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Abstract

Unsupervised stereo matching has received a lot of atten-
tion since it enables the learning of disparity estimation
without ground-truth data. However, most of the un-
supervised stereo matching algorithms assume that the
left and right images have consistent visual properties,
i.e., symmetric, and easily fail when the stereo images
are asymmetric. In this paper, we present a novel
spatially-adaptive self-similarity (SASS) for unsupervised
asymmetric stereo matching. It extends the concept of
self-similarity and generates deep features that are robust
to the asymmetries. The sampling patterns to calculate
self-similarities are adaptively generated throughout the
image regions to effectively encode diverse patterns. In
order to learn the effective sampling patterns, we design
a contrastive similarity loss with positive and negative
weights. Consequently, SASS is further encouraged to
encode asymmetry-agnostic features, while maintaining
the distinctiveness for stereo correspondence. We present
extensive experimental results including ablation studies
and comparisons with different methods, demonstrating
effectiveness of the proposed method under resolution and
noise asymmetries.

1. Introduction
Scene depth is an indispensable information in computer

vision, as it can benefit numerous subsequent applications
including scene recognition [5, 18], 3D scene reconstruc-
tion [22], and autonomous driving [17]. Stereo matching,
which aims to find disparities of corresponding points in
rectified left and right (stereo) images, has been widely ex-
plored since the disparity can directly converted to depth
with camera calibration parameters. Recent advent of large-
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scale datasets and advanced hardware led the researchers
to solve stereo matching with Convolutional Neural Net-
works (CNNs). It resulted in a number of CNN-based
stereo matching algorithms that are learned in both super-
vised [1, 16, 19] and unsupervised manner [3, 25]. Even
though the recent methods have achieved significant gain
in both accuracy and speed, the existing algorithms assume
that the stereo images are symmetric, where the stereo im-
ages have consistent visual properties in terms of bright-
ness, resolution, noise level, modality, etc.

Recently, multi-camera systems have become more com-
mon, such as RGB-NIR cameras in Kinect, and tele-wide
cameras in smartphones. Such systems usually consist of
different sensors, resulting in asymmetric stereo images,
i.e., the stereo images with different visual properties. The
asymmetric images are embedded into inconsistent features
and make it difficult to accurately calculate the cost volume.
Furthermore, the most widely adopted assumption for un-
supervised stereo matching, photometric consistency, is in-
valid for the corresponding points in the asymmetric stereo
images [2]. Consequently, the widely-used stereo matching
methods assuming symmetric images [1,3,19] easily fail in
the asymmetric scenario [15].

There have been relatively less efforts to handle stereo
matching under asymmetries such as visual quality [2, 15]
and spectrum [23, 31]. Several methods adopt supervised
[15], or proxy-supervised [23] paradigm to solve the deep
asymmetric stereo matching. However, such methods re-
quire additional active depth [15] or image [23] sensor to ac-
quire the training label, which makes it difficult to construct
the training data. In order to tackle the problem and learn
the asymmetric stereo matching in an unsupervised manner,
a few methods adopt feature consistency loss [2, 24]. On
the other hand, several spectral-asymmetric stereo match-
ing methods use unpaired image-to-image translation [33]
algorithm to project the images into a same spectrum, fol-
lowed by photometric consistency loss [14,31]. A common
approach in the unsupervised asymmetric stereo matching
methods is to transfer the images into a shared space to ex-
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Figure 1. Self-similarity sampling patterns of (a) FCSS [10] and
(b) the proposed SASS. For different pixels indicated with red cir-
cles, the sampling patterns are represented with squares, connected
with dashed lines. FCSS has equivalent patterns for all pixels,
while the proposed SASS generates adaptive patterns.

ploit the consistency constraint as training loss. The im-
portance of consistent space in loss calculation for unsuper-
vised stereo matching is further emphasized in [2].

There have been a number of researches to extract im-
age features that are robust to different types of varia-
tions. In [21], Local Self-Similarity (LSS) descriptor has
been presented based on an observation that local inter-
nal layout of self-similarity is less sensitive to photomet-
ric differences. It has demonstrated impressive robust-
ness against large modality differences, and various deriva-
tions based on self-similarity have been formulated in hand-
crafted [11,12] and deep-learning [10] frameworks, demon-
strating effectiveness in cross-modal visual [11, 12] and se-
mantic [10] correspondences. In [10,11], in order to design
self-similarity based descriptors with improved robustness
and efficiency, sampling patterns are learned throughout the
data. However, the learned sampling patterns are fixed for
all regions as in Fig. 1(a), limiting the capability to encode
robust features of varying geometries across the images.

In this paper, we present a novel Spatially-Adaptive
Self-Similarity (SASS) for unsupervised stereo matching in
asymmetric scenario. Motivated by the importance of the
symmetry in loss calculation [2], we design a novel frame-
work to extract asymmetry-agnostic features. We take ad-
vantage of self-similarity [21] which is robustness to do-
main discrepancy, and further extend it by adaptively gen-
erating the sampling patterns across the spatial locations, as
illustrated in Fig. 1(b). It enables to extract asymmetry-
agnostic features from the asymmetric stereo images to cal-
culate the stereo matching loss in a symmetric space. In
addition, we design a contrastive similarity loss with ad-
ditional positive and negative weights to further encourage
the asymmetry-agnostic property of the SASS, while pre-
serving the discriminative capability.

The main contributions of this paper are summarized as:
• We propose a novel Spatially-Adaptive Self-Similarity

(SASS) to adaptively encode asymmetry-agnostic fea-
tures for unsupervised asymmetric stereo matching.
The features are used to calculate the unsupervised
stereo matching loss based on view consistency.

• We design a contrastive similarity loss with a novel
positive and negative weighting strategy to further en-
hance the asymmetry-agnostic property while main-
taining the discriminative capability of SASS.

• Extensive experimental results including ablation stud-
ies and comparisons with different methods demon-
strate the effectiveness of the proposed method on res-
olution and noise asymmetries.

The rest of this paper is organized as follows: In Sec. 2, we
present previous works that are related to ours. Sec. 3 ex-
plains the background and details of the proposed method.
Experimental results are given in Sec. 4, followed by con-
clusion and future works in Sec. 5.

2. Related Works

2.1. Stereo Matching

With the advent of large-scale datasets and development
of hardware performance, a number of stereo matching
methods based on CNNs have been proposed. As a pio-
neering work, Zbontar and Lecun [27] proposed to calculate
stereo matching cost with CNN. The matching cost is fur-
ther processed with hand-crafted methods [8, 29] to gener-
ate the final disparity map. Mayer and Brox [16] proposed
DispNet with 1D correlation layer which enables end-to-
end learning of stereo matching as a regression problem.
Pang et al. [19] proposed cascade residual learning frame-
work that consists of two-stage disparity estimation, where
the second stage adopts the residual learning [7] to refine the
disparity map. In [9], GC-Net was proposed to learn the ge-
ometry and context using 3D convolution and differentiable
soft-argmin operation. Chang et al. [1] proposed PSMNet
which contains spatial pyramid pooling (SPP) [6] and 3D
convolution to exploit context information and learn to reg-
ularize the cost volume. Zhang et al. [28] proposed GA-Net
with semi-global and local guided aggregation layers to re-
place 3D convolutions for cost aggregation.

While the above methods adopt supervised learning
paradigm that requires ground-truth for training, various un-
supervised algorithms have also been proposed. Zhou et al.
[32] proposed an unsupervised learning framework that it-
eratively conducts disparity prediction, confidence map es-
timation, training data selection, and network training. Go-
dard at el. [3] proposed to use differentiable bilinear sam-
pling layer to warp the stereo images and define photomet-
ric consistency loss. This method is extended in [4] by ro-
bust reprojection loss, multi-scale sampling, and an auto-
masking loss. Wang et al. [25] proposed parallex attention
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Figure 2. Illustration of our overall framework for the unsupervised asymmetric stereo matching with the proposed spatially-adaptive
self-similarity.
mechanism to integrate epipolar constraints to calculate fea-
ture similarities. Peng et al. [20] proposed data grafting aug-
mentation, self-distillation loss, and full-scale network. The
above methods, both supervised and unsupervised, assume
that the stereo images are symmetric.

2.2. Asymmetric Stereo Matching

There have been various methods that address different
kinds of asymmetries in stereo matching. There are sev-
eral methods that address asymmetry in term of light spec-
trum. Zhi et al. [31] presented a RGB-NIR stereo dataset
captured in a driving environment, with additional informa-
tion of coarse material prediction. They also presented a
baseline framework that includes spectral translation, unsu-
pervised stereo estimation, and material-aware confidence.
Liang et al. [14] proposed a variant of CycleGAN [33] to
translate between RGB and NIR images, followed by unsu-
pervised stereo matching using photometric loss [3]. Wal-
ters et al. [24] employed cycle consistency that an image
warped twice using left and right disparities is equivalent
to its original. Recently, Tosi et al. [23] presented a novel
dataset and baseline to address RGB-Multispectral stereo
matching. They adopt additional RGB camera to generate
pseudo ground-truth and use it as proxy to supervise the
RGB-Multispectral stereo network.

Several works focused on asymmetries in visual qual-
ity of RGB images, assuming high-quality left and low-
quality right images. Liu et al. [15] proposed to generate
high-quality right image from the left image, then conduct
stereo matching on the high-quality image pair. Even their
method works on different kinds of asymmetries including
resolution, noise, and rectification error, it is based on a su-
pervised learning and heavily relies on ground-truth of both
high-quality right image and disparity. More recently, Chen
et al. [2] demonstrated that a key factor for reliable unsu-
pervised learning of stereo matching is symmetry in loss
calculation stage, rather than input stage. They further ob-

served that a stereo matching encoder extracts resolution-
agnostic features to some extent, and replaced photometric
loss [3] with feature-metric loss. Motivated by [2], we fur-
ther enhance the feature consistency at the loss calculation,
by presenting a novel spatially-adaptive self-similarity.

2.3. Self-Similarity Based Descriptors

Local Self-Similarity (LSS) [21] is defined as an ag-
gregation of correlations between center and surrounding
patches, sampled from discretized log-polar grids. It has
shown impressive robustness to domain discrepancy, and re-
sulted in several derivations. Kim et al. [11] proposed the
dense adaptive self-correlation (DASC) descriptor, which
further improves robustness by randomized receptive pool-
ing and adaptive self-correlation measure. They also learn
to select the best performing patterns among the random-
ized receptive fields. LSS is extended into deep non-
CNN architecture in [12] by building a hierarchical self-
correlation surfaces. In [10], LSS is reformulated based on
CNN as Fully Convolutional Self-Similarity (FCSS). Sim-
ilar to DASC [11], effective sampling patterns are learned
with shifting transformer module. Although the above
methods show plausible results in finding correspondences
between visually inconsistent images, the learned patterns
in DASC [11] and FCSS [10] are fixed for all image lo-
cations, thus cannot encode the self-similarity adaptively.
Consequently, it requires larger number of sampling pat-
terns to encode diverse geometric information, leading to a
computational burden.

3. Proposed Method

3.1. Background

We consider a scenario where of left and right (stereo)
images IL, IR ∈ RH×W×C are given, where H,W,C are
height, width, and color channels of each image. Here, we
assume that the stereo images are asymmetric. For each
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pixel x = (x, y) in IL, the objective of stereo matching is
to find the corresponding point x̃ = (x− d, y) in IR, where
d is referred to as disparity. A widely-used paradigm [3] for
unsupervised learning of stereo matching is to warp IR us-
ing the estimated disparity map D̂L to obtain the estimated
left view IR2L(x, y) = IR(x− d̂, y), and calculate the pho-
tometric consistency loss:

Lpm = κ(IL, IR2L), (1)
where κ is a dissimilarity measure such as L1 or SSIM loss
[30]. However, in an asymmetric stereo pair, corresponding
points in IL and IR may not have the same intensity, posing
limitations to the photometric consistency loss (1).

A recent work [2] observed that a stereo matching net-
work with asymmetric inputs generate plausible results if
the photometric loss is calculated using symmetric data.
In other words, a key factor for a plausible unsupervised
asymmetric stereo matching is to calculate loss in a sym-
metric space. Based on this observation, they proposed
‘feature-metric’ consistency loss for unsupervised asym-
metric stereo matching:

Lfm = κ(GL,GR2L), (2)
where G is asymmetry-agnostic feature directly extracted
from stereo encoder with image I as the input. Motivated
by the above observation [2], we aim to extract asymmetry-
agnostic features using spatially-adaptive self-similarity to
define symmetric loss space for unsupervised asymmetric
stereo matching.
3.2. Overview

Our overall framework is illustrated in Fig. 2. We adopt
a standard stereo matching network with left and right en-
coders {ΘE

L ,Θ
E
R}, a cost volume calculator, and a decoder.

Given stereo image pair {IL, IR}, each image is fed into
the corresponding encoder, resulting in left and right fea-
tures {FL,FR} ∈ RHe×We×Ce , with their height, width,
and channel as He, We, and Ce. Then, the features are
used to calculate the cost volume, which is fed into the
decoder to estimate the disparity map D̂L, aligned to IL.
In order to train the network, the images IL and IR2L are
used to calculate the photometric loss (1). They are further
fed into the encoders and the proposed Spatially-Adaptive
Self-Similarity (SASS) module to be embedded into the
asymmetry-agnostic features G to calculate feature-metric
loss (2). In order to learn the optimal sampling patterns that
encodes asymmetry-agnostic yet distinctive features, con-
trastive similarity loss Lcs is applied.

3.3. Spatially-Adaptive Self-Similarity

The self-similarity feature [10,11,21] G(x) at pixel x is
defined as a union of L feature values G(x) =

⋃
lG

l(x)
for l ∈ [1, ..., L], where Gl(x) is computed as:

Gl(x) = max
ẋ∈Nx

exp(−S(P (ẋ−∆xsl), P (ẋ−∆xtl))

γ
),

(3)

𝐅ோଶ
𝐅
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Figure 3. Pipeline of the proposed SASS. The offset generator
takes FL as input to generate the offset volume O. The adaptive
sampling patterns are applied to FL and FR2L to generate SASS
features using (4).

where P (x) is a patch with center x, {∆xsl ,∆xtl} are the
lth sampling pattern offsets, and S is a similarity measure.
The similarity measures are encoded with exponential func-
tion with bandwidth γ, and maximum operation within a
support window Nx. In the previous works [10, 11], the L
sampling patterns {∆xsl ,∆xtl}Ll=1 are fixed for all pixels
as in Fig. 1(a).

Modification from the previous methods to the proposed
SASS is straightforward. We generate sampling patterns
adaptively, according to the given image and spatial loca-
tion as in Fig. 1(b), so that the sampling patterns become
{∆xsl(x),∆xtl(x)}Ll=1. To this end, we design offset gen-
erator module that consists of several convolutional blocks.
The offset generator takes the left feature FL as input, and
generates offset volume O, which is a concatenation of L
offset maps {Ol}Ll=1. For the lth sampling pattern, off-
set map Ol ∈ RHe×We×4 is generated, whose first two
channels correspond to the vertical and horizontal offsets
for ∆xsl(x), and last two channels correspond to those of
∆xtl(x). Consequently, with all L offset maps concate-
nated, the offset volume O has dimensions He ×We × 4L.
Finally, we use P (x) = F(x), and extract the SASS feature
G =

⋃
lG

l ∈ RHe×We×L, where Gl is obtained by:

Gl(x) = max
ẋ∈Nx

exp(−S(F(ẋ−∆xsl(x)),F(ẋ−∆xtl(x)))

γ
).

(4)
Note that the subscripts L and R2L are omitted for brevity.
We follow the work in [10] and use simple Euclidean dis-
tance for S . The overall procedure is depicted in Fig. 3.
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3.4. Contrastive Similarity Loss

The feature-metric loss (2) has to be calculated on a fea-
ture space that is agnostic to the asymmetries, yet distinctive
for correspondence matching [2]. To achieve this, we pro-
pose contrastive similarity loss to encourage the network to
generate the effective SASS sampling patterns. We first de-
fine positive and negative pixels as pixels with correct and
incorrect disparity estimations respectively. In order to de-
fine them without ground-truth disparity, we exploit left-
right correspondence consistency [27]. To this end, we fur-
ther obtain D̂R by performing horizontal flip and swap the
stereo images to feed into the network, then flipping back
the output. Then we define the correspondence error as the
absolute error of the disparity estimations:

E(x) = |D̂L(x)− D̂R(x̃)|, (5)

where x̃ = x− D̂L(x). A pixel x is considered to be posi-
tive if E(x) ≤ τ , and negative otherwise.

Then we define the proposed contrastive similarity loss
Lcs is formulated as:

Lcs =
1

|Ωp|
∑
x∈Ωp

wp(x)||GL(x)−GR2L(x)||2

+
1

|Ωn|
∑
x∈Ωn

max(0,M − wn(x)||GL(x)−GR2L(x)||2),

(6)
where Ωp and Ωn are positive and negative pixels, with their
number of pixels |Ωp| and |Ωn|. The first term encourages
the SASS features extracted from the asymmetric images
to become closer at the matched pixels, so that the SASS
feature becomes asymmetry-agnostic. In contrast, the sec-
ond term constrains the features at non-matched pixels to
become apart with a margin of M , so that the SASS feature
retains discriminative property for correspondence problem.

The contrastive similarity loss is conceptually similar to
contrastive correspondence loss in [10], which encourages
the features at matched pixels closer and vice versa. We
enhance the loss design by further introducing positive and
negative weight terms wp and wn using cosine similarity.
In the positive pixels, we assign higher weights as the raw
encoder features F are dissimilar, and define wp = (1 −
cos(FL,FR2L))/2. For the negative pixels, higher weight
is assigned for similar raw features, so that the weight is
defined as wn = (1 + cos(FL,FR2L))/2.

3.5. Total Loss

We introduce the total loss functions for training the
proposed networks. We use both photometric (Lpm) and
feature-metric (Lfm) losses, where each loss is defined as
summation of L1 and SSIM losses:

Lpm =(1− αpm)||IL − IR2L||1
+ αpm(1− SSIM(IL, IR2L)),

(7)

Lfm =(1− αfm)||GL −GR2L||1
+ αfm(1− SSIM(GL,GR2L)),

(8)

where αpm and αfm are balancing parameters between the
two terms. In addition, we use disparity smoothness loss as
follows:

Lds = |∂xD|e−|∂xIL| + |∂yD|e−|∂yIL|, (9)

where ∂x and ∂y are horizontal and vertical gradient opera-
tions. The total loss is a weighted summation of the above
loss terms, including the contrastive similarity loss (6):

L = λpmLpm + λfmLfm + λcsLcs + λdsLds. (10)

4. Experiments
4.1. Experimental Settings

Dataset We use KITTI 2015 stereo dataset [17], which
contains street view images captured from a vehicle. It con-
sists of 200 training pairs with semi-dense ground-truth dis-
parity labels obtained with LiDAR, and 200 testing pairs
without ground-truth. As in [2], we use the original test-
ing set to train the network, and use original training set to
evaluate the performance. We first resize the images into
384×1280 resolution, and apply data augmentation includ-
ing random crop of size 256 × 512, and random horizon-
tal flip with left-right swap with probability of 0.5. We
also apply photometric jittering of random adjustment of
brightness, contrast, saturation in range [0.8, 1.2], and hue
in range [−0.05, 0.05].

We consider asymmetries in terms of resolution and
noise, assuming high-quality (high-resolution, noise-free)
left and low-quality (low-resolution, noisy) right images.
We generate the low-resolution image by downsampling the
image by the scale s, then upscaling it to the original size
using bicubic interpolation. The noisy images are gener-
ated with additive Gaussian noise with standard deviation σ.
Unless specified otherwise, the experiments are conducted
using asymmetry factors s = 4 and σ = 0.15.

Evaluation Metrics In order to quantitatively measure
the stereo matching performance, we adopt widely-used
metrics: end-point error (EPE) and three-pixel error (3PE).
EPE is average of absolute error between the estimation and
ground-truth disparities. 3PE is defined as portion of wrong
estimation in term of number of pixels. For each pixel, the
estimation is categorized as wrong if the absolute error is
larger than 3 pixels and larger than 5% of the ground-truth
value. The lower values indicate better performance for
both metrics. The metrics are calculated for the valid pixels,
where the ground-truth disparity is provided.

Implementation Details We adopt the ‘stacked hour-
glass’ architecture of PSMNet [1]. During training, we
use the Adam optimizer [13], with its default parameters:
β1 = 0.99 and β2 = 0.999. We use batch size of 2, learning
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Figure 4. Qualitative results of the ablation study experiments on (a) symmetric, (b) resolution asymmetry, and (c) noise asymmetry
settings. (first row) (a) left image and (b), (c) right images, (second to fifth rows) stereo matching results of the networks of: Baseline,
Raw, FCSS, and SASS + Lcs.

Table 1. Quantitative results for the ablation study.

Method End-point Error (EPE) Three-pixel Error (3PE)

Symmetric Resolution Noise Symmetric Resolution Noise

Baseline 1.887 2.652 3.614 8.90 16.22 22.63
Raw 1.891 2.574 3.128 8.92 14.83 18.58
FCSS [10] 1.882 2.329 2.919 8.87 12.33 16.22
SASS 1.884 2.221 2.727 8.90 11.69 15.76
SASS + Lcs− 1.882 2.190 2.683 8.86 11.64 14.97
SASS + Lcs 1.879 2.183 2.667 8.83 11.57 14.84

rate of 0.0001, and train the network for 50 epochs. We use
γ = 0.5, M = 0.5, τ = 3, and αpm = αfm = 0.15. We
find that the features from the randomly initialized encoders
rather distract the training and adopt a two-step training
scheme. The first step uses the photometric loss and the loss
weights are initially set as λpm = 1.0, λfm = 0, λcs = 0
and λds = 0.5. We observe the intermediate testing per-
formance and set λfm = 1.0 and λcs = 0.2 as the test
performance converges. The experiments are conducted on
a PC with a 3.60GHz CPU, and a NVIDIA TITAN RTX
GPU with 24GB memory.

4.2. Ablation Study

Effect of the proposed components We conduct ex-
periments to observe the effect of each proposed compo-
nent. We train networks with different configurations: i)
no feature-metric loss (Baseline), feature-metric loss calcu-
lated using ii) direct encoder feature (Raw), iii) FCSS [10]
feature, and iv) the proposed SASS feature. Each network is
trained under different asymmetric settings, including sym-

metric scenario, whose result can be used as reference. In
this experiment, we use the number of sampling patterns
L = 16 for FCSS and SASS. For the proposed SASS, ef-
fects of the contrastive similarity loss without (Lcs−) and
with the weights (Lcs) are also observed.

The quantitative results are presented in Table 1. We first
observe that different methods have negligible difference in
stereo matching performance under the symmetric condi-
tion. The symmetric stereo pair itself provides consistent
space for loss calculation, thus additional consistency con-
straint with the feature-metric loss shows less effect. The
stereo network trained without feature-metric loss shows
degraded performance under asymmetric conditions, with
2.652 EPE, 16.22 3PE for resolution, 3.614 EPE, 17.96
3PE for noise asymmetries. The performance is slightly im-
proved as the feature-metric loss with direct encoder feature
is applied (second row). We observe greatly improved per-
formance as we adopt FCSS [10] on the feature to calculate
Lfm. The performance is further improved as the proposed
SASS, and the contrastive similarity loss are applied. We
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Table 2. End-point error results according to different number of
self-similarity sampling patterns.

Method Number of sampling patterns L

4 8 16 32 64

Resolution

FCSS [10] 2.52 2.42 2.33 2.28 2.24
SASS 2.50 2.32 2.22 2.21 2.20
SASS + Lcs 2.47 2.27 2.18 2.17 2.17

Noise

FCSS [10] 3.09 2.98 2.92 2.85 2.81
SASS 2.88 2.76 2.73 2.70 2.70
SASS + Lcs 2.86 2.72 2.67 2.62 2.61

2.33 2.28 2.24

2.22 2.21 2.2

2.18 2.17 2.17

2.92 2.85 2.81

2.73 2.7 2.7
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Figure 5. End-point error in (a) resolution and (b) noise asym-
metries according to different number of sampling patterns L, for
different methods.

observe thebest performance with 2.183 EPE, 11.57 3PE for
resolution, and 2.961 EPE, 16.38 3PE for noise asymme-
tries respectively, when the proposed contrastive loss with
weight terms (Lcs) is applied.

The qualitative results are presented in Fig. 4. We do not
observe noticeable difference in the results of the different
methods under the symmetric condition (1st column). With
the resolution asymmetry, the baseline network generates
results with artifacts, and captures visual textures as dispar-
ity discontinuity, such as lanes. On the other hand, the noise
asymmetry results in incorrect disparities at flat or dark ar-
eas, which are more affected by the noise. The artifacts
and degradations are slightly reduced as the raw feature-
metric loss is used, and further improved as the FCSS [10]
and SASS is applied. We observe that the proposed method
generates the most plausible stereo matching results. We
also provide the visualization of the sampling patterns of
FCSS [10] and SASS in the supplementary material.

Number of sampling patterns In this experiment, we in-
vestigate the effect of number of self-similarity patterns on
the stereo matching performance. To this end, we train
the network using FCSS [10] and the proposed SASS with

Table 3. End-point error of baseline and the proposed method un-
der different asymmetry factors.

Resolution
s 2 4 6 8

Baseline 2.19 2.65 3.28 3.86
Proposed 1.98 2.18 2.54 2.83

Noise
σ 0.05 0.10 0.15 0.20

Baseline 2.12 2.57 3.61 6.24
Proposed 1.94 2.13 2.67 3.33

number of patterns L = [4, 8, 16, 32, 64]. For the SASS,
we also compare the networks trained with and without the
contrastive similarity loss.

The quantitative results in term of EPE are presented
in Table 2, and plotted in Fig. 5. First, we observe our
full method (SASS + Lcs) generates the best performance
across different values of L. The network with FCSS [10]
shows consistently decreasing EPE for larger L. In con-
trast, the performance of the network with SASS is nearly
converged for L ≥ 16. It can be interpreted that, the SASS
adaptively generates effective patterns for each image re-
gion to encode asymmetry-agnostic features with less num-
ber of the sampling patterns. In the following experiments,
we use the proposed method of SASS + Lcs, with L = 16.

Different asymmetry factors We compare the perfor-
mance of the baseline network trained without feature-
metric loss, and the proposed method under different asym-
metric factors for resolution and noise. We use resolution
asymmetry factors s = [2, 4, 6, 8], and noise asymmetry
factors σ = [0.05, 0.10, 0.15, 0.20]. The EPE results are
presented in Table. 3. As the asymmetry factors increase,
the baseline network shows degraded performance. Espe-
cially, as σ becomes larger for noise asymmetry, the error
drastically increases, as overall pixel values at the corre-
sponding points become further inconsistent. The perfor-
mance degradation is alleviated by our proposed method
consistently across different factors for both resolution and
noise asymmetries.

4.3. Comparison to Different Methods

We compare the stereo matching performance of dif-
ferent methods under asymmetric images. We conduct
comparisons with semi-global matching (SGM) [8], and
degradation-agnostic unsupervised stereo (DAUS) [2]. We
use self-boosting stage number k = 3 for DAUS [2]. We
also compare the scenario where the right image is restored
using super-resolution or denoising [26], followed by stereo
matching using SGM [8] and the baseline network. We use
the released pre-trained models for the restoration method.
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Figure 6. Qualitative results of the different stereo matching methods under (a) symmetric, (b) resolution asymmetry, and (c) noise
asymmetry settings. (first row) (a) left image and (b), (c) right images, (second to fifth rows) stereo matching results of: SGM [8],
DAUS [2], and the proposed method.

Table 4. Quantitative results for the comparison experiment.

Method End-point Error (EPE) Three-pixel Error (3PE)

Symmetric Resolution Noise Symmetric Resolution Noise

SGM [8] 5.157 5.810 12.682 34.74 39.96 68.51
Restore [26] + SGM [8] - 5.739 8.261 - 37.32 51.82

Baseline 1.887 2.652 3.614 8.90 16.22 22.63
Restore [26] + Baseline - 2.608 3.054 - 15.16 17.04

DAUS [2] 1.887 2.423 3.071 8.90 13.62 17.21
Proposed Method 1.879 2.183 2.667 8.83 11.57 14.84

The quantitative and qualitative results are presented in
Table 4 and Fig. 6. We observe the performance degrada-
tion of SGM under the asymmetries, which is much severe
in the noise asymmetry. The performance is improved when
image restoration, i.e., super-resolution or denoising, is ap-
plied on the right image as a pre-processing. Similarly, the
baseline network generates better results on the stereo pairs
with restored right images. Using the feature-metric consis-
tency, DAUS [2] and our proposed method generates plau-
sible results. The proposed SASS and contrastive similarity
loss further boost the performance, resulting in the lowest
EPE and 3PE measures.

5. Conclusion and Future Works

Conclusion In this paper, we presented a novel spatially-
adaptive self-similarity (SASS) for unsupervised asym-
metric stereo matching. Motivated by the robustness to
domain discrepancy of self-similarity, we generate adap-
tive self-similarity sampling patterns to effectively encode
asymmetry-agnostic feature. We further designed con-
trastive similarity loss in order to further enhance the

asymmetry-agnostic property while maintaining discrimi-
native capability for correspondence search. Consequently,
the proposed SASS generates asymmetry-agnostic features
to define a symmetric loss space, enabling the plausible
learning of stereo matching under asymmetric scenarios in
an unsupervised manner. Experimental results on the KITTI
2015 dataset demonstrated the effectiveness of the proposed
method under resolution and noise asymmetries.

Future Works Our current framework adopts two-step
training scheme as described in Sec. 4.1. Relying on the
photometric loss, learning in the the first stage it is limited
to RGB-RGB scenario without severe shift in the image in-
tensity, which can be caused under exposure, severe noise,
and spectral asymmetries. We reserve the extension of our
method to those scenarios as our future work.
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