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Abstract

This paper addresses the problem of robust deep single-
image reflection removal (SIRR) against adversarial at-
tacks. Current deep learning based SIRR methods have
shown significant performance degradation due to unno-
ticeable distortions and perturbations on input images. For
a comprehensive robustness study, we first conduct diverse
adversarial attacks specifically for the SIRR problem, i.e.
towards different attacking targets and regions. Then we
propose a robust SIRR model, which integrates the cross-
scale attention module, the multi-scale fusion module, and
the adversarial image discriminator. By exploiting the
multi-scale mechanism, the model narrows the gap between
features from clean and adversarial images. The image dis-
criminator adaptively distinguishes clean or noisy inputs,
and thus further gains reliable robustness. Extensive ex-
periments on Nature, SIR2, and Real datasets demonstrate
that our model remarkably improves the robustness of SIRR
across disparate scenes.

1. Introduction
Single image reflection removal (SIRR) is a classic topic

in the low-level image processing area, namely a kind of
image restoration. When taking an image through a trans-
parent surface, a reflection layer would be blended with the
original photography (i.e. the transmission layer), resulting
in imaging corruptions. The SIRR is devoted to recovering
a clear transmission image by removing the reflection layer.
However, the SIRR is fundamentally ill-posed [42] that
there could be an infinite number of transmission and re-
flection decompositions from a blended image. Therefore,
traditional methods often exploit manual priors to optimize
the layer separation, such as gradient sparsity prior [25] and
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Figure 1. The PSNR measurements of our approach under dif-
ferent kinds of adversarial attacks. ‘Clean’ indicates no-attacks,
‘MSE FR’ represents attacking on Full Region with MSE objec-
tive, and so on. The testing result is from Nature dataset [26].

relative smoothness prior [27]. These priors are often vio-
lated when facing complex scenes. Recently, deep learning
based methods [10, 16, 55] have attracted considerable at-
tention to tackle the SIRR problem. By learning semantic
and contextual features, deep SIRR methods have achieved
much better quality of the recovered images.

However, deep neural networks are often vulnerable to
visually imperceptible adversarial perturbations [14, 29].
The prediction can be totally invalid even with slight and
unnoticeable attacks on inputs. Similarly, such vulnerability
is also an important issue for the deep SIRR problem, and
the robustness of current methods has not been thoroughly
studied. There have been no benchmarks and evaluations
for the robustness of deep SIRR models against intended
attacks. Meanwhile, general defense methods [44] have not
been applied to SIRR models. Accordingly, the robust SIRR
model is still a crucial and desiderate research problem.

In this paper, we first investigate the robustness of deep
SIRR methods. We apply the widely-used and powerful
attack method PGD [29] to generate adversarial samples.
For completeness of the robustness evaluation, we present
various attack modes by referring [3, 48]. Specifically, we
employ different attack objectives i.e. mean squared er-
ror (MSE) and learned perceptual image patch similarity
(LPIPS) [52], as well as different attack regions, i.e. the
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full image region (FR), the reflection region (RR), and the
non-reflection region (NR). Through a systematic analy-
sis, the most effective attack mode and currently the most
robust SIRR model are identified. Then we conduct ad-
versarial training based on this model to enhance its ro-
bustness. In order to develop a furthermore robust SIRR
model, we borrow the wisdom of multi-scale image pro-
cessing [19] and adversarial discriminating [56] from pre-
vious defense methods. Consequently, we build a new
robust SIRR model based on the image transformer [41],
which integrates the cross-scale attention module, the multi-
scale fusion module, and the adversarial image discrimi-
nator. The proposed method obtains significant improve-
ments in robustness. Fig. 1 reveals the PSNR changes of
our model prediction under distinct attack modes on the Na-
ture dataset [26]. It is notable that our model yields limited
degradations against perturbed images when compared with
input clean images.

Overall, our main contributions can be summarized be-
low. (1) We present a comprehensive evaluation of existing
deep SIRR methods in terms of their robustness against var-
ious adversarial attacks on diverse datasets. Extensive ex-
perimental studies suggest presently the most effective at-
tack and the most robust SIRR model. (2) We propose a
novel transformer-based SIRR model, which integrates sev-
eral relatively-robust modules to defend against adversarial
attacks. The model can mitigate the effects of perturbations
and distinguish clean or polluted inputs as well. (3) We
carry out sufficient experiments to analyze the robustness
of the proposed method, which achieves state-of-the-art sta-
bility against adversarial images. The model performs supe-
rior reflection removal robustness on distorted images while
maintaining favorable accuracy on original clean images.

2. Related Work

2.1. Single-image reflection removal

Recently, deep learning-based methods have achieved
remarkable success in image restoration [49–51], which
also includes reflection removal [12, 40]. Existing methods
can be divided into one-stage and multi-stage methods.
One-stage methods. Zhang et al. (ZN18) [53] apply con-
ditional GAN [17] into the network and utilize perceptual
information. Wei et al. (WY19) [42] introduce alignment-
invariant loss to solve the training problem of unaligned
real-world images. Wen et al. (WT19) [43] provide a net-
work to predict the transmission layer, the reflection layer,
and the alpha blending mask. Kim et al. (KH20) [22] pro-
pose a physically-based method for synthesizing images
while taking into account the spatial variability of the vi-
sual effects of reflections.
Multi-stage methods. Fan et al. [12] are the first to use
a two-stage deep learning network for estimating edges and

reconstructing images respectively. Yang et al. (YG18) [46]
present a multi-stage network that can sequentially estimate
two layers. Li et al. (LY20) [26] introduce Long Short-Term
Memory (LSTM) into the long cascade network to prevent
gradient vanishing. Specifically, Chang et al. (CL21) [5]
introduce a three-stage network, which first train the edge
detector to obtain more edge information, then a reflection
classifier for constraints and objectives, and final apply the
decomposition mechanism to the final network training. Hu
and Guo (HG21) [16] propose a general rule for deep inter-
active learning which means that the two branches should
communicate with each other frequently by exchanging,
rather than discarding useless information. Zheng et al.
(ZS21) [55] propose a two-stage network considering the
absorption effect in reflection removal, which first estimates
the absorption effect and then takes it and a blended image
as the input.

2.2. Adversarial Attacks and Defenses

Deep neural networks can misclassify images under the
influence of imperceptible perturbations [1, 38, 54]. These
perturbations are calculated by maximizing the prediction
error of the network, which are called ”adversarial exam-
ples”. Szegedy et al. [38] propose the limited-memory
BFGS (L-BFGS) attack, and convert the proposed opti-
mization problem into an easily solvable box constraint
form. Goodfellow et al. [14] propose the Fast Gradient
Sign Method (FGSM) to generate adversarial examples that
always tend to the direction of the gradient with a single
gradient step. Unlike [14], Miyato et al. [31] calculate
the adversarial perturbation based on the gradient value.
Moosavi-Dezfooli et al. [32] propose a DeepFool algorithm
to calculate the minimum necessary perturbations. Unlike
the above one-step methods, Madry et al. [29] propose a
multi-step solution method called Projected Gradient De-
scent (PGD).

To protect the security of deep learning models, there are
many different strategies towards adversarial attacks, which
can be basically divided into three categories, including gra-
dient masking [2,35], robust optimization [15,24,29,34,39,
56] and adversarial examples detection [4, 45]. Gradient
masking is to hide the gradient, since most attacks leverage
the gradient of the network. Robust optimization is to train
the network on adversarial samples, which can learn how to
restore the ground truth from adversarial perturbations and
perform robustly. Adversarial examples detection is to learn
to distinguish normal samples and adversarial samples and
to prohibit the input of the latter.

Recently, the research about model robustness against
adversarial attacks is thriving on the low-level computer
vision applications, e.g. super-resolution [8, 33, 47], derain
[48], deblurring [13]. Choi et al. [8] apply the adversarial
attack to the super-resolution and evaluate all deep learning-
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based methods towards adversarial attack. Yu et al. [48] are
the first to investigate adversarial attack in rain removal sce-
narios. They systematically evaluate the advantages of each
module in existing methods for adversarial attacks and se-
lect effective modules to form their own model. Gandikota
et al. [13] introduce adversarial attack in to image deblur-
ring and evaluate te robustness of the models.

However, there is still no research on robust network to-
wards adversarial attack in image reflection removal. An
evaluation on adversarial attacks is necessary, and so are
appropriate attack methods.

3. Attacks on Single Image Reflection Removal
The purpose of adversarial attacks is to generate slight

perturbations on the input image, which are visually im-
perceptible but will deteriorate the prediction of deep SIRR
networks. For adversarial perturbation generation, we uti-
lize a classic optimization based approach PDG [29], which
has been considered as a baseline attack method in some
robustness evaluation works [48, 56].

Mathematically speaking, a captured image I is typically
formulated as a linear addition of a transmission layer T and
a reflection layer A, i.e. I = T + A. Given a pre-trained
deep SIRR model f(∗), it recovers the transmission image
T from I , i.e. T .

= f(I). In order to fool the deep model
f(∗), slight perturbations δ are generated and added to I in
a pixel-wise manner on the region of interest, deriving an
attacking sample I ′. The values of δ are within [−ϵ, ϵ] to
guarantee that perturbations are visually unnoticeable. Let
R denote the attack region, where attacked regions are set to
1 ( otherwise 0), and O represents the objective to measure
the output degradation. Then the attacking image can be
obtained by:

I ′ = I +R · δ, (1)

where · denotes the element-wise multiplication. Subse-
quently, perturbations are optimized by maximizing the de-
viation of the attacked output from the original output.

δ = arg max
∥δ∥≤ϵ

O(f(I), f(I ′)). (2)

PGD [29] is adopted to solve the optimization problem it-
eratively. After T times of updating, the final perturbations
δ∗ are derived.

For a more comprehensive attack analysis, we define two
types of attack objectives and three different attack regions.
Inspired by [48], one objective is from the aspect of pixel-
wise image discrepancy, and the other objective focuses on
the high-level perceptual similarity of output images. De-
tails of the two objective functions are as follows.

- Mean Squared Error (MSE) directly measured on out-
put images:

O = ∥f(I)− f(I ′)∥2 . (3)

- Learned Perceptual Image Patch Similarity (LPIPS)
measured by a neural network-based function ℓlpips
[52]:

O = ℓlpips(f(I), f(I
′)). (4)

The attack regions are concerned with whether one pixel
is mixed with reflection or not. If the discrepancy between
the blended and transmission images exceeds an empirical
tolerance θ, we consider this pixel into a reflection region.
Thereby, the three attack regions are given specifically be-
low.

- Full Region (FR) attack working on the whole image:

R = 1. (5)

- Reflection Region (RR) attack working on pixels of
great change:

R = abs(f(I)− I) > θ. (6)

- Non-reflection Region (NR) attack particularly work-
ing on unchanged pixels:

R = abs(f(I)− I) ≤ θ. (7)

By combining the above objective attacks and regional
attacks, we formulate six attack modes. In order to evaluate
model performance, we calculate the PSNR and SSIM be-
tween predicted outputs and the ground truth transmission
images Tgt from labeled datasets. The original and the de-
graded outputs are widely compared for better analysis of
robustness. To summarize, the evaluation metrics are listed
below.

m1 = PSNR(f(I), Tgt),m2 = PSNR(f(I ′), Tgt),

m3 = SSIM(f(I), Tgt),m4 = SSIM(f(I ′), Tgt),
(8)

4. Robust SIRR Model
The overall architecture of the proposed network is illus-

trated in Fig. 2. It consists of a cross-scale image encod-
ing stream, a multi-scale feature decoding stream, and an
adversarial image discriminator (AID) controlling three dy-
namic convolution [6] modules (D-Conv). A blended image
is first downsampled to its 1/2 scale and its 1/4 scale. Then
using the cross-scale attention module, multi-input images
are gradually taken into the encoding stream to obtain multi-
scale deep features. Afterward, the decoding stream ex-
ploits multi-scale fusion modules to aggregate these fea-
ture maps to recover the output transmission images. Based
on the perturbations of the input image, the AID gener-
ates the weights to compute dynamic convolution kernels.
Hence, the main network could be adversarially-aware, and
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Figure 2. The overall architecture of our approach for robust single image reflection removal.

it is able to adaptively handle clean and corrupted inputs.
Our model is mainly motivated by the robustness consider-
ation. Inspired by previous research on visual attacks and
defenses, there are three key ideas for robustness enhance-
ment.

The first idea aims at the multi-scale image processing
strategy, which has been verified as robust against adver-
sarial attacks [19, 44]. We exploit the multi-input single
encoder structure [7], i.e. the cross-scale attention module,
which combines downsized high-level features and low-
level features from downsized inputs to handle diverse im-
age perturbations. Then instead of the typical skip connec-
tion, we utilize the multi-scale fusion module for further
aggregating multi-scale complementary information. Im-
plementation details of these two modules are introduced in
the following subsections.

The second idea is to use transformer blocks as feature
extractors. It is reported that attention operations can indeed
improve the robustness of deep derain models [48]. Since
SIRR is the same type of low-level vision task as derain, a
similar insight could be migrated to the robust SIRR model.
Therefore, we apply efficient RestoreFormer blocks [41] to
construct feature extractors at different stages.

The third idea comes from the adversarial examples de-
tection strategy, which learns to distinguish normal and ad-
versarial samples. Furthermore, AID [56] upgraded this
idea by generating adaptive convolution kernels with re-
spect to different samples. We also employ the AID to offer
dynamic convolutions on clean and corrupted images. No-

tably, existing adversarial training methods suffer from the
bottleneck in that there could be a significant degradation
on clean inputs while improving limited adversarial robust-
ness [56]. AID is able to alleviate the issue to a certain
extent.

4.1. Cross-Scale Attention Module

As aforementioned, this module combines two kinds of
image features, i.e. the high-level feature from the deep
main network, and the low-level feature from a shallow
branch network. The structure of this module is demon-
strated by the yellow boxes in Fig. 2. The left input stream
takes the downsized image to extract features using a convo-
lution block (CB). Then the features are concatenated with
the input, and further refined by a convolution layer (CL1)
to derive low-level features. We denote the downsized im-
age as Idown, then the low-level features Flow is calculated
by:

Flow = CL1(Idown c⃝ CB(Idown)), (9)

where c⃝ denotes the channel-wise concatenation.
The top input stream takes features Fhigh from the previ-

ous feature level. Fhigh is first multiplied with Flow to ob-
tain an attention map, following a convolution layer (CL2)
to smooth the attention map. The attention map is added
to the original high-level features to derive the final output
features Fout. This process is described below.

Fout = CL2(Fhigh ∗ Flow) + Fhigh. (10)
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4.2. Multi-Scale Fusion Module

For better aggregating encoding features, the multi-
scale fusion module is conducted throughout the decoder
by densely exchanging the information across the multi-
resolution features. The structure of this module is shown
by the blue boxes in Fig. 2. Here, we describe an example
of fusing three-scale feature maps, as illustrated in Fig. 2.
Fusion two scales or four scales can be easily derived.

In this example, the left input stream takes three scales
of encoding feature maps, e.g. F×2, F×1, and F1/2, and
the corresponding output feature map is F out

×1 . Firstly, the
feature map at scale 1/2 is resized to the current scale by bi-
linear upsampling, while the feature map at scale 2 is down-
sampled half-scale using mean pooling. The feature map at
the proper scale as the output is copied for later fusion. The
fusion step concatenates re-sampled feature maps, and then
several convolutional layers are adopted for fusing across
multi-resolution features. The fused feature map is concate-
nated with features Fbtm from the bottom input stream to
obtain the final output. This fusion process can be formu-
lated as follows,

F out
×1 =CB(Up(F1/2) c⃝ F×1 c⃝ Down(F×2))

c⃝ Fbtm

, (11)

where the Up(·) and Down(·) denote the upsampling and
downsampling operation respectively. The CB(·) repre-
sents convolutional blocks.

4.3. Adversarial Image Discriminator

In order to make our model discriminative to clean and
adversarial inputs, the AID is employed to control several
convolution kernels of the SIRR network. Before extracting
features from the input image, the AID could first generate
K probability vectors of the image. Then these vectors are
devoted to calculating the convolution kernels of specific
dynamic convolution layers. In the proposed SIRR model,
we use three such dynamic layers. One dynamic layer is
inserted before the encoder, one is embedded after the de-
coder, and the last one is used to generate the output. This
arrangement balance the network’s ability to learn shared or
distinctive features.

4.4. Adversarial Training

We train the proposed method with both clean and adver-
sarial samples. The training loss of the proposed network
consists of one online triplet loss [36] to discriminate clean
and adversarial inputs, along with three supervised losses to
minimize the discrepancy between prediction outputs and
the ground truth.
AID Loss. According to [56], the AID learns to distinguish
the clean and adversarial inputs by measuring the distance

between probability distributions of two kinds of image out-
puts. Let Din denote the AID model. Given an anchor in-
stance Ia, a positive instance Ip (i.e. same type of clean or
adversarial image with Ia), and a negative instance In, the
AID loss is defined as follows,

Laid = clip(0,+∞)(JS(Din(Ia)||Din(Ip))−
JS(Din(Ia)||Din(In)) + γ)

, (12)

where JS(∗||∗) is the Jensen-Shannon divergence [28], and
γ is an empirical margin.
Euclidean Loss. Basically, the SIRR problem is modeled
as an end-to-end image translation problem, namely using a
generator to estimate the transmission image from a single
blended image. For training the generator, the pixel-level
discrepancy between the network output and the ground
truth is usually the fundamental loss function. Given the
network output Tpred = f(I) or f(I ′) and the correspond-
ing ground truth image Tgt, this Euclidean loss is defined as

L1 = ||Tpred − Tgt||1. (13)

GAN Loss. In order to restore realistic transmission im-
ages, the GAN loss is also widely used. Thus, we suggest
building a discriminator referring to the LSGAN [30]. The
discriminator Dout is trained along with the generator f by
applying alternating gradient updates. For training stability,
we adopt the relativistic cost function [21], which is defined
as:

Ladv =E[(Dout(Tgt)− E[Dout(Tpred)]− 1)2]+

E[(Dout(Tpred)− E[Dout(Tgt)] + 1)2]
, (14)

where E measures the average of the discriminative value
of real and fake image pools. The GAN loss for optimiz-
ing the generator is to minimize Eq. (14). Additionally, it is
observed in the PatchGAN [18] that sharper results are pro-
duced by using the discriminator on ‘local’ image patches
rather than on the ‘global’ full image. Correspondingly, we
adopt a combination of the local and global discriminator,
and derive a double-scale objective [23] as:

Ladv = αLadv1 + Ladv2, (15)

where Ladv1 optimizes the generator using Eq. (14) on local
patches, α is the corresponding local weights, and Ladv2

measures over the full image.
Perceptual Loss. We utilize the perceptual loss [20], which
measures high-level perceptual and semantic feature dis-
tances between images. This loss is computed over different
activation maps from VGG-19 [37], which is usually pre-
trained on ImageNet [9]. The VGG-19 model is denoted as
ϕ and the perceptual loss is computed using

Lfeat =

5∑
i=1

||ϕi(Tpred)− ϕi(Tgt)||1, (16)
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where ϕi calculates the feature map after layers relu1_1,
relu2_1, relu3_1, relu4_1, and relu5_1 respec-
tively.

The overall loss of our robust SIRR model is a linear
combination of the above objectives. We empirically set
the coefficients of each loss term, and then the final loss
function is given as follows,

L = λℓ1L1 + λadvLadv + λfeatLfeat + λaidLaid. (17)

5. Experiments
We first conduct adequate attacking experiments to eval-

uate the robustness of existing deep SIRR models. Then,
based on the thorough analysis, we select a baseline model
among these models. After adversarial training, we carry
out sufficient experiments to compare the performance of
the proposed method and the baseline method. Key compo-
nents of our model are also evaluated via an ablation study.

5.1. Robustness Evaluation

Dataset. For the training dataset, we use both synthetic
and real data, following [16, 42]. In terms of the synthetic
data, we synthesize 7, 643 cropped images from PASCAL
VOC 2012 dataset [11]. In terms of the real data, we adopt
90 real-world training images from [53]. For the testing
dataset, we use the public dataset, e.g. Nature [26], SIR2

[40], and Real dataset [53].
SIRR methods. We consider six state-of-the-art deep learn-
ing SIRR methods with various parametric quantities and
modules, e.g. WY19 [42], WT19 [43], LY20 [26], CL21 [5],
HG21 [16], and ZS21 [55]. Tab. 1 shows their characteris-
tics in terms of the number of parameters and the modules.
Attack Levels. We utilize the PGD [29] to solve
the optimization problem. For a more comprehen-
sive evaluation, we set the perturbation level ϵ ∈
{1/255, 2/255, 4/255, 8/255}. We set the iteration num-
ber T = 20 in MSE attack objective and T = 30 in LPIPS
attack objective.

Fig. 3 compares the PSNR performance of deep SIRR
methods under different attack objectives and different at-
tack regions. As the perturbation level ϵ increases, the out-
put quality degrades clearly. In some cases, e.g. HG21 [16]
in subfigure (a), the PSNR has halved from 20 to 10 when
ϵ = 8/255. The visualization results are more intuitive as
shown in Fig. 4. For HG21, the perturbed input image (a)
has no visual difference from the original input image, but
the prediction result (c) is totally corrupted compared to the
original prediction (b). These results indicate that the at-
tack method is effective in terms of various attack regions
and different attack objectives. More visualization results
can be found in the supplementary material. Although all
methods show similar degradation trends against adversar-
ial attacks, there are still differences with respect to attack

Table 1. Properties of deep SIRR methods. GAN denotes that the
GAN loss is used. AT, RB denote attention module and residual
blocks respectively. LSTM means using the LSTM mechanism.

Method Para. GAN AT RB LSTM
WY19 [42] 18M ✓ ✓ ✓
WT19 [43] 65M
LY20 [26] 24M ✓ ✓ ✓
CL21 [5] 275M
HG21 [16] 39M ✓ ✓
ZS21 [55] 38M ✓
Ours 25M ✓ ✓ ✓

modes. Besides, existing models show relatively superior
or inferior robustness.
Attack mode comparison. By comparing the first three
columns with the corresponding last three columns in Fig. 3,
e.g. (a) and (d), it is observed that the MSE attack shows
shaper decreasing trends than the LPIPS attack. In terms of
attack regions, we notice that attack on the full region (the
first row) or non-reflection region (the last row) is much
more stable than on reflection regions (the middle row).
SIRR models natively consider reflection regions as distor-
tions and aim to remove the reflection effects. Perturbations
on reflection regions may be judged to be reflection itself,
which makes attacks on these regions much harder.
Robustness comparison. Generally, the robustness of
SIRR methods is unsatisfactory because there is no adver-
sarial training conducted. Among these SIRR methods,
ZS21 [55] shows relatively robust in some conditions, e.g.
in Fig. 3 (j), (m), (o), (p). However, its PSNR performance
is not competitive. By contrast, WY19 [42] maintains high
image quantity and exhibits robustness in Fig. 3 (d), (h),
(k), (p). According to Tab. 1, WY19 utilizes the attention
mechanism, residual blocks, and the GAN loss, which are
summarized as the key components for robustness in [48]. It
is also worth noticing that our model (the triangle pink line
in Fig. 3) presents superior robustness under these attacks.

5.2. Robust SIRR Results

Since WY19 [42] is relatively the most robust model, we
use it as the baseline model to compare with our model.
For making a fair comparison, we train the WY19 model
adversarially, thus bringing its robustness into full play.
As a multi-stage pipeline, WY19 utilizes a VGG-19 pre-
trained on ImageNet to extract fundamental features as in-
put to the main network. WY19 may benefit from this way
when training on small datasets. Nevertheless, we still bring
the pre-trained VGG-19 into adversarial training. We also
train another model of our method, which only uses clean
training samples accordingly. Specifically, we set the AID
loss Eq. (12) to constant zero and keep the rest loss func-
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Figure 3. Comparison of the PSNR values with respect to perturbation levels ϵ for different attacks on various datasets. ‘MSE FR Nature’
represents attacking on Full Region with MSE objective on the Nature [26] dataset, and so the others. Best view by zooming in.
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Figure 4. Visual comparison by attacking with ϵ = 8/255. The attack is on the full region with MSE objectives. The left column is the
original blended image and the ground truth transmission image. Subfigures (a), (b), and (c) are perturbed input images, the output of
inputting the original image, and the output of inputting the perturbed images, respectively. Best view by zooming in.

tions. We analyze the model robustness from two perspec-
tives, i.e. the output degradation of inputting adversarial im-
ages over inputting clean ones, and the output performance
of inputting clean images before and after adversarial train-
ing. Besides, we further conduct the ablation study to eval-
uate key components of our model.
Robustness analysis. The quantitative results of the base-
line and our method are reported in Tab. 2. Without ad-
versarial training, our method gets better PSNR and SSIM
on clean images. Yet, under the MSE or LPIPS attack,
the performance of our model decreases more significantly
than WY19. Taking PSNR on the Nature dataset as an ex-
ample, our method outperforms the baseline, saying 20.33
vs. 19.54. Whereas, when attacked by the MSE objec-
tive, our result drops by 9.98 to 10.35, while the baseline
only decreases to 11.86. The same issue is widely verified
on the other two datasets regardless of which attack mode
is adopted. As mentioned above, it is understandable that

WY19 is based on features from a pre-trained model. Since
many data augmentation methods have been used to train it,
the model can be stable to limited input perturbations. By
contrast, adversarial training alleviates the effects of pertur-
bation inputs. When the MSE attack is applied to WY19
and our method, the reductions of PSNR on the Nature
dataset become 2.26 and 1.79 respectively. This indicates
the robustness improvement, and our method predicts the
output more steadily. According to testing results in Tab. 2,
our method shows great robustness over WY19 on the Na-
ture and Real dataset. The degradation of our method is
more significant on the SIR2 dataset, but the absolute met-
ric values are much higher than WY19.

Besides, it is observed that the PSNR of WY19 on the
Nature dataset is decreasing along with adversarial training,
while our method keeps high PSNR accuracy. In this re-
gard, the robustness is mainly contributed by the AID [56].
Notably, in terms of absolute PSNR and SSIM values, our
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Table 2. Comparison of different training strategies on three benchmark datasets. ‘w/’ and ‘w/o adv.’ mean training with or without
adversarial images. MSE and LPIPS denote corresponding attacks over full regions. ↓ and ↑ represent the degradation and degradation
performance compared to the original prediction inputting clean images.

Nature SIR2 Real
PSNR SSIM PSNR SSIM PSNR SSIM

WY19 [42] w/o adv.
Clean 19.54 0.738 20.45 0.853 21.82 0.812
MSE 11.86↓7.68 0.361↓0.377 10.49↓9.97 0.410 ↓0.442 13.61 ↓8.21 0.388 ↓0.424

LPIPS 16.85↓2.69 0.588 ↓0.149 15.81 ↓4.65 0.677 ↓0.176 18.79↓3.04 0.639 ↓0.173

WY19 [42] w/ adv.
Clean 17.28↓2.26 0.670↓0.067 17.97↓2.49 0.832↓0.021 19.23↓2.59 0.752↓0.060

MSE 16.08↓3.46 0.613 ↓0.125 16.54 ↓3.92 0.769 ↓0.083 18.61 ↓3.21 0.718↓0.094

LPIPS 17.01 ↓2.53 0.633 ↓0.105 17.49 ↓2.96 0.779 ↓0.074 16.64 ↓5.18 0.702 ↓0.110

Ours w/o adv.
Clean 20.33 0.758 23.43 0.894 22.26 0.826
MSE 10.35 ↓9.98 0.264 ↓0.494 9.18 ↓14.24 0.317 ↓0.577 11.92 ↓10.34 0.274↓0.552

LPIPS 15.15 ↓5.18 0.560 ↓0.198 14.84 ↓8.59 0.645 ↓0.250 16.38 ↓5.88 0.573↓0.253

Ours w/ adv.
Clean 20.97↑0.64 0.764↑0.006 23.02↓0.41 0.892↓0.002 23.61↑1.35 0.835↑0.009

MSE 18.53↓1.79 0.726↓0.032 18.25 ↓5.17 0.821 ↓0.073 20.15 ↓2.11 0.752↓0.074

LPIPS 19.98 ↓0.35 0.732↓0.026 20.31 ↓3.12 0.830 ↓0.064 22.02 ↓0.24 0.768 ↓0.058

Table 3. Comparison of different model settings on the Real [53]
dataset. ‘Ours w/o CSA’ represents removing multi-resolution in-
puts and cross-scale attention modules. ’Ours w/o MSF’ repre-
sents removing multi-scale fusion modules and using traditional
skip connections instead. ‘Ours w/o AID’ represents removing
dynamic convolutions and the adversarial image discriminator.

PSNR SSIM

Ours w/o CSA
Clean 22.09 0.814
MSE 19.38 0.608

LPIPS 20.90 0.741

Ours w/o MSF
Clean 22.30 0.814
MSE 19.29 0.732

LPIPS 21.02 0.762

Ours w/o AID
Clean 21.86 0.813
MSE 19.77 0.739

LPIPS 21.11 0.757

Ours
Clean 23.61 0.835
MSE 20.15 0.752

LPIPS 22.02 0.768

method achieves state-of-the-art performance on both clean
and adversarial images.
Ablation study. To verify the effectiveness of our net-
work design, we compare four architectures with or without
the key modules described in Sec. 4. Specifically, to con-
struct three new networks, we remove cross-scale attention
modules (CSA), multi-scale fusion modules (MSF), and the
adversarial image discriminator (AID), while maintaining
other structures unchanged. All networks are trained adver-
sarially and with the same hyper-parameters, such as learn-
ing rate, batch size, and the number of epochs. In Tab. 3,

we report PSNR and SSIM values of ablated networks with
respect to clean and adversarial inputs. For clean inputs,
the CSA and MSF contribute equally, which makes limited
accuracy improvements. The AID is the most important as-
sembly for guaranteeing the prediction accuracy of clean
inputs. For adversarial inputs, the CSA and MSF modules
show their importance in keeping robustness. Without CSA
modules or MSF modules, PSNR values under the MSE at-
tack will decrease by about 0.5 worse than that without the
AID. These results suggest that the network components are
carefully customized toward robustness enhancement.

6. Conclusion

This paper has evaluated the robustness of deep learning
based SIRR methods against adversarial attacks, for which
the PGD method is used to optimize attack perturbation on
three regions and toward two objectives. Benchmark results
show that current deep SIRR methods all inevitably degrade
under adversarial attacks. We propose a robust transformer-
based SIRR model, which integrates cross-scale attention
modules, multi-scale fusion modules, and the adversarial
image discriminator. Extensive experiments show state-of-
the-art robustness over current methods.
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