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Abstract

By integrating certain optimization solvers with deep
neural networks, deep unfolding network (DUN) with good
interpretability and high performance has attracted grow-
ing attention in compressive sensing (CS). However, exist-
ing DUNs often improve the visual quality at the price of a
large number of parameters and have the problem of fea-
ture information loss during iteration. In this paper, we
propose an Optimization-inspired Cross-attention Trans-
former (OCT) module as an iterative process, leading to
a lightweight OCT-based Unfolding Framework (OCTUF)
for image CS. Specifically, we design a novel Dual Cross At-
tention (Dual-CA) sub-module, which consists of an Inertia-
Supplied Cross Attention (ISCA) block and a Projection-
Guided Cross Attention (PGCA) block. ISCA block intro-
duces multi-channel inertia forces and increases the mem-
ory effect by a cross attention mechanism between adja-
cent iterations. And, PGCA block achieves an enhanced
information interaction, which introduces the inertia force
into the gradient descent step through a cross attention
block. Extensive CS experiments manifest that our OCTUF
achieves superior performance compared to state-of-the-art
methods while training lower complexity. Codes are avail-
able at https://github.com/songjiechong/
OCTUF.

1. Introduction

Compressive sensing (CS) is a considerable research in-

terest from signal/image processing communities as a joint

acquisition and reconstruction approach [5]. The signal is

first sampled and compressed simultaneously with linear

random transformations. Then, the original signal can be re-

constructed from far fewer measurements than that required

∗Corresponding author. This work was supported in part by Shen-

zhen Research Project under Grant JCYJ20220531093215035 and Grant
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Figure 1. The PSNR (dB) performance (y-axis) of our OCTUF

and some recent methods (ISTA-Net [54], DPA-Net [44], AMP-

Net [60], MAC-Net [19], COAST [53], MADUN [41], CASNet

[7], TransCS [39], FSOINet [10], MR-CCSNet [16]) under differ-

ent parameter capacities (x-axis) on Set11 [24] dataset in the case

of CS ratio = 25%. Our proposed method outperforms previous

methods while requiring significantly cheaper parameters.

by Nyquist sampling rate [29, 38]. So, the two main con-

cerns of CS are the design of the sampling matrix [7, 16]

and recovering the original signal [60], and our work fo-

cuses on the latter. Meanwhile, the CS technology achieves

great success in many image systems, including medical

imaging [31, 45], single-pixel cameras [15, 37], wireless

remote monitoring [59], and snapshot compressive imag-

ing [4, 50, 51], because it can reduce the measurement and

storage space while maintaining a reasonable reconstruction

of the sparse or compressible signal.

Mathematically, a random linear measurement y ∈ R
M

can be formulated as y = Φx, where x ∈ R
N is the origi-

nal signal and Φ ∈ R
M×N is the measurement matrix with

M � N . M
N is the CS ratio (or sampling rate). Obviously,

CS reconstruction is an ill-posed inverse problem. To ob-

tain a reliable reconstruction, the conventional CS methods

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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commonly solve an energy function as:

argmin
x

1

2
‖Φx− y‖22 + λR(x), (1)

where 1
2 ‖Φx− y‖22 denotes the data-fidelity term for mod-

eling the likelihood of degradation and λR(x) denotes the

prior term with regularization parameter λ. For traditional

model-based methods [17, 20, 26, 32, 56, 57, 64], the prior

term can be the sparsifying operator corresponding to some

pre-defined transform basis, such as discrete cosine trans-

form (DCT) and wavelet [61, 62]. They enjoy the merits of

strong convergence and theoretical analysis in most cases

but are usually limited in high computational complexity

and low adaptivity [63]. Recently, fueled by the power-

ful learning capacity of deep networks, several network-

based CS algorithms have been proposed [24,44]. Although

network-based methods can solve CS problem adaptively

with fast inferences, the architectures of most of these meth-

ods are the black box design and the advantages of tradi-

tional algorithms are not fully considered [36].

More recently, some deep unfolding networks (DUNs)

with good interpretability are proposed to combine network

with optimization and train a truncated unfolding inference

through an end-to-end learning manner, which has become

the mainstream for CS [52–55, 60]. However, existing deep

unfolding algorithms usually achieve excellent performance

with a large number of iterations and a huge number of pa-

rameters [41,42], which are easily limited by storage space.

Furthermore, the image-level transmission at each iteration

fails to make full use of inter-stage feature information.

To address the above problems, in this paper, we

propose an efficient Optimization-inspired Cross-attention

Transformer (OCT) module as the iterative process and

establish a lightweight OCT-based Unfolding Framework

(OCTUF) for image CS, as shown in Fig. 2. Our OCT mod-

ule maintains maximum information flow in feature space,

which consists of a Dual Cross Attention (Dual-CA) sub-

module and a Feed-Forward Network (FFN) sub-module

to form each iterative process. Dual-CA sub-module con-

tains an Inertia-Supplied Cross Attention (ISCA) block and

a Projection-Guided Cross Attention (PGCA) block. ISCA

block calculates cross attention on adjacent iteration infor-

mation and adds inertial/memory effect to the optimization

algorithm. And, PGCA block uses the gradient descent step

and inertial term as inputs of Cross Attention (CA) block

to guide the fine fusion of channel-wise features. With the

proposed techniques, OCTUF outperforms state-of-the-art

CS methods with much fewer parameters, as illustrated in

Fig. 1. The main contributions are summarized as follows:

• We propose a lightweight deep unfolding frame-

work OCTUF in feature space for CS, where

the optimization-inspired cross-attention Transformer

(OCT) module is regarded as an iterative process.

• We design a compact Dual Cross Attention (Dual-CA)

sub-module to guide the efficient multi-channel infor-

mation interactions, which consists of a Projection-

Guided Cross Attention (PGCA) block and an Inertia-

Supplied Cross Attention (ISCA) block.

• Extensive experiments demonstrate that our proposed

OCTUF outperforms existing state-of-the-art methods

with cheaper computational and memory costs.

2. Related Work
2.1. Deep Unfolding Network

The main idea of deep unfolding networks (DUNs) is

that conventional iterative optimization algorithms can be

implemented equivalently by a stack of recurrent trainable

blocks. Such correspondence has been proposed to solve

different image inverse tasks, such as denoising [11, 25],

deblurring [23, 47], and demosaicking [22]. The solution is

usually formulated as a bi-level optimization problem:

min
Θ

∑
j=1

L(x̂j ,xj),

s.t. x̂j = argmin
x

1

2
‖Φx− yj‖22 + λR(x),

(2)

where Θ denotes the trainable parameters and L(x̂j ,xj)
represents the loss function of estimated clean image x̂j

with respect to the original image xj .

In the community of compressive sensing, DUN-based

methods usually integrate some effective convolutional neu-

ral network (CNN) denoisers into some optimization meth-

ods, e.g., proximal gradient descent (PGD) algorithm [7,

9, 10, 39, 41, 53, 54], approximate message passing (AMP)

[60], and inertial proximal algorithm for nonconvex opti-

mization (iPiano) [43]. Different optimization methods lead

to different optimization-inspired DUNs. In most DUNs,

the input and output of each iteration are inherently images

xj , which seriously hamper information transmission, re-

sulting in limited representation capability [58]. Recently,

some methods [10, 36] propose the idea of combining in-

formation flow into each iteration process in feature space

to enhance information transmission. However, existing so-

lutions usually lack flexibility in dealing with channel-wise

information and are beset by high model complexity. In this

paper, we present an efficient solution.

2.2. Vision Transformer

Inspired by the success of Transformers [46] in natu-

ral language processing, recent researchers also extend the

Transformer structure for various computer vision tasks,

e.g., image classification [14, 28], object detection [6, 66],

segmentation [35, 48]. Transformer-based methods are also

applied to image restoration tasks. PIT [8] is the first
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Figure 2. Architecture of our OCTUF, which consists of K iterations. x denotes the full-sampled image for training, y is the under-

sampled data and x(0) denotes the initialization. The feature X(k−1) and Z(k−2) are the inputs of our optimization-inspired cross-attention

Transformer (OCT) module that is the kth iterative process, and x̂ is the recovered result gotten from the output X(K) in the Kth iteration.

work to introduce Transformer to image restoration and

achieves promising performance in several image restora-

tion tasks. Subsequently, several novel designs are pro-

posed. [27,49] utilize the Swin Transformer [28] to perform

image restoration. Recently, Cai et al. [4] propose DAUF

based on DUN structure for spectral compressive imaging

where self-attention is widely adopted to build the basic

Transformer block and Shen et al. [39] design an ISTA-

based Transformer backbone for CS. These Transformers

are just included in the prior term and have nothing to do

with the data-fidelity term, so do not fully exploit the ad-

vantages of DUN. In this paper, we combine Transformer

and DUN to build an efficient CS framework.

3. Proposed Method
3.1. Overall Architecture

The proximal gradient descent (PGD) algorithm is a

well-suited approach for solving many large-scale linear in-

verse problems [12]. Recently, some research [2, 34] finds

that such an algorithm adding the inertial term always suc-

ceeds to converge to the global optimum. Ochs et al. [34]

propose an inertial proximal algorithm for nonconvex op-

timization (iPiano), which combines the gradient descent

term with an inertial force. Inspired by iPiano, the whole

update steps (for the kth iteration) can be expressed as:

s(k) =x(k−1) − ρ(k)Φ�(Φx(k−1) − y)

+ α(k)(x(k−1) − x(k−2)),
(3)

x(k) = argmin
x

1

2

∥∥∥x− s(k)
∥∥∥
2

2
+ λR(x), (4)

where x(k) is the output image of the kth iteration, y is the

sampled image, ρ(k), α(k) are the learnable step size param-

eters and Φ� is the transpose of the measurement matrix Φ.

Eq. (3) denotes the projection step, which introduces an

inertial term α(k)(x(k−1) − x(k−2)) to a gradient descent

term F(x(k−1)) = x(k−1) − ρ(k)Φ�(Φx(k−1) − y), re-

laxing the monotonically decreasing constraints and helping

to achieve a better convergence result [33]. As mentioned

previously, such traditional implementation lacks adaptabil-

ity and has information loss due to image-level inter-stage

transmission. To rectify these weaknesses, we propose a

Dual Cross Attention (Dual-CA) sub-module to achieve

feature-level transmission by adding a multi-channel iner-

tial force and enhancing the information interaction in the

projection step. Eq. (4) is achieved by a proximal map-

ping step which is actually a Gaussian denoiser. Here like

most DUNs, we implement it with a trainable model, i.e., a

Feed Forward Network (FFN) sub-module that is detailed

in Fig. 3(e). FFN consists of two sets of LayerNorm and

Feed Forward Block (FFB) with a global skip connection,

where the architecture of FFB is similar to [3].

Therefore, as the process in the kth iteration of OCTUF,

our Optimization-inspired Cross-attention Transformer

(OCT) module can be formulated as (k ∈ {1, 2, · · · ,K}):

S(k) = HDual-CA(X
(k−1),Z(k−2)), (5)

X(k) = HFFN(S
(k)), (6)

where S(k), X(k) ∈ R
H×W×C are the outputs in the fea-

ture domain, and Z(k−2) ∈ R
H×W×(C−1) is obtained by

clipping latter C−1 channels from X(k−2). For the first it-

eration, the input X(0) is generated by a 3×3 convolution

(Conv0 (·)) on the initialization x(0), and the inertial term

is not needed [34], as shown in Fig. 2. And the recovered

result x̂ is gotten by splitting the first channel from X(K).

Therefore, our proposed OCTUF can skillfully integrate

the inter-stage feature-level information and achieves the

perfect combination with the optimization steps.

3.2. Dual Cross Attention

To ensure maximum information flow and powerful fea-

ture correlation, we design a Dual Cross Attention (Dual-

CA) sub-module to efficiently fuse information in the pro-

jection step. As shown in Fig. 3(a), to make the network

more compact and maintain the potential mathematical in-

terpretation, we finely split the input X(k−1) ∈ R
H×W×C

into two chunks, including r(k−1) ∈ R
H×W×1 (from the

first channel) and Z(k−1) ∈ R
H×W×(C−1) (from the last C

− 1 channels). r(k−1) and Z(k−1) are the input of the gra-

dient descent term and the inertial term, respectively. So,

to make full use of the information of the multi-channel in-

ertial term, we design an Inertia-Supplied Cross Attention

(ISCA) block, yielding HISCA(Z
(k−1),Z(k−2)). And we

also propose a Projection-Guided Cross Attention (PGCA)

block to perform the fusion of the gradient descent term and

6176



so
ftm

ax

ISCA

Split

PGCA

FFN

1
1

G
EL

U

(a) OCT

(e) FFN

(b) Cross Attention

H×W×C

H×W ×(C-1)

H×W ×(C-1) H×W ×1

H×W ×(C-1)
H×W×C

H×W×C

LN
LN

Cross 
Attention

(c) ISCA

H×W ×(C-1)

H×W ×(C-1)

H×W ×(C-1) H×W×C H×W×CH×W×4C H×W×4C

HW ×(C-1)

(C-1)×HW

HW ×(C-1) (C-1)×(C-1)

H×W ×(C-1)

LN

GDB LN

Cross 
Attention

C
on

ca
t

(d) PGCA

H×W ×(C-1)

H×W ×1

H×W ×(C-1)

H×W×C

H×W ×(C-1)
R

HW ×(C-1)

R

R

R
H×W ×1

ොr(k-1)

FFB

3
3

D
co

nv

3
3

D
co

nv

G
EL

U

1
1

LN

2

1
1

1
1

1
1

LN Layer Normalization R Reshape

H×W ×(C-1) 3
3

D
co

nv

1
1

H×W ×(C-1) 3
3

D
co

nv

1
1

T

T Transpose

Dual-CA

Addition Matrix Multiplication

Figure 3. The architecture of Optimization-inspired Cross-attention Transformer (OCT) module. (a) OCT module consists of a Dual

Cross Attention (Dual-CA) sub-module which contains an Inertia-Supplied Cross Attention (ISCA) block and a Projection-Guided Cross

Attention (PGCA) block, and a Feed-Forward Network (FFN) sub-module. (b) Illustration of Cross Attention (CA) block, which is the

basic component of two attention blocks. (c) ISCA block is composed of Layer Normalization (LN) and CA. (d) PGCA block is composed

of Gradient Descent Block (GDB), LN, and CA. (e) FFN sub-module is composed of two sets of LN and Feed-Forward Block (FFB).

the inertial term in a more adaptive way. Therefore, our de-

signed Dual-CA sub-module can be formulated as follows:

S(k) = HPGCA(F(r(k−1)),HISCA(Z
(k−1),Z(k−2))).

(7)

Among ISCA and PGCA blocks, Cross Attention (CA)

plays an important role as the basic block. In the following

part of Sec. 3.2, we first introduce the Cross Attention block

and then present ISCA and PGCA blocks, respectively.

Cross Attention. Motivated by modeling complex rela-

tions for generating context-aware objects in multi-modal

task [65], we design a Cross Attention (CA) block to ag-

gregate the key information from the different components

in the projection step of deep unfolding network, as shown

in Fig. 3(b). The input Q comes from a different compo-

nent than V and K. They are first embedded by a 1×1
convolution (ConvV,K,Q (·)) to obtain feature with the size

being H×W×(C − 1). Then a 3×3 depth-wise convolu-

tion (DconvV,K,Q (·)) is used to encode channel-wise spatial

context. Finally, a reshape operation (R(·)) reformulates V,

K, and Q into tokens {V̂, K̂, Q̂} ∈ R
HW×(C−1). There-

fore, this process can be defined as the following function:
⎧⎪⎪⎨
⎪⎪⎩

V̂ = R(DconvV(ConvV(V))), (8a)

K̂ = R(DconvK(ConvK(K))), (8b)

Q̂ = R(DconvQ(ConvQ(Q))). (8c)

Next, a transposed attention map A ∈ R
(C−1)×(C−1) is

generated by applying softmax function to re-weight the

matrix multiplication K̂�Q̂, yielding

A = Softmax(K̂�Q̂), (9)

where K̂� denotes the transposed matrix of K̂. The ag-

gregation result is calculated as V̂A, which is reshaped

into the features of size R
H×W×(C−1). Finally, we apply

a 1×1 convolution ConvA(·) to enhance the feature extrac-

tion. Overall, the Cross Attention block is defined as:

GCA(V,K,Q) = ConvA(R(V̂A)). (10)

Cross Attention block helps to extract useful information

via channel-wise similarity with low computational cost.

Inertia-Supplied Cross Attention. As shown in Eq. (3),

the general inertial term usually adopts the simple oper-

ation by directly subtracting the adjacent iteration output,

which is proved to be ineffective in the ablation of Tab. 4.

To enrich the information interaction of the inertial term,

we introduce a multi-channel inertial term and propose an

Inertia-Supplied Cross Attention (ISCA) block. Our ISCA

block consists of LayerNorm (LN) function and CA block

as shown in Fig. 3(c). Specifically, we set the (k−2)th it-

eration output Z(k−2) as value (V
(k)
ISCA) and key (K

(k)
ISCA),

and we set the (k−1)th iteration output Z(k−1) as query
(Q

(k)
ISCA), pass through CA block after normalization by LN

function, so Ẑ(k−1) = HISCA(Z
(k−1),Z(k−2)) as:

V
(k)
ISCA, K

(k)
ISCA, Q

(k)
ISCA =

LN(Z(k−2)), LN(Z(k−2)), LN(Z(k−1)),

Ẑ(k−1) = GCA(V
(k)
ISCA,K

(k)
ISCA,Q

(k)
ISCA) + Z(k−1).

(11)

ISCA block adaptively learns more useful multi-channel in-

ertial force and enhances memory effect to our network.
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Table 1. Average PSNR(dB)/SSIM performance comparisons of recent deep network-based CS methods on Set11 dataset [24] with different

CS ratios. The best and second-best results are highlighted in red and blue colors, respectively.

Dataset Methods
CS Ratio

10% 25% 30% 40% 50% Average

Set11

ISTA-Net+ (CVPR 2018) [54] 26.58/0.8066 32.48/0.9242 33.81/0.9393 36.04/0.9581 38.06/0.9706 33.39/0.9197

DPA-Net (TIP 2020) [44] 27.66/0.8530 32.38/0.9311 33.35/0.9425 35.21/0.9580 36.80/0.9685 33.08/0.9306

AMP-Net (TIP 2020) [60] 29.40/0.8779 34.63/0.9481 36.03/0.9586 38.28/0.9715 40.34/0.9804 35.74/0.9473

MAC-Net (ECCV 2020) [9] 27.68/0.8182 32.91/0.9244 33.96/0.9372 35.94/0.9560 37.67/0.9668 33.63/0.9205

COAST (TIP 2021) [53] 28.74/0.8619 33.98/0.9407 35.11/0.9505 37.11/0.9646 38.94/0.9744 34.78/0.9384

MADUN (ACM MM 2021) [41] 29.91/0.8986 35.66/0.9601 36.94/0.9676 39.15/0.9772 40.77/0.9832 36.48/0.9573

CASNet (TIP 2022) [7] 30.36/0.9014 35.67/0.9591 36.92/0.9662 39.04/0.9760 40.93/0.9826 36.58/0.9571

TransCS (TIP 2022) [39] 29.54/0.8877 35.06/0.9548 35.62/0.9588 38.46/0.9737 40.49/0.9815 35.83/0.9513

FSOINet (ICASSP 2022) [10] 30.46/0.9023 35.80/0.9595 37.00/0.9665 39.14/0.9764 41.08/0.9832 36.70/0.9576

MR-CCSNet (CVPR 2022) [16] -/- 34.77/0.9546 -/- -/- 40.73/0.9828 -/-

OCTUF (Ours) 30.70/0.9030 36.10/0.9604 37.21/0.9673 39.41/0.9773 41.34/0.9838 36.95/0.9584

OCTUF+ (Ours) 30.73/0.9036 36.10/0.9607 37.32/0.9676 39.43/0.9774 41.35/0.9838 36.99/0.9586

Projection-Guided Cross Attention. In order to adap-

tively combine the gradient descent term and the inertial

term, we introduce a Projection-Guided Cross Attention

(PGCA) block in Fig. 3(d). Similar to ISCA block, PGCA

block captures rich feature information based on channel-

wise similarity. Specifically, given X(k−1), the input of gra-

dient descent term is gotten by its first channel (i.e., r(k−1)).

So, the calculation of the term has the following expression:

r̂(k−1) = r(k−1) − ρ(k)Φ�(Φr(k−1) − y). (12)

Next, r̂(k−1) and the ISCA output Ẑ(k−1) pass through Lay-

erNorm function and CA block, yielding

V
(k)
PGCA, K

(k)
PGCA, Q

(k)
PGCA =

LN(Ẑ(k−1)),LN(Ẑ(k−1)),LN(r̂(k−1)),

O(k) = GCA(V
(k)
PGCA,K

(k)
PGCA,Q

(k)
PGCA) + Ẑ(k−1).

(13)

It is worth noting that r̂(k−1) generates feature maps with

C−1 channels by ConvQ(·) of Eq. (8a) to enrich the feature

expression. Finally, O(k) and r̂(k−1) are concatenated, re-

shaped to match the original channel dimensions and mixed

with a 1×1 convolution (ConvO(·)):

S(k) = ConvO(Concat(O(k), r̂(k−1))). (14)

PGCA not only inherits the advantage of Eq. (3) but also

tactfully achieves the multi-channel feature fusion between

the gradient descent term and the inertial term.

3.3. Loss Function

Given a set of full-sampled images {xj}Na

j=1 and some

sampling patterns with the specific sampling rate, the com-

pressed measurements can be obtained by yj = Φxj , pro-

ducing the train data pairs {(yj ,xj)}Na
j=1. Our model takes

yj as input and generates the reconstruction result x̂j as

output. We employ the MSE loss function with respect to

xj and x̂j as following shows:

L(Θ) =
1

NNa

Na∑
j=1

‖xj − x̂j‖22, (15)

where Na and N represent the number of the train-

ing images and the size of each image respectively.

Θ denotes the learnable parameter set of our pro-

posed OCTUF and can be formulated as Θ =

{Φ,Conv0(·)}
⋃{H(k)

Dual-CA(·),H(k)
FFN(·)}Kk=1.

4. Experiments

4.1. Implementaion Details

For training, we use 400 images from the training and

test dataset of BSD500 dataset [1]. The training images

are cropped to 89600 patches of 96×96 pixel size with

data augmentation following [40]. For a given CS ratio
M
N , the corresponding learnable measurement matrix Φ is

constructed by a convolution layer with the kernel size of

M×1×√
N×√

N to sample the original image x. And

then, we utilize the transpose convolution whose kernel

weight is the sampling matrix to obtain initialization x(0).

For the network parameters, the block size is 32, i.e.
N = 1, 024, the default batch size is 16, the default number

of feature maps C is 32 and the learnable parameter ρ(k)

is initialized to 0.5. We use Adam [21] optimizer to train

the network with the initial learning rate, which decreased

to 5×10−5 through 100 epochs using the cosine annealing

strategy [10, 30] and the warm-up epochs are 3. For test-

ing, we utilize two widely-used benchmark datasets, yield-

ing Set11 [24] and Urban100 [13]. Color images are pro-

cessed in the YCbCr space and evaluated on the Y chan-

nel. Two common-used image assessment criteria, Peak

Signal to Noise Ratio (PSNR) and Structural Similarity

(SSIM), are adopted to evaluate the reconstruction results.

6178



DPA-Net
(33.85 dB)

MAC-Net
(34.28 dB)

FSOINet
(37.46 dB)

COAST
(35.21 dB)

OCTUF
(38.05 dB)

CS Ratio=25%

AMP-Net
(36.08 dB)

ISTA−Net
(33.72 dB)

MADUN
(37.46 dB)

MR-CCSNet
(36.10 dB)

OCTUF
(37.92 dB)

Figure 4. Comparisons on recovering an image from Set11 dataset [24] in the case of CS ratio = 25%.
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Figure 5. Comparisons on recovering an image from Urban100 dataset [13] in the case of CS ratio = 30%.

We also show the number of parameters and the computa-

tion cost (including the computations of the convolution, the

fully-connected layer and matrix multiplication) measured

in floating-point operations per second (FLOPs).

4.2. Qualitative Evaluation

We compare our proposed methods with recent rep-

resentative CS reconstruction methods. The average

PSNR/SSIM reconstruction performances on Set11 dataset

[24] with respect to five CS ratios are summarized in Tab. 1.

For our OCTUF, we set the iteration number as 10 and set

the initial learning rate as 5×10−4. To further improve the

model performance, we also present a plus version, namely

OCTUF+, whose iteration number is 16 and initial rate is

2×10−4. From Tab. 1, one can observe that our OCTUF and

OCTUF+ outperform all the other competing methods in

PSNR and SSIM across all the cases. On average, OCTUF+

outperforms ISTA-Net+ [54], DPA-Net [44], AMP-Net

[60], MAC-Net [19], COAST [53], MADUN [41], CAS-

Net [7], TransCS [39] and FSOINet [10] by 3.60 dB, 3.91

dB, 1.25 dB, 3.36 dB, 2.21 dB, 0.51 dB, 0.41 dB, 1.16 dB

and 0.29 dB in terms of PSNR on Set11 dataset, respec-

tively. In addition, the average SSIM of OCTUF+ can be

improved 0.0389, 0.0280, 0.0113, 0.0381, 0.0202, 0.0013,

0.0015, 0.0073 and 0.0010, respectively. Fig. 4 further show

the visual comparisons on challenging images when CS ra-

tio is 25%, which can be seen that our OCTUFs can recover

much clear edge information than other methods.

Furthermore, in Tab. 2, we compare OCTUFs with other

methods on Urban100 dataset [13] that contains more high-

resolution images and incorporates more abundant image

distributions. It shows that both OCTUF and OCTUF+

achieve a better reconstruction quality at all sampling ra-

tios. Fig. 5 presents the visual comparisons on challeng-

ing images. Our OCTUF and OCTUF+ generate images

that are visually pleasant and faithful to the groundtruth. It
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Table 2. Average PSNR(dB)/SSIM performance comparisons of recent deep network-based CS methods on Urban100 dataset [13] with

different CS ratios. The best and second best results are highlighted in red and blue colors, respectively.

Dataset Methods
CS Ratio

10% 25% 30% 40% 50% Average

Urban100

ISTA-Net+ (CVPR 2018) [54] 23.61/0.7238 28.93/0.8840 30.21/0.9079 32.43/0.9377 34.43/0.9571 29.92/0.8821

DPA-Net (TIP 2020) [44] 24.55/0.7841 28.80/0.8944 29.47/0.9034 31.09/0.9311 32.08/0.9447 29.20/0.8915

AMP-Net (TIP 2020) [60] 26.04/0.8151 30.89/0.9202 32.19/0.9365 34.37/0.9578 36.33/0.9712 31.96/0.9202

MAC-Net (ECCV 2020) [9] 24.21/0.7445 28.79/0.8798 29.99/0.9017 31.94/0.9272 34.03/0.9513 29.79/0.8809

COAST (TIP 2021) [53] 25.94/0.8035 31.10/0.9168 32.23/0.9321 34.22/0.9530 35.99/0.9665 31.90/0.9144

MADUN (ACM MM 2021) [41] 27.13/0.8393 32.54/0.9347 33.77/0.9472 35.80/0.9633 37.75/0.9746 33.40/0.9318

CASNet (TIP 2022) [7] 27.46/0.8616 32.20/0.9396 33.37/0.9511 35.48/0.9669 37.45/0.9777 33.19/0.9394

TransCS (TIP 2022) [39] 26.72/0.8413 31.72/0.9330 31.95/0.9483 35.22/0.9648 37.20/0.9761 32.56/0.9327

FSOINet (ICASSP 2022) [10] 27.53/0.8627 32.62/0.9430 33.84/0.9540 35.93/0.9688 37.80/0.9777 33.54/0.9412

OCTUF (Ours) 27.79/0.8621 32.99/0.9445 34.21/0.9555 36.25/0.9669 38.29/0.9797 33.91/0.9423

OCTUF+ (Ours) 27.92/0.8652 33.08/0.9453 34.27/0.9559 36.31/0.9700 38.28/0.9795 33.97/0.9432

Table 3. Ablation study of our approach on Set11 dataset [24] in the case of CS ratio = 50%. The best performance is labeled in bold.

Cases Dual-CA FFN LayerNorm Learning rate PSNR(dB) SSIM Parameters

(a) - - - 5e-4(warmup) 38.25 0.9759 0.72 M

(b) -
√ √

5e-4(warmup) 38.96 0.9783 0.72 M

(c)
√

-
√

5e-4(warmup) 41.16 0.9834 0.82 M

(d)
√ √

- 5e-4(warmup) 41.21 0.9834 0.82 M

(e)
√ √ √

1e-4(fix) 41.17 0.9834 0.82 M

(f)
√ √ √

2e-4(fix) 41.27 0.9836 0.82 M

(g)
√ √ √

5e-4(fix) 41.30 0.9837 0.82 M

OCTUF
√ √ √

5e-4(warmup) 41.34 0.9838 0.82 M

should be noted that the images on Urban100 dataset do not

satisfy a special constraint of MR-CCSNet [16] that all the

image sizes must be divisible by 4, so the performance of

MR-CCSNet is only presented on Set11 dataset.

4.3. Ablation Study

In this part, we conduct ablation studies on Set11 dataset

for our OCTUF whose iteration number is 10.

Break-down Ablation. We first conduct a break-down ab-

lation experiment in the case of CS ratio = 50% to inves-

tigate the effect of each component towards higher perfor-

mance. The results are listed in Tab. 3. Case (a) is our base-

line which contains ResBlock [18] with a similar number of

parameters as OCT module. When we successively apply

our FFN and Dual-CA sub-modules respectively, namely

Cases (b) and (c), the model achieves 0.71 dB and 2.91 dB

improvements. And the model can greatly enhance 3.09 dB

gains with little storage place when both sub-modules are

used together. We also discuss the effect of the LayerNorm

(LN) function in Case (d), which addresses that our OCTUF

achieves better performance with the LayerNorm function.

Note that without “LayerNorm” represents removing all LN

from our OCTUF. What is more, we train our models with

different learning rates as seen from Cases (e), (f), and (g).

“fix” denotes that the learning rate is not changed during

Table 4. Ablation of Dual-CA sub-module on Set11 dataset [24]

when CS ratio is 30%. “IF” denotes the inertial force achieved by

the easy way and “FD” denotes the enhanced iterative process in

the feature domain. The best PSNR(dB) is labeled in bold.

Cases FFN GDB IF FD PGCA ISCA PSNR

(a)
√

- - - - - 34.59

(b)
√ √

- - - - 35.93

(c)
√ √

-
√

- - 36.82

(d)
√ √ √ √

- - 36.83

(e)
√ √

-
√

-
√

37.13

(f)
√

- -
√ √

- 37.08

OCTUF
√

- -
√ √ √

37.21

training, and “warmup” denotes that the training strategy is

the same with our work as shown in Sec. 4.1. Our proposed

OCTUF has a stable training process with large learning

rates and meanwhile, we use the “warmup” strategy to im-

prove its anytime performance when training.

Dual Cross Attention. We also do elaborate ablation ex-

periments on the components of Dual-CA sub-module in

the case of CS ratio = 30% in Tab. 4, where “IF” de-

notes the inertial force achieved by a simple way similar

to Eq. (3) and “FD” represents that the overall iteration pro-

cess is achieved in feature domain. Case (b) achieves 1.34

dB improvement compared with Case (a), which proves the

superiority of DUN compared with the structure that only
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w/o Dual-CA w/o PGCA w/o ISCA OCTUF

Figure 6. Visual analysis of the feature map in the fifth iteration of

our proposed OCTUF. It shows that both ISCA and PGCA blocks

pay more high-fidelity attention to details.

Table 5. Ablation of Feed-Forward Network on Set11 dataset [24]

when CS ratio = 30%. The best performance is labeled in bold.

Method Baseline LN+FFB LN+2×FFB Ours

PSNR(dB) 37.05 37.04 37.12 37.21
SSIM 0.9663 0.9664 0.9672 0.9673

Parameters 0.61 M 0.52 M 0.61 M 0.61 M

contains a neural network. Then, the performance can con-

tinuously improve by 0.89 dB after using “FD” shown in

Case (c). We also conduct fine contrast experiments for the

inertial force in Cases (c), (d), and (e), demonstrating that

our ISCA block can more fully play the role of inertia force.

And as shown in Cases (e)(f), applying PGCA and ISCA

blocks can get better performance. Our proposed Dual-CA

sub-module takes into account the gradient descent algo-

rithm and the inertial force, allocates the different channels

reasonably, and gives full play to the structural character-

istics. Tab. 4 should be also noted that “GDB” is included

in “PGCA” so it is not selected when “PGCA” is selected.

Moreover, to intuitively show the advantages of Dual-CA

sub-module, we visualize the feature map in the fifth itera-

tion for four cases. The result in Fig. 6 presents that both our

ISCA and PGCA blocks pay more high-fidelity attention to

the detailed contents and structural textures.

Feed-Forward Network. As shown in Fig. 3 (e), our

proposed Feed-Forward Network (FFN) sub-module con-

sists of two groups of LayerNorm and Feed-Forward Block

(FFB) with a global skip connection. We do ablations to in-

vestigate the effects of the group number and LayerNorm

(LN) number in Tab. 5. “Baseline” is the same setting

with Case (c) of Tab. 3, “LN+FFB” denotes one group, and

“LN+2×FFB” denotes that Norm is only added to the first

group. Therefore, as can be seen from the table, our pro-

posed method achieves the best performance.

4.4. Complexity Analysis

The computation cost and model size are important in

many practical applications. Tab. 6 provides the compar-

isons of the parameters, the model size, and FLOPs for re-

constructing a 256×256 image when CS ratio is 10%. CAS-

Net [7] designs a complex sampling network and recon-

struction network, which has a large number of parameters

and computational overhead. Our OCTUFs have the same

parameters/cost for the sampling process with MADUN and

Table 6. Comparison of the parameters, the model size and FLOPs

for reconstructing a 256×256 image in the case of CS ratio =
10%. The best performance is labeled in bold.

Method MADUN CASNet FSOINet OCTUF OCTUF+

Params.(M) 3.14 16.90 0.64 0.40 0.58

Size(MB) 11.9 66.3 7.8 5.2 7.5

FLOPs(G) 419.2 13391.5 266.6 189.3 294.6

Figure 7. Comparison of robustness to Gaussian noise.

FSOINet, but use fewer parameters and less computation

burden to produce much sharper recovered images.

4.5. Sensitivity to Noise

In the real application, the imaging model may be af-

fected by noise and currently, no real open dataset is suit-

able for such CS reconstruction methods. So to test the ro-

bustness of our designed OCTUF, we first add the Gaus-

sian noise with different noise levels to the original images

for Set11 dataset. Then, OCTUF and the other methods

take the noisy images as input, and sample and recover the

reconstruction images when CS ratios are 10% and 25%.

Fig. 7 shows the plots of PSNR values of all methods ver-

sus various standard variances noise. It can be seen that our

OCTUF possesses strong robustness to noise corruption.

5. Conclusion
In this paper, we propose a novel optimization-inspired

cross-attention Transformer (OCT) module as an iteration,

leading to a lightweight OCT-based unfolding framework

(OCTUF) for CS. Specifically, we present a Dual Cross At-

tention (Dual-CA) sub-module, which contains an inertia-

supplied cross attention (ISCA) block and a projection-

guided cross attention (PGCA) block as the projection step

in iterative optimization. ISCA block precisely helps to

achieve a good convergence by introducing a feature-level

inertial term. PGCA block utilizes a cross attention mecha-

nism to fuse the gradient descent term and the inertial term

while ensuring the maximum information flow. Extensive

experiments show that our OCTUF achieves superior per-

formance compared to state-of-the-art methods with lower

complexity. In the future, we will extend our OCTUF to

other image inverse problems and video applications.
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