

6. Conclusion

We proposed an efficient learned entropy model for point
cloud compression. It adopts a hierarchical attention struc-
ture, which allows us to substantially extend the network
depth and context capacity to improve the rate-distortion
performance with reasonable complexity. We further de-
veloped a grouped context structure to realize a parallel de-
coding procedure. Moreover, this context aligns the con-
text modeling regimes of point cloud and image compres-
sion, and we hope it would be helpful to bridge the gap be-
tween two communities. The proposed model is proved to
yield superior compression performance and significantly
reduce the decoding time compared to the state-of-the-art
auto-regressive method.

Acknowledgement

This work was supported by National Natural Science
Foundation of China (No. 62172021).

14375



References
[1] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-

to-end optimized image compression. In International Con-
ference on Learning Representations, 2017.

[2] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compres-
sion with a scale hyperprior. In International Conference
on Learning Representations, 2018.

[3] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 9297–9307,
2019.

[4] Sourav Biswas, Jerry Liu, Kelvin Wong, Shenlong Wang,
and Raquel Urtasun. Muscle: Multi sweep compression of
lidar using deep entropy models. In Advances in Neural In-
formation Processing Systems, pages 22170–22181, 2020.

[5] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro
Katto. Learned image compression with discretized gaussian
mixture likelihoods and attention modules. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7939–7948, 2020.

[6] MPEG 3D Graphics Coding. Common test conditions for
g-pcc. ISO/IEC JTC1/SC29/WG7 N00106, 2021.

[7] MPEG 3D Graphics Coding. Preliminary dataset for ai-
based point cloud experiments. ISO/IEC JTC1/SC29/WG7
W21570, 2022.

[8] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichten-
hofer. Multiscale vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 6824–6835, 2021.

[9] Guangchi Fang, Qingyong Hu, Hanyun Wang, Yiling Xu,
and Yulan Guo. 3dac: Learning attribute compression for
point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14819–
14828, 2022.

[10] Chunyang Fu, Ge Li, Rui Song, Wei Gao, and Shan Liu. Oc-
tattention: Octree-based large-scale contexts model for point
cloud compression. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2022.

[11] Diogo C Garcia, Tiago A Fonseca, Renan U Ferreira, and
Ricardo L de Queiroz. Geometry coding for dynamic vox-
elized point clouds using octrees and multiple contexts. IEEE
Transactions on Image Processing, 29:313–322, 2019.

[12] MPEG Group. Mpeg g-pcc tmc13. https://github.
com/MPEGGroup/mpeg-pcc-tmc13, 2021.

[13] Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hongwei
Qin, and Yan Wang. Elic: Efficient learned image compres-
sion with unevenly grouped space-channel contextual adap-
tive coding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5718–
5727, 2022.

[14] Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang,
and Hongwei Qin. Checkerboard context model for effi-
cient learned image compression. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14771–14780, 2021.

[15] Yun He, Xinlin Ren, Danhang Tang, Yinda Zhang, Xi-
angyang Xue, and Yanwei Fu. Density-preserving deep point
cloud compression. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2333–2342, 2022.

[16] Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu,
and Raquel Urtasun. Octsqueeze: Octree-structured en-
tropy model for lidar compression. In Proceedings of
the IEEE/CVF conference on Computer Vision and Pattern
Recognition, pages 1313–1323, 2020.

[17] Tianxin Huang and Yong Liu. 3d point cloud geometry
compression on deep learning. In Proceedings of the 27th
ACM international conference on multimedia, pages 890–
898, 2019.

[18] Emre Can Kaya and Ioan Tabus. Neural network modeling
of probabilities for coding the octree representation of point
clouds. In 2021 IEEE 23rd International Workshop on Mul-
timedia Signal Processing, 2021.

[19] Jun–Hyuk Kim, Byeongho Heo, and Jong–Seok Lee. Joint
global and local hierarchical priors for learned image com-
pression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5982–
5991, 2022.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations, 2015.

[21] Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack.
Context-adaptive entropy model for end-to-end optimized
image compression. In International Conference on Learn-
ing Representations, 2019.

[22] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al.
Swin transformer v2: Scaling up capacity and resolution. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12009–12019, 2022.

[23] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021.

[24] Donald Meagher. Geometric modeling using octree encod-
ing. Computer graphics and image processing, 19(2):129–
147, 1982.

[25] Rufael Mekuria, Kees Blom, and Pablo Cesar. Design, im-
plementation, and evaluation of a point cloud codec for tele-
immersive video. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 27(4):828–842, 2016.

[26] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,
Radu Timofte, and Luc Van Gool. Conditional probability
models for deep image compression. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4394–4402, 2018.

[27] Fabian Mentzer, George D Toderici, Michael Tschannen, and
Eirikur Agustsson. High-fidelity generative image compres-
sion. In Advances in Neural Information Processing Systems,
pages 11913–11924, 2020.

14376



[28] David Minnen, Johannes Ballé, and George D Toderici.
Joint autoregressive and hierarchical priors for learned im-
age compression. Advances in neural information processing
systems, 31, 2018.

[29] David Minnen and Saurabh Singh. Channel-wise autoregres-
sive entropy models for learned image compression. In 2020
IEEE International Conference on Image Processing, pages
3339–3343, 2020.

[30] Dat Thanh Nguyen and Andre Kaup. Learning-based loss-
less point cloud geometry coding using sparse representa-
tions. arXiv preprint arXiv:2204.05043, 2022.

[31] Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise,
and Pierre Duhamel. Lossless coding of point cloud ge-
ometry using a deep generative model. IEEE Transactions
on Circuits and Systems for Video Technology, 31(12):4617–
4629, 2021.

[32] Gaurav Pandey, James R McBride, and Ryan M Eustice.
Ford campus vision and lidar data set. The International
Journal of Robotics Research, 30(13):1543–1552, 2011.

[33] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017.

[34] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. In Advances in Neural Information Processing
Systems, 2017.

[35] Yichen Qian, Ming Lin, Xiuyu Sun, Zhiyu Tan, and Rong
Jin. Entroformer: A transformer-based entropy model for
learned image compression. In International Conference on
Learning Representations, 2022.

[36] Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux.
Learning convolutional transforms for lossy point cloud ge-
ometry compression. In IEEE International Conference on
Image Processing, pages 4320–4324, 2019.

[37] Zizheng Que, Guo Lu, and Dong Xu. Voxelcontext-net: An
octree based framework for point cloud compression. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6042–6051, 2021.

[38] Ruwen Schnabel and Reinhard Klein. Octree-based point-
cloud compression. In Proceedings of the 3rd Eurographics
/ IEEE VGTC conference on Point-Based Graphics, pages
111–120, 2006.

[39] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Mad-
hukar Budagavi, Pablo Cesar, Philip A Chou, Robert A Co-
hen, Maja Krivokuća, Sébastien Lasserre, Zhu Li, et al.
Emerging mpeg standards for point cloud compression.
IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 9(1):133–148, 2018.

[40] Xihua Sheng, Li Li, Dong Liu, Zhiwei Xiong, Zhu Li, and
Feng Wu. Deep-pcac: An end-to-end deep lossy compres-
sion framework for point cloud attributes. IEEE Transactions
on Multimedia, 24:2617–2632, 2021.

[41] Fei Song, Yiting Shao, Wei Gao, Haiqiang Wang, and
Thomas Li. Layer-wise geometry aggregation framework for
lossless lidar point cloud compression. IEEE Transactions

on Circuits and Systems for Video Technology, 31(12):4603–
4616, 2021.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, page 6000–6010, 2017.

[43] Jianqiang Wang, Dandan Ding, Zhu Li, Xiaoxing Feng,
Chuntong Cao, and Zhan Ma. Sparse tensor-based multi-
scale representation for point cloud geometry compression.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2022.

[44] Jianqiang Wang, Hao Zhu, Haojie Liu, and Zhan Ma. Lossy
point cloud geometry compression via end-to-end learning.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 31(12):4909–4923, 2021.

[45] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 568–578, 2021.

[46] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics, 38(5):1–12, 2019.

[47] Ian H Witten, Radford M Neal, and John G Cleary. Arith-
metic coding for data compression. Communications of the
ACM, 30(6):520–540, 1987.

[48] Wei Yan, Shan Liu, Thomas H Li, Zhu Li, Ge Li, et al.
Deep autoencoder-based lossy geometry compression for
point clouds. arXiv preprint arXiv:1905.03691, 2019.

[49] Yinhao Zhu, Yang Yang, and Taco Cohen. Transformer-
based transform coding. In International Conference on
Learning Representations, 2022.

14377


