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Abstract

Arbitrary-scale image super-resolution (SR) is often
tackled using the implicit neural representation (INR) ap-
proach, which relies on a position encoding scheme to im-
prove its representation ability. In this paper, we introduce
orthogonal position encoding (OPE), an extension of po-
sition encoding, and an OPE-Upscale module to replace
the INR-based upsampling module for arbitrary-scale im-
age super-resolution. Our OPE-Upscale module takes 2D
coordinates and latent code as inputs, just like INR, but
does not require any training parameters. This parameter-
free feature allows the OPE-Upscale module to directly
perform linear combination operations, resulting in con-
tinuous image reconstruction and achieving arbitrary-scale
image reconstruction. As a concise SR framework, our
method is computationally efficient and consumes less mem-
ory than state-of-the-art methods, as confirmed by exten-
sive experiments and evaluations. In addition, our method
achieves comparable results with state-of-the-art methods
in arbitrary-scale image super-resolution. Lastly, we show
that OPE corresponds to a set of orthogonal basis, validat-
ing our design principle. 1

1. Introduction
Photographs are composed of discrete pixels of vary-

ing precision due to the limitations of sampling frequency,
which breaks the continuous visual world into discrete
parts. The single image super-resolution (SISR) task aims
to restore the original continuous world in the image as
much as possible. In an arbitrary-scale SR task, one of-
ten reconstructs the continuous representation of a low-
resolution image and then adjusts the resolution of the target
image as needed. The recent rise of implicit neural repre-
sentation (INR) in 3D vision has enabled the representation
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of complex 3D objects and scenes in a continuous man-
ner [14,19,41,42,44,45,47,49,57,58], which also opens up
possibilities for continuous image and arbitrary-scale image
super-resolution [5, 18, 32, 72].

Existing methods for arbitrary-scale SR typically use a
post-upsampling framework [70]. In this approach, low-
resolution (LR) images first pass through a deep CNN
network (encoder) without improving the resolution, and
then pass through an INR-based upsampling module (de-
coder) with a specified target resolution to reconstruct high-
resolution (HR) images. The decoder establishes a mapping
from feature maps (the output of encoder) to target image
pixels using a pre-assigned grid partitioning and achieves
arbitrary-scale with the density of the grid in Cartesian co-
ordinate system. However, the INR approach has a defect of
learning low-frequency information, also known as spectral
bias [50]. To address this issue, sinusoidal positional en-
coding is introduced to embed input coordinates to higher
dimensions and enable the network to learn high-frequency
details. This inspired recent works on arbitrary-scale SR to
further improve the representation ability [32, 72].

Despite its effectiveness in arbitrary-scale SR, the INR-
based upsampling module increases the complexity of the
entire SR framework as two different networks are jointly
trained. Additionally, as a black-box model, it represents
a continuous image with a strong dependency on both the
feature map and the decoder (e.g., MLP). However, its rep-
resentation ability decreases after flipping the feature map,
a phenomenon known as flipping consistency decline. As
shown in Fig. 1, flipping the feature map horizontally be-
fore the upsampling module of LIIF results in a blurred tar-
get image that does not have the expected flip transforma-
tion. This decline could be due to limitations of the MLP in
learning the symmetry feature of the image.

MLP is a universal function approximator [17], which
tries to fit a mapping function from feature map to the con-
tinuous image, therefore, it is reasonable to assume that
such process could be solved by an analytical solution. In
this paper, we re-examine position encoding from the per-
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spective of orthogonal basis and propose orthogonal posi-
tion encoding (OPE) for continuous image representation.
The linear combination of 1D latent code and OPE can
directly reconstruct continuous image patch without using
implicit neural function [5]. To prove OPE’s rationality,
we analyse it both from functional analysis and 2D-Fourier
transform. We further embed it into a parameter-free up-
sampling module, called OPE-Upscale Module, to replace
INR-based upsampling module in deep SR framework, then
currently deep SR framework can be greatly simplified.

Unlike the state-of-the-art method by Lee et al. [32],
which enhances MLP with position encoding, we explore
the possibility of extending position encoding without MLP.
By providing a more concise SR framework, our method
achieves high computing efficiency and consumes less
memory than the state-of-the-art, while also achieving com-
parable image performance in arbitrary-scale SR tasks.

Our contributions are as follows:

• We propose a novel position encoding, called orthogo-
nal position encoding (OPE), which takes the form of
a 2D-Fourier series and corresponds to a set of orthog-
onal basis. Building on OPE, we introduce the OPE-
Upscale Module, a parameter-free upsampling module
for arbitrary-scale image super-resolution.

• Our method significantly reduces the consumption of
computing resources, resulting in high computing effi-
ciency for arbitrary-scale SR tasks.

• The OPE-Upscale Module is interpretable, parameter-
free and does not require training, resulting in a con-
cise SR framework that elegantly solves the flipping
consistency problem.

• Extensive experiments demonstrate that our method
achieves comparable results with the state-of-the-art.
Furthermore, our method enables super-resolution up
to a large scale of ×30.

2. Related Work
2.1. Sinusoidal Positional Encoding

Sinusoidal positional encoding is widely used to counter-
act the negative effects of token order and sequence length
in sequence models [65], or to guide image generation as the
spatial inductive bias in CNNs [7, 23, 36]. In implicit neu-
ral representations, it plays a critical role in solving spectral
bias [50]. By embedding input coordinates into a higher di-
mensional space, position encoding greatly improves high-
frequency representation of implicit 3D scenes [42, 56] and
subsequent works take it as the default operation to improve
representation quality [37, 43, 53, 78]. Inspired by these
works, positional encoding has been preliminarily explored
in representing images in arbitrary-scale SR [32, 72].

LIIF: 32.35 LIIF-flip: 28.47 LIIF: 25.43 LIIF-flip: 23.11

OPE: 32.37 OPE-flip: 32.37 OPE: 25.50 OPE-flip: 25.50

Figure 1. Flipping consistency decline (PSNR (dB)). LIIF-flip:
Flipping the input of the LIIF [5] decoder yields blurred results
in the symmetric outputs. OPE-flip: Our method does not exhibit
such artifacts. Additional results can be found in the supplemen-
tary material.

2.2. Orthogonal Basis Decomposition

In functional analysis, an orthogonal basis decomposi-
tion is a way to represent a vector or function as a linear
combination of orthogonal basis functions. Wavelet trans-
form [2, 15, 20, 38] and 2D-Fourier transform [6, 12, 13, 22,
74] are commonly used decomposition techniques for im-
ages and videos. In DSGAN [12], the input image is explic-
itly decomposed into low and high frequencies using high-
pass and low-pass filters. Other methods use frequency do-
main losses to decompose images, either in a supervised
manner [22] or in an unsupervised manner [13]. To ad-
dress with resolution discrepancy of reconstructed images
and input images, Rippel et al. [52] employ spectral pooling
to decrease resolution by truncating in the Fourier domain,
while Zhou et al. [81] explore an up-sampling method in
the Fourier domain to increase the resolution. Image mo-
ments, which decompose images into two-dimensional or-
thogonal polynomials [27, 82], are widely used in invariant
pattern recognition [30, 77]. Image sparse representation
inherits this decomposition idea and performs well in tra-
ditional computer vision tasks [39, 71, 73]. In 3D domains,
spherical harmonics serve as an orthogonal basis in space
to represent view dependence [3, 51, 59] and have recently
been proposed as a replacement for MLPs [11] for repre-
senting neural radiance fields [42].

2.3. Deep Learning-based SR

Based on the upsampling operations and their location in
the model, deep learning-based SR frameworks can be clas-
sified into four categories (see [70] for a comprehensive sur-
vey): pre-upsampling [8,24,25,55,61,62], post-upsampling
[9, 31, 35, 64, 79], progressive-upsampling [28, 29, 68], and
iterative up-and-down sampling [16, 33, 69]. With pre-
upsampling, the LR image is first upsampled by traditional
interpolation and then fed into a deep CNN to reconstruct

10010



high-quality details. While it was one of the most popu-
lar frameworks for arbitrary-scale factors, it has side effects
like enlarged noise by interpolation and high time complex-
ity and space consumption. The progressive-upsampling
and iterative up-and-down sampling frameworks pose chal-
lenges in terms of complicated model designing and unclear
design criteria, as noted in [70]. For post-upsampling, the
LR image is directly fed as input to a deep CNN, and then a
trainable upsampling module (e.g., deconvolution [9], sub-
pixel [54], and interpolation convolution [10]) increases the
resolution at the end. Since feature extraction process,
which is computationally intensive, only occurs in low-
dimensional space, it has become one of the mainstream
frameworks [32, 34, 67].

2.4. Arbitrary-scale SR

In the field of arbitrary-scale SR, most existing works
are based on the post-upsampling framework and replace
the traditional upsampling module with an INR-based one,
such as a coordinate-based MLP. Meta-SR [18] was the
first arbitrary-scale SR method based on CNN. ArbSR [66]
adopts a general plug-in module to solve the scaling prob-
lem of different horizontal and vertical scales. SRWarp [60]
transforms LR images into HR images with arbitrary shapes
via a differential adaptive warping layer. SphereSR [75] ex-
plores arbitrary-scale on 360◦ images. LIIF [5] uses co-
ordinates and conditional latent code into an MLP to di-
rectly predict target pixel color with an intuitive network
structure. LIIF-related follow-up works focus on predicting
high-frequency information with position encoding [32,72].

3. Method
3.1. OPE-based Image Representation

Given an LR image ILR with resolution of h × w, we
devide its 2D domain into h×w grids, where each grid rep-
resents a pixel in the LR image and corresponds to a patch
of the high resolution image of size rh×rw. The output im-
age ISR has a resolution of H ×W , where H = rh · h and
W = rw · w. Denote by I ∈ Rrh×rw×1 the high resolution
image patch with size rh × rw for a specific color channel.
We view each pixel in I as a sample of a continuous bivari-
ate function f(x, y) : [−1, 1]× [−1, 1] → R. We embed the
coordinates x and y using sinusoidal positional encoding

X = γ(x) =
√
2 · [ 1√

2
, cos(πx), sin(πx), cos(2πx),

sin(2πx), ..., cos(nπx), sin(nπx)] (1)

Y = γ(y) =
√
2 · [ 1√

2
, cos(πy), sin(πy), cos(2πy),

sin(2πy), ..., cos(nπy), sin(nπy)], (2)

where γ(·) : R → R1×(2n+1) is a univariate function for
position encoding with a predefined maximum frequency

n ∈ N. We flatten the matrix XTY into a row vector P ∈
R1×(2n+1)2 as

P = flat(XTY ), (3)

where flat : R(2n+1)×(2n+1) → R1×(2n+1)2 is the flat-
tening operation. Denote by ei,j the element on the i-th
row and the j-th column of matrix XTY . For example.
e4,5 = 2 cos(2πx) sin(2πy). It is easy to verify that

⟨ei1,j1 , ei2,j2⟩ =

{
0, (i1, j1) ̸= (i2, j2)

1, (i1, j1) = (i2, j2)
(4)

where ⟨, ⟩ is the inner product in function space, i.e.,

⟨g, h⟩ = 1

4

∫ 1

−1

∫ 1

−1

g(x, y)h(x, y)dxdy.

Therefore the elements {ei,j} form a set of orthogonal ba-
sis, allowing us to approximate f as a linear combination.
Consider a pixel (x, y) in the upsampled image patch I ,
which corresponds to a region [x− 1/rh, x+ 1/rh]× [y −
1/rw, y + 1/rw]. We use f(x, y) as a representative for the
entire region and compute I(x,y) as

I(x,y) ≜ f(x, y) ≈ ZPT , (5)

where Z ∈ R1×(2n+1)2 represents the projection. Due to
the orthogonal property, we call the resulting vector P as
orthogonal position encoding (OPE). Fig. 3 illustrates the
concept of OPE-based patch representation.

Remark 1. Our OPE basis can be seen as the real form
version of the 2D-Fourier basis, which eliminates the com-
plex exponential term based on conjugate symmetry when
representing real signals. See the supplementary material
for details.

Remark 2. OPE differs from the commonly used posi-
tional encoding formulation, such as that in [42], in that
it includes a constant term and takes the product of each
coordinate embedding as a new term. These seemingly
minor changes indeed have a deep impact. Conventional
positional encoding processes the coordinates separately,
thereby encoding frequencies in the horizontal and vertical
directions only. In contrast, OPE includes frequencies cov-
ering in all directions of the plane due to the product terms,
resulting in a better expression capability.

Remark 3. Unlike LIIF [5] that uses an MLP to approx-
imate the image function f , our method completely elimi-
nates the need of MLP.

3.2. OPE-Upscale Module

We project the latent code onto the OPE basis. OPE
with a sufficiently long latent code could represent an im-
age directly in a continuous manner. However, it suffers
from long embedding time and is unstable for represent-
ing high-frequency details locally, similar to the limitations
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Figure 2. OPE-Upscale Module for arbitrary-scale SR. The encoder Eθ is the only trainable part. With a pre-defined maximum
frequency n of OPE, the OPE-Upscale Module (shaded in grey) takes the feature map from Eθ and the target resolution H,W as input,
and renders the pixels of the target SR image in parallel. ⊙ is the matmul function that returns the product of z∗ ∈ R1×3(2n+1)2 and OPEs
∈ R3(2n+1)2×1 per color channel.

OPE-SR

…

=

patch

Inner Product Space

…

… …

Figure 3. OPE-based patch representation. An image patch can
be represented as a linear combination of basic plane waves in a
continuous manner. The representation is a 2D extension to [46,
Chap. 3.3.1]. Refer to the supplementary material for more details.

of Fourier transform to describe local information. To ad-
dress this issue, we represent the input image as the seam-
less stitching of local patches, whose latent codes are ex-
tracted from a feature map over the channel dimension2. As
shown in Fig. 2, the OPE-upscale module takes both the
target resolution H = rh · h, W = rw · w and the feature
map ∈ Rh×w×3(2n+1)2 from the deep encoder Eθ as inputs
and computes target pixels in parallel.
Feature map rendering. As shown in Fig. 4, to render a
target image ISR with size H × W from a LR image ILR

with size h × w, OPE-Upscale Module firstly divide a 2D
domain [−1, 1]×[−1, 1] into H×W regions with equal size,
so that every pixel in ISR will be associated with an absolute
central coordinates (xq, yq) in corresponding region. Sec-
ondly, the latent codes in the feature map (same dimension
with ILR) also possess corresponding central coordinates
(xc, yc) ∈ [−1, 1] × [−1, 1] by dividing same 2D domain
into h × w regions, therefore, given a target image pixel
with (xq, yq), a specific latent code z∗ ∈ R1×3(2n+1)2 with

2To ensure compatibility with color images, we adjust the output chan-
nel of the encoder to 3(2n + 1)2, where n is the pre-defined maximum
frequency n of OPE.

Low Resolution Image Super Resolution Image2D Domain

-1 1

1

-1

Figure 4. Illustration of the mapping from the input LR image
to the output SR image. LR image, feature map and SR image
are all divided into the same domain [−1, 1] × [−1, 1]. Each LR
pixel ILR(xLR, yLR) corresponds to a latent code with coordi-
nates (xc, yc), while each SR pixel ISR(xSR, ySR) corresponds
to a latent code with coordinates (xq, yq).

coordinates (xc, yc), which has the smallest distance from
(xq, yq) could be found. As shown in Eq.(6) and Eq.(7), a
render function R takes two parts of inputs: z∗ and (x′

q, y
′
q),

to calculate final target pixel value as following:
ISR(xq, yq) = R(z∗, (x′

q, y
′
q)) (6)

x′
q = (xq − xc) · h, y′q = (yq − yc) · w (7)

where z∗ is the nearest latent code we found, and
(x′

q, y
′
q) are relative coordinates, which are calculated based

on Eq.(7) to rescale the absolute coordinates (in domain
[−1, 1] × [−1, 1]) by times h and w, which is taken as in-
put by function R to render target pixel. R has the similar
calculation as Eq.(5) while the difference is it repeats OPE
three times to adapt z∗ and calculate the linear combina-
tion per color channel. In this way, our OPE-upscale mod-
ule successfully deals with arbitrary size ISR by processing
each pixel by R, in which feature map rendering process
is parameter-free with high computing efficiency and less
memory consumption (which has been confirmed by the ex-
periments in Sec. 4.3).
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Patch ensemble. As shown in Fig. 4, when moving
(xq, yq) from location a to b, the pixel value in the target
image ISR may change abruptly, as well as the nearest la-
tent code z∗. To address this discontinuity issue, we pro-
pose a patch ensemble, which is a local ensemble styled in-
terpolation using relative coordinates. Instead of finding a
single nearest latent code for (xq, yq), we select the nearest
four neighbouring latent codes z∗t with corresponding cen-
tral coordinates (xt, yt), where t ∈ {00, 01, 10, 11}. Then
we calculate the relative coordinates x′

q and y′q as

x′
q =

(xq − xt) · h
2

, y′q =
(yq − yt) · w

2
, (8)

which can guarantee x′
q, y

′
q ∈ [−1, 1]. As the inset shows,

for the four adjacent pixels from the low resolution image
ILR (i.e. related to latent codes z∗00, z∗01, z∗10 and z∗11),
their corresponding patches in su-
per resolution image ISR are col-
ored in red, green, yellow and
blue, respectively. The pixel
color in ISR is not solely depen-
dent on the nearest latent code but
considers the four neighboring la-
tent codes. Specifically, using the
rendering function R and the di-
agonal rectangle areas st as weights, we compute the pixel
value as a weighted sum

ISR(xq, yq) =
∑

t∈{00,01,10,11}

st
S

· R(z∗t , (x
′
q, y

′
q)), (9)

where S =
∑

t st is the sum of areas. Considering the con-
tribution of each latent code allows us to integrate the adja-
cent latent codes with different significance, thereby provid-
ing a seamless stitching of adjacent patches. We call Eq.(9)
local ensemble styled interpolation since it takes a similar
form of the local ensemble in LIIF [5].

3.3. Maximum Frequency n

Selecting a proper maximum frequency n plays an
important role in designing and implementing the OPE-
upsampling module since it directly determines the network
architecture and also has effects on the performance of dif-
ferent SR scales. Given a high resolution image IHR with
size H ×W , n and r, we aim to obtain a feature map with
size H

r × W
r , then we re-render the obtained feature map

with the selected n. By the comparison of the rendered ISR

, we present the performance of n ∈ {1, 2, · · · , 8} under
different r values (SR scale), as show in Tab. 1, and select
the n with the best performance (the details would be dis-
cussed Sec. 4.1). To be specific, we use Eq.(10) as the basic
theory and use Eq.(11) to infer the feature map. First, simi-
lar to calculate the projection of a normal vector on orthog-
onal basis, we can calculate projections (or so-called latent
code) Z ∈ R1×(2n+1)2 of f(x, y) in Eq.(5) as follows:

Z[i] =
1

4

∫ 1

−1

∫ 1

−1

f(x, y)P [i](x, y)dxdy (10)

where P [i](x, y) is a bivariate function taken from the i-th
position of OPE and Z[i] is the corresponding projection.
Based on Eq.(10) and taking both the discreteness of an im-
age and the design of OPE-Upscale Module into consider-
ation, we calculate the feature map of an image IHR with
down-sampling scale r as follows:

z∗[i] =
1

4

2r∑
x′

2r∑
y′

IHR(x
′, y′)P [i](x′, y′) (11)

It can be considered as the inverse operation of Eq.(9).
Take the right inset as an exam-
ple. We choose the HR image as
the ground truth (e.g. HR in Fig.
5), when r = 4, every latent code
z∗ corresponds to a 8×8 patch of
HR (gray points) in relative coor-
dinate domain (blue region). To
calculate the i-th position of z∗,
we multiply every HR pixel value
IHR(x

′, y′) and basis value P [i](x′, y′) together and finally
sum them. After getting the feature map, we render it to the
same size of IHR via OPE-Upscale Module and calculate
their Peak Signal-to-Noise Ratio (PSNR).

4. Experiments
4.1. Parameter Setting

We evaluated the performance of different maximum fre-
quencies n on 50 images from the DIV2K validation set [1]
under different scales r. Since our method is a local repre-
sentation, we do not use a large n. As shown in Tab. 1,
the optimal sampling frequency for a given ri is always
ri − 1 . This observation can also be explained by the
Nyquist–Shannon sampling theorem. For example, when
ri = 4, there are 8×8 sampling points for every latent code
to “fit”, so the maximum frequency that can be recovered
from these sampling points should be less than 4. We also
tested larger frequency with ri ≤ n ≤ 2 × ri, reaching
the upper limit that equals the number of sampling points.
We further visualize the reconstructed images for different
n. As shown in Fig. 5, with scale factor ×4, the larger
frequency (n > 3) brings redundant high-frequency infor-
mation that sharpens the resulting images.

Based on the above analysis, we decide to choose n = 3
as the maximum frequency for our OPE-Upscale Module.
This is because existing arbitrary-scale SR methods, such
as LIIF [5] and LTE [32], are trained with random scale
factors up to 4, and the frequency n = 4 − 1 = 3 is suf-
ficient to fully capture the ground truth information. Al-
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n ×2 ×3 ×4 ×5 ×6 ×7 ×8

1 31.1951 28.6083 26.4424 25.0485 24.1114 23.3423 22.7898
2 30.7472 33.6586 31.2091 28.8022 27.3701 26.1913 25.3838
3 22.1871 33.6585 35.1983 32.4011 30.6135 28.8964 27.8159
4 12.1230 28.6083 34.9631 34.6294 34.0979 31.4462 30.2865
5 - 22.8465 29.9512 34.6293 37.3704 33.7285 32.8190
6 - 22.8465 24.3122 32.4011 37.1506 35.3046 35.8250
7 - - 19.1593 28.8022 33.3039 35.3046 39.1160
8 - - 12.0863 25.0485 29.0966 33.7286 38.9863

Table 1. Representation performance (PSNR (dB)). The best
value for each upsampling factor is bolded.

n=0 n=1 n=2 n=3 n=4 n=5

HR n=1 n=2 n=3 n=4 n=5

HR 21.97 25.11 30.20 29.28 22.31
Figure 5. Qualitative comparation of different OPE frequency
n under scale factor ×4 (PSNR (dB)). 1-th row: residuals from
n = 0 in image time domain. 2-th row: fourier frequency domain
of HR and rendered image with n. 3-th row: HR image and ren-
dered image with n.

though a larger n could represent more detailed patches of
the target SR image, it would also introduce redundant high-
frequency information and potentially increase computation
time and memory consumption during training. Therefore,
we choose n = 3 as the maximum frequency for our OPE-
Upscale Module to balance performance and efficiency.

4.2. Training

Datasets. Similar to [5, 32], we use the DIV2K dataset [1]
of the NTIRE 2017 Challenge [63] for training. For testing,
we use the DIV2K validation set [1] with 100 images and
four benchmark datasets: Set5 [4], Set14 [76], B100 [40],
and Urban100 [21]. We use PSNR as the quality measure.
Implementation details. We mainly follow the prior im-
plementation [5,32] for arbitrary-scale SR training after re-
placing their upsampling module with OPE-Upscale. We
use EDSR-baseline [35] and RDN [80] without their up-
sampling modules as the encoder, which is the only train-
able part of our network. We use 48 × 48 patches cropped
from training set as inputs, L1 loss and Adam [26] optimizer
for optimization. The network was trained for 1000 epochs
with batch size 16, while the initial learning rate is 1e-4 and
decayed by factor 0.5 every 200 epochs. More implementa-
tion details are presented in supplementary material.

4.3. Evaluation

Quantitative results. Tab. 2 and Tab. 3 report quantitative
results of OPE and the SOTA arbitrary-scale SR methods
on the DIV2K validation set and the benchmark datasets. It
is worth noting that we focus on finding an alternative of
MLP with position encoding, rather than enhancing it like
LTE [32]. We observe that our method achieves compara-
ble results (less than 0.1dB on DIV2K and less than 0.15dB
on benchmark), which indicates that our method is a feasi-
ble analytical solution with good performance and efficient
parameter-free module. As shown in Tab. 2, EDSR [35]
and RDN [80] are our selected encoders, and we achieve
the highest efficiency (i.e. the shortest inference time in
red number) comparing to all the other baselines with both
encoders. The higher the scale factor, the better result we
achieve. Specifically, in out-scale SR (×6 to ×30), our
method outperforms most baselines and just has a small gap
with LTE (less than 0.1dB). Such results demonstrate that
our method has rich representation capability. We also com-
pared with the benchmark dataset, as shown in Tab. 3, we
keep comparable results to baselines (the gap is less than
0.15dB). However, as a nonlinear representation method,
MLP still has advantages over our linear representation with
low scale factors. See Sec. 5 for discussion on this issue.
Qualitative results. Fig. 6 provides qualitative results with
SOTA methods by using different scale factor. We show
competitive visual quality against others, more results are
provided in supplementary material. From the local per-
spective, LIIF and LTE only generate smooth patches, while
our OPE with max frequency 3 is enough to achieve similar
visual quality. We also notice LIIF [5] has artifact (verti-
cal stripes) in the 1st row, this is a common drawback for
implicit neural representation and is hard to be explained.
However, with our image representation, there is no arti-
facts. In the 2nd row, we could observe a sprout (in red
rectangle) in the GT, the same region of LIIF is vanished,
and the boundary of our sprout is more obvious than LTE.
Computing efficiency. We measure computing efficiency
with MACs (multiply-accumulate operations), FLOPs
(floating point operations) and actual running time. In Tab.
4 column 2-3, judged by the time complexity measured by
the number of operations, we save 2 orders of magnitude.
In our upsampling module, there is only one matrix opera-
tion and essential position encoding between input and out-
put. In Tab. 2 we show shortest inference time benefiting
from our compact SR framework. To further demonstrate
our time advantage on large size images, we take 256×256
as LR input of encoder and calculate time consumption of
upsampling module with scale factor ×4-×30 on NVIDIA
RTX 3090. As shown in Tab. 5 , our upsampling mod-
ule shows 26%-57% time advantage, this advantage keeps
growing with larger scale factor. Notice We do not take
advantage of GPU acceleration to design the upsampling
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Figure 6. Qualitative comparison with SOTA methods for arbitrary-scale SR. RDN [80] is used as encoder for all methods.

Method In-scale Out-scale
×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30

Bicubic [35] 31.01 28.22 26.66 24.82 22.27 21.00 20.19 19.59
EDSR-baseline [35] 34.55 30.90 28.94 - - - - -

EDSR-baseline-MetaSR♯ [5, 18] 34.64 30.93 28.92 26.61 23.55 22.03 21.06 20.37
EDSR-baseline-LIIF [5] 34.67 / 1702 30.96 / 1277 29.00 / 1144 26.75 / 1046 23.71 / 965 22.17 / 953 21.18 / 951 20.48 / 947
EDSR-baseline-LTE [32] 34.72 / 1158 31.02 / 1079 29.04 / 1045 26.81 / 1023 23.78 / 1007 22.23 / 1005 21.24 / 1003 20.53 / 1000

EDSR-baseline-OPE (ours) 34.34 / 476 30.94 / 395 29.02 / 364 26.77 / 348 23.74 / 322 22.21 / 318 21.21 / 314 20.52 / 311
RDN-MetaSR♯ [5, 18] 35.00 31.27 29.25 26.88 23.73 22.18 21.17 20.47

RDN-LIIF [5] 34.99 / 3107 31.26 / 2073 29.27 / 1513 26.99 / 1248 23.89 / 1025 22.34 / 994 21.31 / 991 20.59 / 972
RDN-LTE [32] 35.04 / 2549 31.32 / 1839 29.33 / 1420 27.04 / 1184 23.95 / 1049 22.40 / 1027 21.36 / 1025 20.64 / 1014

RDN-OPE (ours) 34.52 / 2277 31.17 / 1497 29.26 / 1039 26.98 / 813 23.91 / 663 22.36 / 623 21.34 / 596 20.63 / 590

Table 2. Quantitative comparison with the SOTA methods for arbitrary-scale SR on the DIV2K validation set (PSNR (dB) / running time
(ms per image)). ♯ indicates implementation in LIIF [5]. With a parameter-free upsampling module, we narrow the gap between SOTA and
ours in most results less than 0.1dB (blue) and obtain the shortest inference time (red).

module carefully, with hardware optimization, we believe
our time advantage could be much larger thanks to fewer
number of operations required.

Memory consumption. In Tab. 4 column 4-5 we com-
pare GPU memory consumption of OPE-Upscale Module
with LIIF [5] and LTE [32] under training mode and testing
mode of Pytorch [48]. For training mode, we use a 48× 48
patch as input and sample 2304 pixels as output following
the default training strategy in arbitrary-scale SR works. For
testing mode, we use 512 × 512 image as input with scale
factor 4. As a interpretable image representation without
network parameters, OPE-Upscale Module saves memory
of intermediate data (e.g. gradients, hidden layer outputs),
and this advantage is fully reflected in training mode.

Flipping consistency. As described in Sec. 1, the INR-
based upsampling module like [5] is sensitive for the flip-
ping of feature map. However, our method solves this prob-
lem completely and elegantly. The orthogonal basis of OPE
is based on symmetric sinusoidal function, which leads to
advantage of our method for keeping the flipping consis-
tency. Also, more samples are provided in supplementary
material for verifying other more flipping transforms.

OPE OPE-E OPE-I OPE-IE
Figure 7. Visual results of the ablation study on patch ensem-
ble. See the text for details.

4.4. Ablation Studies

In order to examine the effects of local ensemble styled
interpolation (I)-Eq.(9) and extension of relative coordinate
domain (E)-Eq.(8) in patch ensemble, we conducted exper-
iments using four different settings with EDSR-baseline as
the encoder. The four settings were: 1) OPE: OPE-Upscale
module with I and E; 2) OPE-E: OPE-Upscale module with-
out E but with I; 3) OPE-I: OPE-Upscale module without I
but with E; and 4) OPE-IE: OPE-Upscale module with nei-
ther I nor E (that is, without patch ensemble).

Fig. 7 and Tab. 6 present the comparison results of dif-
ferent settings. In the OPE-E setting, only the nearest latent
code to the query point can be rescaled to [-1,1] × [-1,1],
while the relative coordinates of the other three latent codes
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Method
Set5 Set14 B100 Urban100

In-scale Out-scale In-scale Out-scale In-scale Out-scale In-scale Out-scale
×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8

RDN [80] 38.24 34.71 32.47 - - 34.01 30.57 28.81 - - 32.34 29.26 27.72 - - 32.89 28.80 26.61 - -
RDN-MetaSR♯ [5, 18] 38.22 34.63 32.38 29.04 26.96 33.98 30.54 28.78 26.51 24.97 32.33 29.26 27.71 25.90 24.83 32.92 28.82 26.55 23.99 22.59

RDN-LIIF [5] 38.17 34.68 32.50 29.15 27.14 33.97 30.53 28.80 26.64 25.15 32.32 29.26 27.74 25.98 24.91 32.87 28.82 26.68 24.20 22.79
RDN-LTE [32] 38.23 34.72 32.61 29.32 27.26 34.09 30.58 28.88 26.71 25.16 32.36 29.30 27.77 26.01 24.95 33.04 28.97 26.81 24.28 22.88

RDN-OPE (ours) 37.60 34.59 32.47 29.17 27.22 33.39 30.49 28.80 26.65 25.17 32.05 29.19 27.72 25.96 24.91 31.78 28.63 26.53 24.06 22.70

Table 3. Quantitative comparison with SOTA methods for arbitrary-scale image SR on benchmark datasets (PSNR (dB)). ♯ indicates
implementation in LIIF [5]. We narrow the gap between SOTA and ours in most results less than 0.15dB (blue number). For large scale
factor, we keep comparable results to MetaSR [18] and LIIF [5]. The defect in low scale factor will be analysed in Sec. 5.

Method Params MACs FLOPs Mem (training) Mem (Test)
LIIF 0.35 M 429 K 6.2 G 85.1 + 1.9 M 32 + 96 M
LTE 0.26 M 526 K 7.5 G 97.8 + 1.9 M 64 + 96 M

OPE (ours) 0 M 6 K 85 M 0 + 1.9 M 0 + 96 M

Table 4. Parameter number, time complexity and memory con-
sumption. MACs: multiply-accumulate operations, FLOPs: float-
ing point operations, Mem: intermediate data + essential output
for GPU memory consumption. We use n = 3 as maximum fre-
quency of OPE and test in training mode and test mode on Pytorch
with tool: torch.cuda.memory allocated(). Training mode: 482 to
2304 pixels, test mode: 5122 to 20482.

Method ×4 ×8 ×12 ×16 ×20 ×24 ×30

LIIF 382 1521 3530 6004 10274 18350 27866
LTE 376 1490 3340 5922 10268 18340 27838
OPE 277 1125 2495 3719 5673 8366 12012

Percentage 28% 26% 30% 39% 45% 55% 57%

Table 5. Rendering time of upsampling module (ms per image)
with an input resolution of 256 × 256. The last row shows the
time saving percentage achieved by our method. We use n = 3
as the maximum frequency of OPE. Our method provides a time
advantage, which increases as the rendering resolution increases.
On average, we achieve a 40% reduction in rendering time.

In-scale Out-scale
×2 ×3 ×4 ×6 ×8

OPE 33.29 30.29 28.65 26.46 24.98
OPE-E 33.27 30.23 28.56 26.34 24.82
OPE-I 33.28 30.26 28.63 26.44 24.97

OPE-IE 33.20 30.09 28.44 26.25 24.70

Table 6. Ablation studies on Set14. EDSR-baseline [35] is used
as encoder.

cannot be rescaled, resulting in periodic stripes in the result-
ing SR image. On the other hand, the OPE-I result shows no
obvious discontinuity between patches since the extension
plays a positive role, but this means that only a small region
of the patch is presented in the target image. Lastly, the
OPE-IE setting shows an obvious thick boundary between
patches, indicating that both extension and interpolation are
necessary for the best performance.

5. Discussions

We observed that our quantitative results decreases at
low scale factors, especially when the input size is small,

such as with benchmark datasets. See Tab. 3 and Tab. 2.
This is due to the fact that a smaller target size (W × H)
leads to a larger grid in the 2D domain ([−1, 1] × [−1, 1]),
where utilizing only one central point value to represent the
entire larger grid would result in a loss of detailed infor-
mation compared to a smaller grid. Since the 2D domain
we use is continuous, the higher the resolution of the tar-
get image, the stronger the representation ability we can
achieve. MLP-based representations, such as [5] and [32],
can overcome this issue through nonlinear operations. In
our method, this defect can be ignored for high SR scale
factors where pixels are dense, but for low scale such as ×2
or ×3, our performance may slightly degrade. A possible
way to address this issue is to sample more points for ev-
ery grid region and calculate their mean value, with careful
consideration of the time consumption trade-off.

6. Conclusion
In this paper, we proposed an interpretable method for

continuous image representation without implicit neural
networks. Our method leverages a novel position encod-
ing technique called orthogonal position encoding, which
takes the form a 2D-Fourier series and corresponds to 2D
image coordinates. As a set of orthogonal basis in inner
product space, OPE is both interpretable and rich in rep-
resentation. Building on OPE, we introduced the OPE-
Upscale Module, a parameter-free approach for arbitrary-
scale image super-resolution that simplifies the existing
deep SR framework, leading to high computing efficiency
and less memory consumption. Our OPE-Upscale Module
can be easily integrated into existing image super-resolution
pipelines, and extensive experiments demonstrate that our
method achieves competitive results with the state-of-the-
art.

It is worth noting that the overall efficiency of SR frame-
work depends on both the encoder and decoder. Since our
work focuses on decoder design and efficiency, we leave the
development of high-efficient encoder as future work.
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