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Abstract

Subtle periodic signals such as blood volume pulse and
respiration can be extracted from RGB video, enabling non-
contact health monitoring at low cost. Advancements in
remote pulse estimation — or remote photoplethysmogra-
phy (rPPG) — are currently driven by deep learning solu-
tions. However, modern approaches are trained and evalu-
ated on benchmark datasets with ground truth from contact-
PPG sensors. We present the first non-contrastive unsuper-
vised learning framework for signal regression to mitigate
the need for labelled video data. With minimal assumptions
of periodicity and finite bandwidth, our approach discov-
ers the blood volume pulse directly from unlabelled videos.
We find that encouraging sparse power spectra within nor-
mal physiological bandlimits and variance over batches of
power spectra is sufficient for learning visual features of
periodic signals. We perform the first experiments utilizing
unlabelled video data not specifically created for rPPG to
train robust pulse rate estimators. Given the limited induc-
tive biases and impressive empirical results, the approach is
theoretically capable of discovering other periodic signals
from video, enabling multiple physiological measurements
without the need for ground truth signals.

1. Introduction

Camera-based vitals estimation is a rapidly growing field
enabling non-contact health monitoring in a variety of set-
tings [23]. Although many of the signals avoid detection
from the human eye, video data in the visible and infrared
ranges contain subtle intensity changes caused by physio-
logical oscillations such as blood volume and respiration.
Significant remote photoplethysmography (rPPG) research
for estimating the cardiac pulse has leveraged supervised
deep learning for robust signal extraction [7, 18,30, 38,51,

]. While the number of successful approaches has rapidly
increased, the size of benchmark video datasets with simul-
taneous vitals recordings has remained relatively stagnant.

Robust deep learning-based systems for deployment re-
quire training on larger volumes of video data with di-

verse skin tones, lighting, camera sensors, and movement.
However, collecting simultaneous video and physiologi-
cal ground truth with contact-PPG or electrocardiograms
(ECQG) is challenging for several reasons. First, many hours
of high quality videos is an unwieldy volume of data. Sec-
ond, recording a diverse subject population in conditions
representative of real-world activities is difficult to conduct
in the lab setting. Finally, synchronizing contact measure-
ments with video is technically challenging, and even con-
tact measurements used for ground truth contain noise.

Fortunately, recent works find that contrastive unsuper-
vised learning for rPPG is a promising solution to the data
scarcity problem [13,42,45,50]. We extend this research
line into non-contrastive unsupervised learning to discover
periodic signals in video data. With end-to-end unsuper-
vised learning, collecting more representative training data
to learn powerful visual features is much simpler, since only
video is required without associated medical information.

In this work, we show that non-contrastive unsupervised
learning is especially simple when regressing rPPG signals.
We find weak assumptions of periodicity are sufficient for
learning the minuscule visual features corresponding to the
blood volume pulse from unlabelled face videos. The loss
functions can be computed in the frequency domain over
batches without the need for pairwise or triplet compar-
isons. Figure 1 compares the proposed approach with su-
pervised and contrastive unsupervised learning approaches.

This work creates opportunities for scaling deep learning
models for camera-based vitals and estimating periodic or
quasi-periodic signals from unlabelled data beyond rPPG.
Our novel contributions are:

1. A general framework for physiological signal estima-
tion via non-contrastive unsupervised learning (SiNC)
by leveraging periodic signal priors.

2. The first non-contrastive unsupervised learning
method for camera-based vitals measurement.

3. The first experiments and results of training with non-
rPPG-specific video data without ground truth vitals.

Source code to replicate this work is available at https:
//github.com/CVRL/SiNC-rPPG.
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Figure 1. Overview of the SiNC framework for rPPG compared with traditional supervised and unsupervised learning. Supervised and
contrastive losses use distance metrics to the ground truth or other samples. Our framework applies the loss directly to the prediction by
shaping the frequency spectrum, and encouraging variance over a batch of inputs. Power outside of the bandlimits is penalized to learn
invariances to irrelevant frequencies. Power within the bandlimits is encouraged to be sparsely distributed near the peak frequency.

2. Related Work
2.1. Remote Photoplethysmography (rPPG)

Approaches for remote pulse estimation have shifted
over the last decade from blind source separation [34, 35],
through linear color transformations [9, 10,46,47] to train-
ing supervised deep learning-based models [7, 16, 18,20,29,

,38,51,52,55]. While the color transformations general-
ize well across datasets, deep learning-based models give
better accuracy when tested on data from a similar distribu-
tion to the training set. To this end, deep learning research
has focused on optimizing architectures for extracting ro-
bust spatial and temporal features from the limited datasets.

To get around the data bottleneck, large synthetic
datasets have recently been proposed [24, 49].  The
SCAMPS dataset [24] contains 2,800 videos of synthetic
avatars with corresponding PPG, EKG, respiration, and fa-
cial action units. The UCLA-synthetic dataset [49] contains
480 videos, which are shown to improve performance when
trained with real data. A strength of synthetic datasets is
their ability to cover the broad range of skin tones com-
pared to physical data. Another solution to the lack of phys-
iological data is unsupervised learning, where a large set
of videos and periodic priors on the output signal is suffi-
cient [13,42,45,50]. We discuss these methods in Sec. 2.3.

2.2. Unsupervised Learning

Self-supervised learning is progressing for image repre-
sentation learning, with two main competing classes of ap-
proaches: contrastive and non-contrastive (or regularized)
learning [3]. Contrastive approaches [5, 6, 27] define cri-
teria for distinguishing whether two or more samples are

the same or different. Non-contrastive methods augment
positive pairs, and enforce variance in the predictions over
batches to avoid collapse, in which the model’s embeddings
reside in a small subspace of the feature space [3]. Dis-
tillation methods only use positive samples and avoid col-
lapse by applying a moving average and stop-gradient op-
erator [8, 14]. Another approaches maximize information
content of embeddings [11,53].

2.3. Unsupervised Learning for rPPG

All existing unsupervised rPPG approaches are con-
trastive [13,42,45,50], in which the same model is fed pairs
of input videos, and the predictions over similar videos are
pulled closer, while the predictions from dissimilar videos
are repelled. Gideon et al. [13] were the first to train a
deep learning model without labels for rPPG using the con-
trastive framework. The core of their approach is frequency
resampling to create negative samples. Although spatially
similar, a resampled video clip contains a different underly-
ing pulse rate, so the model must learn to attend to the tem-
poral dynamics. For their distance function between pairs,
they calculated the mean square error between power spec-
tral densities of the model’s waveform predictions. While
their approach learns to estimate the pulse, their formula-
tion with negative samples is imprecise. The resampled fre-
quency for the negative sample is known, so the relative
translation of the power spectrum from the anchor sample
can be directly computed. Thus, rather than repelling the es-
timated spectra, it is more accurate to penalize differences
from the known spectra. Furthermore, resampling close to
the original sampling rate causes overlap in the power spec-
tra, so repelling the pair is inaccurate. Yuzhe et al. [50]
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incorporated the previously ignored resampling factor for a
soft modification to the InfoNCE loss [33] that scales the
desired similarity between pairs by their relative sampling
rate. A downside is that their learning framework is not
end-to-end unsupervised and requires fine-tuning with PPG
labels after the self-supervised stage.

Differently from [13], Contrast-Phys [42] and SLF-
RPM [45] consider all samples different from the anchor to
be negatives. This assumes that the power spectra will vary
between subjects or sufficiently long windows for the same
subject. This runs into similar issues with negative pairs as
Gideon’s approach. Different subjects may have the same
pulse rate, so punishing the model for predicting similar
frequencies is common during training. Furthermore, the
Fast Fourier Transform (FFT) does not produce perfectly
sparse decompositions, resulting in spectral overlap even if
the heart rate differs by several beats per minute (bpm). As
an example, the last column of the second row in Fig. 2
shows the nulls of the main lobe are nearly 30 bpm apart.

3. Method

We first formulate signal regression from video. A video
sample x; € RT*W>HXC qampled from a dataset D con-
sists of 7" images of size W x H pixels across C' channels,
captured over time. State-of-the-art methods offer models
f that regress a waveform R” > y; = f(z;) of the same
length as the video. Recently, the task has been effectively
modeled end-to-end with the models f being spatiotempo-
ral neural networks [16,21,38,51,52]. While most previ-
ous works are supervised and minimize the loss to a con-
tact pulse measurement, we perform non-contrastive learn-
ing using only the model’s estimated waveform.

The key realization is that we can place strong priors on
the estimated pulse regarding its bandwidth and periodic-
ity. Observed signals outside the desired frequency range
are pollutants, so penalizing the model for carrying them
through the forward pass results in invariances to such noisy
visual features. We find that it is surprisingly easy to impose
the desired constraints in the frequency domain. Thus, all
waveforms are transformed into their discrete Fourier com-
ponents with the FFT before computing all losses in our
approach, F' = FFT(y). The following sections describe
the loss functions and augmentations used during training.

3.1. Losses

One of the advantages of unsupervised learning for peri-
odic signals is that we can constrain the solution space sig-
nificantly. For physiological signals such as respiration and
blood volume pulse, we know the healthy upper and lower
bounds of the frequencies. We also desire the extracted sig-
nal to be sparse in the frequency domain, and that our model
filters out noise signals present in the video. With these

constraints, we can greatly simplify the problem of finding
good features for the desired signal in the data.

Bandwidth Loss. One of the most powerful constraints
we can place on the model is frequency bandlimits. Past
unsupervised methods have used the irrelevant power ratio
(IPR) as a validation metric [12, 13,42] for model selection.
We find that it is also effective during model training. The
IPR penalizes the model for generating signals outside the
desired bandlimits. With lower and upper bandlimits of a
and b, respectively, our bandwidth loss becomes:
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where F; is the power in the ith frequency bin of the pre-
dicted signal. This simple loss enforces learning of many
invariants, such as movement from respiration, talking, or
facial expressions which typically occupy low frequencies.
In our experiments we specify the limits as a = 0.66 Hz to
b = 3 Hz, which corresponds to a common pulse rate range
from 40 bpm to 180 bpm. The first column of Fig. 2 shows
the result of training exclusively with the bandwidth loss
Ly. The last row shows that the model concentrates signal
power between the bandlimits.

Sparsity Loss. The pulse rate is the most common phys-
iological marker associated with the blood volume pulse.
Since we are primarily interested in the frequency, we can
further improve our model by preventing wideband predic-
tions. This also reveals the true signal we aim to discover
by ignoring visual dynamics that are not strongly periodic.

We penalize energy within the bandlimits that is not near
the spectral peak:

1 F*—Ap
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ZFl i=a

i=a

b
D 21 )
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where F* = argmax(F') and Ap are the frequencies of
the spectral peak and padding around the peak, respectively.
For all experiments A = 6 beats per minute [32]. Figure 2
shows the result of training only with the sparsity loss in the
second column. For the whole dataset, the power spectrum
is sparsely distributed in the low frequencies, effectively fil-
tering frequencies higher than 1 Hz.

Variance Loss. One of the risks of non-contrastive
methods is the model collapsing into trivial solutions and
making predictions independently of the input features. In
regularized methods such as VICReg [3], a hinge loss on
the variance over a batch of predictions is used to enforce
diverse outputs. We use a similar strategy to avoid model
collapse, but instead spread the variance in power spectral
densities towards a uniform distribution over the desired fre-
quency band. Our variance loss processes a uniform prior
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Figure 2. Each column shows predictions from models trained with one or all of the losses for 20 epochs on UBFC-rPPG. The first two
rows show a sample in the time and frequency domain, respectively. The last row shows the signal power over the validation set computed
by taking the sum of normalized power spectral densities from each sample, then dividing the result by the number of validation samples.
The bandwidth loss penalizes signal power outside predefined bandlimits (40 to 180 bpm) to constrain the output space. The sparsity loss
encourages a narrow spectrum containing strong periodicity. The variance loss encourages diverse power spectra in a batch, preventing
the model from collapsing to a narrow bandwidth. When combined, the model estimates periodic signals within the desired bandlimits.

distribution P over d frequencies, and a batch of n spec-
tral densities, ' = [vy, ..., v,], where each vector is a d-
dimensional frequency decomposition of a predicted wave-
form. We calculate the normalized sum of densities over
the batch, @), and define the variance loss as the squared
Wasserstein distance [15] to the uniform prior:

1d
L, EZCDF

where CDF is a cumulative distribution function. The third
column of Fig. 2 shows the effect of the variance loss during
training. For a single sample, wide-band signals containing
multiple frequencies are predicted, and the predicted fre-
quencies cover the task’s bandwidth. In our experiments we
use a batch size of 20 samples. See the suppl. materials for
an ablation experiment on the impact of batch size.

— CDF;(P))?, 3)

Combining All Losses. Summarizing, our training loss
function is a simple sum of the aforementioned losses:

L=1Ly+Ly+L,. 4)

While one could weight particular components of the loss
more than others, we specifically formulated the losses to
scale them between 0 and 1. In our experiments, we find
that a simple summation without weighting gives good per-
formance. The combined loss function encourages the
model to search over the supported frequencies to dis-
cover visual features for a strong periodic signal. Re-
markably, we find that this simple framework is sufficient
for learning to regress the blood volume in video, as shown
in the last column of Fig. 2.
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3.2. Augmentations

Unlike Gideon et al.’s [13] approach, which only applies
frequency augmentations, we apply several augmentations
to both the spatial and temporal dimensions to learn invari-
ances to noisy visual signals. In fact, we found that with-
out augmentations, models did not converge during training
(see the supplementary material).

Image Intensity Augmentations. Gaussian noise is
added to each pixel with zero mean and a standard devi-
ation of 2 on an image scale from 0 to 255. Each clip is
darkened or brightened by adding a constant from a Gaus-
sian distribution with mean 0 and standard deviation of 10.

Spatial Augmentations. We randomly horizontally flip
a video clip with 50% probability. The spatial dimension of
a clip are randomly square cropped down to between half
the original length and the original length. The cropped clip
is then linearly interpolated back to the original dimensions.

Temporal Augmentations. With the general assump-
tion that the desired signal is strongly periodic and sparsely
represented in the Fourier domain, we randomly flip a video
clip along the time dimension with a probability of 50%.
Note that the Fourier decomposition of a time-reversed si-
nusoid is identical to that of the original sinusoid.

Frequency Augmentations. Perhaps the most impor-
tant augmentation is frequency resampling [13], where the
video is linearly interpolated to a different frame rate. This
augmentation is particularly interesting for rPPG, because
it transforms the video input and target signal equivalently
along the time dimension, making it equivariant. Given the
aforementioned transformations that are invariant, 7(-) ~
T, the equivariant frequency resampling operation, ¢(:) ~
®, and a model f(-) that infers a waveform from a video we
have the following:

o(f(7(x)) = f(o(7(x))). Q)

This is a powerful augmentation, because it allows us to
augment the target distribution along with the video input.
In our experiments we randomly resample input clips by a
factor ¢ ~ U(0.6, 1.4). After applying the resampling aug-
mentation, we scale the bandlimits by c, to avoid penalizing
the model if the augmentation pushed the underlying pulse
frequency outside of the original bandlimits.

4. Datasets

We use PURE [41], UBFC-rPPG [4], and DDPM [39]
as benchmark rPPG datasets for training and testing, and
CelebV-HQ dataset [56] and HKBU-MARs [17] for unsu-
pervised training only.

Deception Detection and Physiological Monitoring
(DDPM) [39, 43] consists of data from 86 subjects at-
tempting to answer questions deceptively. Interviews were
recorded at 90 frames-per-second for more than 10 minutes

on average. Natural conversation and head pose changes
make it a difficult and less-constrained rPPG dataset.

PURE [41] is a benchmark rPPG dataset consisting of
10 subjects recorded over 6 sessions. Each session lasted
approximately 1 minute, and raw video was recorded at 30
fps. The 6 sessions for each subject consisted of: (1) steady,
(2) talking, (3) slow head translation, (4) fast head transla-
tion, (5) small and (6) medium head rotations. Pulse rates
are at or close to the subject’s resting rate.

UBFC-rPPG [4] contains 1-minute long videos from 42
subjects recorded at 30 fps. Subjects played a time-sensitive
mathematical game to raise their heart rates, but head mo-
tion is limited during the recording.

HKBU 3D Mask Attack with Real World Variations
(HKBU-MARS) [17] consists of 12 subjects captured over
6 different lighting configurations with 7 different cam-
eras each, resulting in 504 videos lasting 10 seconds each.
The diverse lighting and camera sensors make it a valu-
able dataset for unsupervised training. We use version 2
of HKBU-MARSs, which contains videos with both realistic
3D masks and unmasked subjects.

High-Quality Celebrity Video Dataset (CelebV-
HQ) [56] is a set of processed YouTube videos containing
35,666 face videos from over 15,000 identities. The videos
vary dramatically in length, lighting, emotion, motion, skin
tones, and camera sensors. The greatest challenge in har-
nessing online videos is their reduced quality due to com-
pression before upload and by the video provider. Compres-
sion is a known challenge for rPPG, since the blood volume
pulse is so subtle optically [25,31,32,36].

5. Training Details
5.1. Data Preprocessing

To prepare the video clips for the spatiotemporal deep
learning models, we first extract 68 face landmarks with
OpenFace [2]. We then define a bounding box in each
frame with the minimum and maximum (z, y) locations by
extending the crop horizontally by 5% to ensure that the
cheeks and jaw are present. The top and bottom are ex-
tended by 30% and 5% of the bounding box height, respec-
tively, to include the forehead and jaw. We further extend
the shorter of the two axes to the length of the other to form
a square. The cropped frames are then resized to 64 x64
pixels with bicubic interpolation. For faster processing of
the massive CelebV-HQ [56] dataset, we instead use Medi-
aPipe Face Mesh [22] for landmarking.

5.2. Model Architectures

We use a 3D-CNN architecture similar to [38] without
temporal dilations [51]. We use a temporal kernel width
of 5, and replace default zero-padding by repeating the
edges. Zero-padding along the time dimension can result
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Table 1. Intra-dataset pulse rate estimation results. The best results for a given metric/dataset are bolded, and the second-best results are

underlined. For a better comparison with results in the literature, this table follows [

Square Error; r: Pearson correlation coefficient.

]. MAE: Mean Absolute Error; RMSE: Root Mean

UBFC-rPPG PURE DDPM
Types Methods
MAE RMSE MAE RMSE MAE RMSE
(bpm) (bpm) " (bpm) (bpm) " (bpm) (bpm) "
- GREEN [44] 7.50 14.41 0.62 723 17.05 0.69 32.79 43.09 0.04
g ICA [34] 5.17 11.76 0.65 376 12.60 0.85 2222 35.77 0.40
£ CHROM [9] 2.36 9.23 0.87 0.75 2.23 1.00 13.48 28.53 0.56
Z 2SR [48] 6.90 18.50 0.65 244 3.06 0.98 22.08 39.73 0.22
POS [47] 2.11 9.11 0.87 0.80 411 0.98 9.03 23.07 0.70
HR-CNN [40] - - - 1.84 2.37 0.98 - - -
3 SynRhythm [29] 5.59 6.82 0.72 - - - - - -
£ PulseGAN [37] 1.19 2.10 0.98 . . . . . .
g Dual-GAN [21] 0.4 0.67 0.99 0.82 1.31 0.99 - - -
3 RPNet [38]° 0534001 17842002 0994000 1.15+027 5774125 096+002 3.46+024 1247 +0.68 0.91 = 0.01
PhysNet [51]f 0.55£0.03 2.034+037 0.99+£0.00 0994019 522+093 097001 3964076 13.57+1.74 0.89 & 0.03
3 Gideon2021 [13] 1.85 4.28 0.93 23 2.9 0.99 - - -
£ SLE-RPM[45]" 8.39 9.70 0.70 - - - - - -
2. SimPer [50]" 4.24 - - 3.89 - - - - -
z Contrast-Phys [42] 0.64 1.00 0.99 1.00 1.40 0.99 970 +£2.90 25.02+601 0.5840.19
) SINC (ours) 0.59£0.00 1.834+0.04 0.99+0.00 0614006 1.84+040 1.00£0.00 587 +0.11 17.44+0.16 0.81 % 0.00

* Some methods in the unsupervised row require fine-tuning on labeled data with a linear classifier.
" Some supervised methods were trained with identical data augmentations to SiNC for fair comparison.

in edge effects that add artificial frequencies to the predic-
tions. Early experiments showed that temporal dilations
caused aliasing and reduced the bandwidth of the model to
specific frequencies. Our losses and framework may be ap-
plied to any task and architecture with dense predictions
along one or more dimensions. However, popular rPPG
architectures such as DeepPhys [7] and MTTS-CAN [18]
may be ill-suited for the approach, since they consume very
few frames, and the number of time points should be large
enough to give sufficient frequency resolution with the FFT.
In our experiments, we use the AdamW [19] optimizer with
a learning rate of 0.0001. We use a clip length of 7" = 120
frames (4 seconds), and we set the input signal’s length to
achieve a frequency resolution of 0.33 bpm.

5.3. Supervised Training

To properly compare our approach to its supervised
counterpart we use the same model architecture and train
it with the commonly used negative Pearson loss between
the predicted waveform and the contact sensor ground
truth [51]. During training we apply all of the same aug-
mentations except time reversal. Models are trained for 200
epochs on PURE and UBFC-rPPG, and for 40 epochs on
DDPM. The model from the epoch with the lowest loss on
the validation set is selected for testing.

5.4. Unsupervised Training

Unsupervised models are trained for the same number of
epochs as the supervised setting for both PURE and UBFC-
rPPG, but we train for an additional 40 epochs on DDPM,

since this dataset is considerably more difficult. We set the
batch size to 20 samples during training. Contrary to pre-
vious unsupervised approaches [13,42], we leverage vali-
dation sets for model selection by selecting the model with
the lowest combined bandwidth and sparsity losses. The
creation of the dataset splits is described in the next section.

5.5. Evaluation

Pulse rates are computed as the highest spectral peak be-
tween 0.66 Hz and 3 Hz (equivalent to 40 bpm to 180 bpm)
over a 10-second sliding window. The same procedure is
applied to the ground truth waveforms for a reliable evalu-
ation [26]. We apply common error metrics such as mean
absolute error (MAE), root mean square error (RMSE), and
Pearson correlation coefficient (r) between the pulse rates.

We perform 5-fold cross validation for both PURE and
UBFC with the same folds as [13], and use the predefined
dataset splits from DDPM [38]. Differently from [13], we
use 3 of the folds for training, 1 for validation, and the re-
maining for testing rather than only training and testing par-
titions. We train 3 models with different initializations, re-
sulting in 15 models trained on PURE and UBFC each, and
3 models trained on DDPM. We present the mean and stan-
dard deviation of the errors in the results.

6. Results
6.1. Within-Dataset Testing

Table 1 shows the results for models trained and tested
on subject-disjoint partitions from the same datasets. For
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PURE and UBFC we achieve MAE lower than 1 bpm, per-
forming better or on par with all traditional and supervised
learning approaches. For PURE, our approach gives the
lowest MAE and a Pearson 7 of nearly 1. Performance
drops on DDPM due to the overall difficulty of the dataset.
SiNC outperforms contrastive approaches, only being sur-
passed by supervised deep learning models.

In comparison to other unsupervised methods, Contrast-
Phys [42] gives the most competitive performance on all but
DDPM. Note that our approach gives the lowest MAE on all
datasets, but has higher RMSE. We believe this is due their
use of harmonic removal as a post-processing step when
estimating the pulse rate, which is not described in [42],
but can be found in their publicly available code.

6.2. Cross-Dataset Testing

Table 2. Cross-dataset pulse rate estimation performance. The
top 3 training datasets are common rPPG benchmarks, while
HKBU was not designed for rPPG and has no pulse ground truth.
Note that testing on UBFC after training on DDPM performs well,
since their frequency distributions are similar, while PURE’s pulse
rates tend to be much lower.

Training  Testing MAE
Dataset Dataset Method (bpm) T
UBFC SiNC 0.88+£0.25 0.98 £0.01
UBFC Contrast-Phys 1.14 £ 0.38  0.96 +£0.03
DDPM UBFC PhysNet 1.11 £ 042 0.95+0.02
PURE SiNC 3.12+1.07 0.88£0.05
PURE Contrast-Phys  13.02 +6.12  0.19 £ 0.59
PURE PhysNet 146 £0.34 0.95+£0.02
DDPM SiNC 18.53 £0.36  0.38 + 0.01
DDPM  Contrast-Phys 2293 +£1.02 0.18 £+ 0.04
UBFC DDPM PhysNet 18.58 £0.12  0.40 &+ 0.00
PURE SiNC 4.02£0.06 0.86 +0.00
PURE Contrast-Phys  19.61 +£2.01  0.33 £ 0.06
PURE PhysNet 3.81+£0.34 0.87£0.02
UBFC SiNC 6.64 +1.76  0.59 £0.10
UBFC Contrast-Phys  10.22 +0.38  0.45 £+ 0.04
PURE UBFC PhysNet 7.02+3.35 0.60+£0.13
DDPM SiNC 2492 £0.65 0.20 &+ 0.00
DDPM  Contrast-Phys  29.63 £0.48 0.03 + 0.02
DDPM PhysNet 28.03 £2.20 0.134+0.05
HKBU UBFC SiNC 1.08 £0.03 0.95+0.00
(non- PURE SiNC 243 +0.20 0.90 £0.02
rPPG) DDPM SiNC 20.34 £0.25 0.19 £ 0.02

We perform cross-dataset testing to analyze whether the
approach is robust to changes to the lighting, camera sen-
sor, pulse rate distribution, and motion. Table 2 shows
the results for SiNC and supervised training with the same
architecture. We find that the performance is similar for
the supervised and unsupervised approaches when trans-
ferring to different data sources. Training on PURE ex-
clusively gives relatively poor results when transferring to

UBFC-rPPG and DDPM, due to the low pulse rate variabil-
ity within PURE samples and lack of movement. Training
on DDPM gives the best results overall, since the dataset
is the largest and captures larger subjects’ movements com-
pared to other datasets.

6.3. Training with CelebV-HQ Videos

Given the abundance of face videos publicly available
online, we trained a model on the CelebV-HQ dataset [56].
After processing the available videos with MediaPipe and
resampling to 30 fps, our unlabeled dataset consisted of
34,029 videos. We trained the model for 23 epochs and
manually stopped training due to a plateau in the valida-
tion loss. Unfortunately, we found that the model could not
converge to the true blood volume pulse. We attribute the
failure to poor video quality from compression. Although
the videos were downloaded with the highest available qual-
ity, they have likely been compressed, removing the pulse
signal entirely. See the supplementary material for an as-
sessment of rPPG quality using POS [47] on CelebV-HQ.

6.4. Training with HKBU-MARs Videos

The HKBU-MARs dataset [17] was designed for face
presentation attack detection, but we trained models on the
“real” video sessions in the dataset. The bottom rows in
Table 2 show the results for training on HKBU-MARs,
then testing on the benchmark rPPG datasets. Training on
HKBU-MARs gives better results when testing on UBFC-
rPPG and PURE than all training sets except DDPM, which
is an order of magnitude larger. To our knowledge, this
is the first succesful experiment showing that non-rPPG
videos can be used to train robust rPPG models, even if
they do not have ground-truth pulse labels.

6.5. Ablation Study on Losses

Table 3. Ablation study on the loss functions used during training.
Results are shown for models trained and tested on UBFC-rPPG.

Loss MAE (bpm) RMSE (bpm) r

Ly 3.08 + 1.69 8.08 &+ 3.61 0.87 £0.08
Ls 4550 +1.22 50.04 £0.94 -0.04 £0.08
Ly 22.89 +2.83 31.51 £2.36 0.22 £0.09
Ls+ Ly 51.24 £5.36 57.80 £7.39  -0.04 £0.09
Ly + Ls 9.99 +2.55 17.14 £ 2.36 0.51 £0.14
Ly + Ly 4.18 £2.88 8.90 +5.24 0.82 £0.14
Ly+ Ls+ Ly 0.59 + 0.00 1.83 +0.04  0.99 £+ 0.00

We trained models using all combinations of loss com-
ponents to analyze their contributions. Table 3 shows the
results for training and testing on UBFC-rPPG. The band-
width loss is the most critical for discovering the true blood
volume pulse, while the sparsity and variance losses do not
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Figure 3. Within-dataset waveform predictions on all baseline
datasets from end-to-end unsupervised models over an 8-second
window. The model predictions are remarkably periodic without
any form of filtering. Note that phase is not considered during
training, so each model learns its own phase shift.

learn the desired signal by themselves. Surprisingly, com-
bining the bandwidth loss with just one of the sparsity or
variance losses gives worse performance than just the band-
width loss. However, when combining all three compo-
nents, the model achieves impressive results.

7. Discussion
7.1. Improvements over Supervised Learning

It is initially surprising that unsupervised training leads
to similar or improved rPPG estimation models compared
to those trained in a supervised manner. However, there are
several potential benefits to unsupervised training. From a
hardware perspective, one of the difficulties in supervised
training is aligning the contact pulse waveform with the
video frames [54]. The pulse sensor and camera may have
a time lag, effectively giving the model an out-of-phase tar-
get at training time. Unsupervised training gives the model
freedom to learn the phase directly from the video. The
contact-PPG signal is also sensitive to motion and may be
noisy. Since motion may co-occur at the face and fingertip,
the contact signal may misguide the model towards visual
features for which they should be invariant.

From a physiological perspective, the pulse observed op-
tically at the fingertip with a contact sensor has a different
phase than that of the face, since blood propagates along a

different path before reaching the peripheral microvascula-
ture, making alignment nearly impossible without shifting
the targets to rPPG estimates from existing methods [38].
Additionally, the morphological shape of the contact-PPG
waveform depends on numerous factors such as the wave-
length of light (and corresponding tissue penetration depth),
external pressure from the oximeter clip, and vasodilation
at the measurement site [ 1,28]. This indicates that the mor-
phology and phase of the target PPG waveform is likely dif-
ferent from the observed rPPG waveform.

7.2. Why Does It Work?

The success of SiINC depends on specific properties of
the data, model, and how the two interact. Limited model
capacity is actually required, since it forces learning fea-
tures that generalize across inputs. By constraining the
model’s predictions to have specific periodic properties, the
limited-capacity model must find a general set of features
to produce a signal that exists in most or all of the training
samples, which is the blood volume pulse in our datasets.

As a beneficial side-effect, the model intrinsically learns
to ignore common noise factors such as illumination, rigid
motion, non-rigid motion (e.g. talking, smiling, etc.), and
sensor noise, since they may preside outside the predefined
bandlimits or with uniform power spectra. Even if noise
exhibits periodic tendencies within the bandlimits for some
samples, those features would produce poor signals on other
samples. Therefore, end-to-end unsupervised approaches
like SiNC are well-suited for periodic problems.

8. Conclusions

We proposed a novel non-contrastive learning approach
for end-to-end unsupervised signal regression, with specific
experiments on blood volume pulse estimation from face
videos. This SiNC framework effectively learns powerful
visual features with only loose frequency constraints. We
demonstrated this by training accurate rPPG models using
non-rPPG data and our simple loss functions. Given the
subtlety of the rPPG signal, we believe our work can be
extended to other signal regression tasks in the domain of
remote vitals estimation.
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