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Abstract

Analogical reasoning enables agents to extract relevant
information from scenes, and efficiently navigate them in
familiar ways. While progressive-matrix problems (PMPs)
are becoming popular for the development and evaluation
of analogical reasoning in computer vision, we argue that
the dominant methodology in this area struggles to expose
the lack of meaningful generalisation in solvers, and rein-
forces an objectivist stance on perception – that objects can
only be seen one way – which we believe to be counter-
productive. In this paper, we introduce the Unicode Analo-
gies challenge, consisting of polysemic, character-based
PMPs to benchmark fluid conceptualisation ability in vision
systems. Writing systems have evolved characters at mul-
tiple levels of abstraction, from iconic through to symbolic
representations, producing both visually interrelated yet ex-
ceptionally diverse images when compared to those exhib-
ited by existing PMP datasets. Our framework has been de-
signed to challenge models by presenting tasks much harder
to complete without robust feature extraction, while remain-
ing largely solvable by human participants. We therefore
argue that Unicode Analogies elegantly captures and tests
for a facet of human visual reasoning that is severely lack-
ing in current-generation AI.

1. Introduction
Traditionally, statistical classification models have been

designed to neatly cleave data into categories. Even in
tasks such as visual scene decomposition, where data re-
sists full description by any one label, there is an underly-
ing objectivist assumption being made; the expectation of
there being an objective number of distinguishable “things”
present, themselves belonging to singular classes. Human
visual perception makes a departure from this. The sym-
bolic world to which we attend, with firm compositional
rules for scenes and their objects, and with their parts and
positions, is subsisted by a churning sea of ongoing concep-
tualisation processes deeply fluid and contextual [15].

In recent years, there has been a proliferation of com-
puter vision architectures built with object-centric inductive

Figure 1. An example problem in UA, instantiating the Distribute-
Three rule with the Closure concept. Five out of six context frames
are provided (left), with four answer frames to choose from (right).
The correct answer is emboldened.

biases [21], many of which represent states-of-the-art on
popular datasets [7, 35, 41]. This is an important direction,
as training models to decompose scenes into objects allows
for an explicit abstraction stage promoting feature reuse.
However, abstract visual reasoning tasks such as Bongard
problems [3] expose philosophically [20] — and in this pa-
per, experimentally — that such an approach might work
against the creation of models that possess the ability to ab-
stract and deploy useful concepts. This observation also en-
gages a current debate in the literature regarding the scala-
bility of built-in knowledge and inductive biases [24, 36].

Humans display flexibility in how they decompose
scenes, and perceive such scenes at a level of abstraction
informed by past experiences and appropriate to present
goals [8,9]. Scene understanding in humans is therefore un-
dergirded by something other than the perception of static
objects [22], and the idea that scene modelling research can
separate perception and higher cognition into a pipeline of
self-contained modules is strongly critiqued [5].

Noticing other shortcomings of deep-learnt approaches
to computer vision, including brittleness to out-of-
distribution (OOD) data, a small number of abstraction
datasets inspired by Raven’s Progressive Matrices have
been recently released [23]. Further motivations to this
direction include a) the expectation that tasks with such
an extended history in general psychometric testing would
be useful to import into computer vision research, and b)
the opinion that the more broadly applicable a model’s ab-
stracted concepts become, the more robust that model will
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be under OOD conditions [29, 35]. While the applicabil-
ity of such concepts should ideally be evaluated by these
datasets, common approaches to dataset creation feature
conceptual schemas consisting of simple objects that can
be neatly dropped into scenes, and extracted by scene de-
composition stages [35]. This seems to require little in the
way of contextual perception, such as Hofstadter’s notion
of “conceptual slippage” [16].

We observe that the world’s writing systems present a
diverse resource of characters that are amenable to con-
tent analysis, and can assemble novel reasoning problems
of their own. We introduce the Unicode Analogies (UA)
challenge, consisting of character-based progressive ma-
trix problems (PMPs) to benchmark fluid conceptualisation
ability in vision systems. The characters in UA are poly-
semic, and may instantiate any number of concepts, with the
salient concept only revealing itself given context (Fig. 1).
By generating training and testing problems from disjoint
sets of characters, we challenge these systems by present-
ing tasks much harder to complete without robust feature
extraction, while remaining largely solvable by human par-
ticipants. In doing so, we contribute a dataset that unlike
others in this area, operates on a rich conceptual schema
that invites fine-grained experimentation, and is easily ex-
tensible to new user-defined concepts. Over five key ex-
periments, we explore human and model performance on
a number of dataset splits generated by UA, demonstrate
that state-of-the-art solvers are still far from achieving the
founding goals their datasets were created for, and encour-
age new solvers to overcome these limitations.

2. Background

2.1. Vision vs. objectivism

For humans, our perceptual world is not populated by
firm and unchanging concepts, as if there were some neatly
defined mental collection. There is a wealth of psychologi-
cal research to suggest that cognition – at the levels of con-
ceptualisation [4], reasoning [11], and memory [34] – op-
erates on concepts that are blurred, evolving, fluid, and ad
hoc. Consider the child who perceives a tree stump sur-
rounded by mushrooms as a dining setting for small crea-
tures. Such analogies are ubiquitious in how we understand
scenes not simply as lists of objects, but micro-worlds with
physics, rules, structure, intent, and purpose. Via analogy,
these worlds, which may not be previously experienced,
are “seen as” familiar, in order for us to successfully tra-
verse and manipulate them, efficiently guiding perception
and problem solving [12]. We believe that a deep under-
standing of concepts is demonstrated by the ability to both
perceive them in diverse stimuli, and to leverage them for
utility. Echoing Odouard and Mitchell [29], the way we as-
sess trained models needs to remain fully aware of this.

2.2. Progressive matrix problems and deep learning

Since their introduction in 1936, Raven’s Progressive
Matrices (RPMs) have seen extensive use in psychometric
testing [32,33], in part due to their abstract, non-verbal, and
assumedly culture-agnostic design, as well as their simplic-
ity to administer. RPMs present a visual pattern-matching
task requiring solvers to perform analogical reasoning, and
such reasoning must depend on the company of context im-
ages if a solution is to be found and analogy drawn.

In the field of computer vision, deep learning is ubiqui-
tous in leading models, bringing with it both the remarkable
ability to perform rich, automatic feature extraction from
large datasets, and a severe brittleness to out-of-distribution
data. As analogical reasoning in human and non-human an-
imals is hypothesised to support feats such as tool use and
creation, and indeed, general problem solving [15], there
has been much interest in creating RPM-inspired datasets
amenable to deep learning. In this paper, we refer to the
problems presented by all such datasets as belonging to the
class of progressive matrix problems (PMPs).

The last five years has seen the release of several abstract
reasoning datasets, including two seminal PMP datasets;
PGM [1] and RAVEN [39]. PGM is considered the first
large-scale dataset of its kind, while RAVEN builds upon it,
increasing the diversity of rules and configurations instanti-
ated by problems to discourage memorisation and more ac-
curately assess the generalisation ability of trained models.
Since RAVEN’s release, there have been a number of re-
search efforts (reviewed by Malkinski and Mandziuk [23])
to benchmark novel architectures on its problems, each
analysing model performance primarily informed by overall
accuracy. While this presents as a fairly standard method-
ology in machine learning research, there are more nuanced
considerations that this branch of research demands.

2.3. Shortcuts and non-robust features

For any given data, there exists a landscape of “perfect”
models, i.e. those that have full explanatory power for those
data. Knowing which models will also ultimately capture
the knowledge to describe additional data is a contentious
question [24]. Humans have evolved many biases, such as
the preference for simple explanations [37]. Ironically, the
tendency to use analogies has meant expecting broader cog-
nitive abilities of our seemingly mind-like models.

Recent works have exposed the existence of shortcut
and non-robust feature learning in neural networks [10,18].
Geirhos et. al communicate that shortcut learning is a fail-
ure to generalise “in the right direction”, where a model
extracts and depends on features that are not present OOD
[10]. Similarly, Langosco et. al explain that learning non-
robust features and objectives occurs when a network en-
capsulates the “wrong” knowledge, i.e. that fulfils optimi-
sation in a way that wasn’t intended by researchers [18].
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In our research area, such phenomena have resulted in
networks failing to learn generalisable features, and exploit-
ing biases in PMP answer sets without the awareness of re-
searchers at the time of publication [35]. Recognising this
as an important consideration for dataset creation, we have
designed splits in Unicode Analogies to assemble train and
test problems from disjoint sets of images, requiring models
to learn robust features if they are to perform well.

2.4. Comparisons to other datasets

Datasets such as PGM and RAVEN represent impor-
tant developments in this field, being the first to automate
PMP generation at-scale for deep learning, and with enough
diversity to pose a challenge for machine solvers at their
times of release. However, they also represent one particu-
lar approach to PMP formation, adopting basic object-based
schemas, and building complexity by stacking multiple rule
instantiations in a given problem. While more recent archi-
tectures have become adept at modelling the default splits
of these datasets, there is less focus on universally poor
extrapolation performance, which has seen relatively little
progress [23]. To account for this discrepancy, we hypoth-
esise that this approach to PMP generation and testing is
not fully diagnostic of an architecture’s analogical reason-
ing abilities. The familiarity of stimuli invites architectures
to separate perception from higher-order cognition, allow-
ing much of the work of the problem to fall to representa-
tion learning. If it were not so, rule-stacking would have
a greater negative impact on performance than is observed,
and introducing modified stimuli would be less detrimental.

Unicode Analogies (UA) is able to broadly express the
schemas utilised by these datasets, including a familiar ex-
ploration of rules such as progression and arithmetic, ob-
jects including shapes and lines, and attributes like size and
number, to name a few. However, these are situated within
a far richer schema of concepts at multiple levels of abstrac-
tion, many of which are inspired by Bongard problems [3]
and principles of gestalt perception, including closure, neg-
ative space, and grouping. In doing so, it blurs the lines
between object and feature, and between perception and
cognition, forcing models to incorporate contextual infor-
mation at all stages of problem solving. This dataset brings
PMP research in-line with philosophical criticisms of objec-
tivist approaches to AI [5], prohibiting solvers from relying
on scene decomposition stages. It presents just one rule per
problem, asking solvers to discover what is salient, instead
of learning to represent scenes a priori. It also responds
to the call for datasets to support concept-based evaluation
as voiced by Odouard and Mitchell [29], which is a valid
criticism across all other datasets we are aware of.

Most similar to our work is the Bongard-LOGO dataset
[28], which also motivates context-dependent perception as
a crucial property of human cognition. Bongard-LOGO

presents a few-shot benchmark intended for meta-learning,
and focuses on capturing the Bongard problem format with
frames consisting of generated line drawings. UA instead
benchmarks supervised learning approaches such as those
built for RAVEN and PGM, importing concepts from Bon-
gard and other formats into progressive matrices. Bongard-
LOGO exclusively investigates invariant perception with re-
gards to size, orientation, and position, whereas Unicode
Analogies does not limit itself in this way.

Other notable datasets, including KANDINSKY [17],
ARC [6], PQA [31], and LABC [14], have related goals.
The KANDINSKY set explores spatial and gestalt visual
tasks within the context of explainability research, and sug-
gests importing such concepts into progressive matrices as
future work. ARC presents a corpus of hand-designed intel-
ligence tasks that require models to generate coloured grids.
ARC contains a broader, more complex task base than UA,
and is intended to be a very general battery for machine in-
telligence testing, whereas UA is focused primarily on fluid
perception. PQA borrows ARC’s gridworld format, and in-
troduces seven tasks related to laws of gestalt perception, al-
ready largely solvable by the technique offered in the paper.
LABC offers a two-row variant to the problems in PGM, fo-
cusing on analogical reasoning across domain shifts, while
inheriting the same basic schema as PGM.

3. The Unicode Analogies Framework

Unicode Analogies is an extensible framework that al-
lows for the creation of character-based PMP datasets from
a conceptual schema. In this section, we introduce this work
as a pipeline from schema formation, character annotation,
and problem generation, through to defining training splits.

3.1. Conceptual schema

Starting with known concepts with historical usage in
PMPs and Bongard problems (e.g. rules involving progres-
sion or distribution, and features such as size and shape),
the first author performed content analysis on hundreds of
characters appearing in the Unicode standard. By follow-
ing a conventional approach to content analysis resembling
Mayring’s inductive category development [25], we for-
malised a broad conceptual schema with which to annotate
more characters, allowing software to assemble thousands
of novel PMPs. The current conceptual schema is shown
in Fig. 2, and depicts many concepts across multiple lev-
els of hierarchy. Generated problems express one of 5 rule
types: constant, progression, arithmetic, distribute-three,
and union, with each rule applicable to a subset of concepts.
The first 4 of these rules are explored in RAVEN under the
same names [39]. In PGM, distribute-three is referred to as
consistent-union, and union as logical-OR [1]. We refer the
reader to these works if such rules are unfamiliar.
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Figure 2. The conceptual schema of Unicode Analogies 1.0, at the time of release. Constant problems can be generated using any concept,
while the other four rules are applicable to subsets of concepts, as labelled by bars. Concepts appear at multiple levels of hierarchy,
beginning with grouping global, local, and relational concepts, becoming finer-grained and specifying the values applicable to each.

3.2. Annotation and extensibility

Upon establishing a schema, 4000 characters were pre-
selected from sections of Unicode that feature largely sym-
bolic characters.1 Qualitative suitability criteria include the
simplicity and abstractness of characters as an estimate of
their amenability to PMPs. Pragmatic criteria include the
availability and copyright of fonts to render chosen charac-
ters. Manual annotation was then performed by stepping
through concepts in the schema and selecting character im-
ages for which these concepts were readily perceived. All
selections and annotations were made by the first author.
This resulted in a final set of over 2500 annotated char-
acters, each possessing 2.8 annotated features on average,
with the most polysemic character featuring 20 annotations.

3.3. Problem structure and generation

To more directly establish the task as analogy-making,
while making efficient use of human annotations, the struc-
ture of PMPs in UA differ slightly to those found in RAVEN
and PGM, consisting of two rows of context, for a total of
nine frames per problem (five context, four answers). This
resembles the Visual Analogy format introduced in [14].
PMPs do not exhibit multiple rules, instead, each follows a
single rule-concept pair, as the goal is to encourage solvers
to use context at the perceptual level. Each frame consists of
a single Unicode character rendered at 80x80 binary pixels,

1The full list of Unicode sections appears in supplementary material.

which is a resolution common to most PMP solvers.
Generating a new dataset split involves random sampling

of the problem space. For each problem requested, a tuple is
sampled with the structure rule-concept-shift (e.g. constant-
shapesides-noshift). Context shift refers to whether or not
both context rows will present the same concept values. For
example, a problem that instantiates the progression rule
over the quantity of dots may do so as two rows depicting
‘three, two, one’ dots. Requesting context shift would mean
the second row altering the progression, e.g. ‘one, three,
five’. Shifted problems are expected to be more difficult as
there are less context frames to evidence the rule.

Upon sampling each problem tuple, context frames are
selected to instantiate that tuple in two rows. The last con-
text frame is popped from the list and added to the answers,
alongside three foils, all annotated as belonging to the par-
ent concept in the problem tuple. Foils do not depict the
concept in a way that would complete the intended rule and
invalidate the problem. Additionally, foils cannot be drawn
from the problem context, nor can they complete an emer-
gent rule (that is, an unintended but valid alternative rule)
as far as the system can infer from character annotations.
Finally, the pool of potential foils for any given problem is
balanced by only accepting a maximum of three instances
of each candidate concept, to ensure that over-represented
values (i.e. concepts that apply to relatively large numbers
of annotated characters) do not dominate answer distribu-
tions and introduce an exploitable bias.
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Figure 3. Three example PMPs from the dataset. The top problem
demonstrates a constant number of dots in each row. The middle
problem demonstrates arithmetic over the meeting points of lines.
The lower problem demonstrates a union; the first two frames de-
pict 3-sided and 4-sided shapes, while the final frames depict both.
Correct answers are emboldened.

By selecting answers and foils depicting the parent con-
cept, diverse problems can be assembled from orders of
magnitude less annotation than naive strategies (i.e. where
each image is checked and annotated for each and every
feature present in the schema). Answers are also challeng-
ing, because the problem rule is guaranteed to be applica-
ble to all candidates, with only one instantiating its concept
correctly. Due to the nature of manual annotation, PMPs
cannot be guaranteed to always be a) valid (solvable by pre-
cisely one candidate answer) or b) human-intuitive in their
assembly. Nonetheless, we experimentally confirm that the
dataset splits produced by this process remain largely hu-
man solvable whilst maintaining a significant challenge for
machine solvers, and thereby motivate UA as having utility
in exploring this performance gap.

3.4. Parameters for defining splits

A the level of defining a single problem, a tuple speci-
fies the rule, concept, and context shift to be instantiated in
the problem frames. At the level of defining a dataset split,
there are additional parameters that invite experimentation:

• Rule sampling. Defines the subset of rules to be made
available when sampling problems.

• Tuple extrapolation. Defines which problem tuples to
hold out in testing. Neutral samples all available rule-
class tuples in both train and test sets. Extrapolation
ensures exclusive tuples across sets. Extrapolation-
plus holds out entire concepts.

• Context shift. If true, the generated split will include
both shifted and non-shifted problems.

• Character holdout. Defines how the character set is
split into train and test sets. All problems are gener-
ated from these respective sets. If None, all characters
are equally available for constructing training and test-
ing problems, but rule-class-value tuples are disjoint
across splits, to avoid exposing the model to test prob-
lems during training. Set difference holdout ensures
train and test character sets are disjoint, requiring mod-
els to extract robust features if they are to perform well.

• Sampling diversity. Balanced samples problems uni-
formly, allowing for equal representation. Diverse dis-
allows re-instantiating a problem tuple with the same
answer to maximise problem diversity and minimise
opportunities for memorisation. All experiments in the
paper use diverse sampling.

4. Experiments
We ran five key experiments – Rule, Schema, Extrap-

olation, Challenge, and Hold-out – designed to deepen an
understanding and appreciation of models’ visual conceptu-
alisation abilities. Here, we detail the architectures, dataset
splits, and evaluation methods used to facilitate this goal.
We also describe the acquisition of a human baseline.

4.1. Architectures

We selected three high-performing architectures from
the RAVEN literature to fit to each of the dataset splits:
the Multi-scale Relation Network [2], the Scattering Com-
positional Learner [38], and Rel-Base [35]. There ex-
ists solvers possessing further structural knowledge for ob-
jects and rules [27, 35, 40], obtaining more logical, trans-
parent, and generalisable reasoning at the cost of being
bound by strong prior knowledge when asked to correctly
parse scenes possessing diverse, overlapping, compound,
or gestalt features. We limited experimentation to solvers
without such inductive biases, but note that architectures
such as the Transformer-based STSN [27] (contemporane-
ous to this publication) should be investigated further.

To enable modelling the new two-row PMP format by
solvers built for three rows, dataset loaders pad problems
with empty frames. We noticed no difference in accuracy
when comparing this strategy to adjusting architecture in-
put layers. We also selected two baselines as implemented
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by Spratley et. al [35]: ResNet, and its context-blind vari-
ant, used to check for exploitable biases in answer set gen-
eration by only viewing answer frames. Instead of treating
the blind model as merely a sanity check during develop-
ment, we subject it to the same tests as all other models to
be aware of bias across different splits.

4.2. Method and dataset splits used

1. Rule. Model versus human performance is explored
across all five rule types offered by the dataset. Mod-
els are trained and tested on individual rules, as well
as jointly trained on all rules, providing average per-
formance. Parameters for defining these splits are set
to defaults: Extrapolation is neutral, context shift is
disabled, and character holdout is set difference.

2. Schema. Performance is then explored across the three
schema subcategories – Global, Local, and Objects &
Relations (Fig. 2) – to provide further understanding of
which problem themes were more or less challenging.
Parameters for these splits are set to defaults.

3. Extrapolation. Models are tested against four extrap-
olation splits starting with No Shift (context-shift dis-
abled), and increasing in difficulty. Neutral enables
context-shift, while Extrapolation and Extrapolation-
plus also alter the tuple extrapolation parameter to pro-
vide finer-grained generalisation results with which to
judge the limits of models’ extrapolative abilities.

4. Challenge. Both easy and challenging concepts
are summarised based on a comparison between
human and model performance, and the resulting
experimentally-informed challenge split is used to fur-
ther probe the disparity between human and model per-
formance. Parameters are set to defaults.

5. Hold-out. The influence of both character hold-out
strategies is briefly examined using two splits based
on Constant rules, in order to exacerbate the effects of
non-robust feature learning.

Both model parameter initialisation and dataset seeds
needed to be accounted for; the former affects traversal of
the optimisation landscape, while the latter affects the dis-
tribution of problems across train-test sets, and may prohibit
entire problem types from forming across sets in the process
of randomly holding out images. To achieve a more robust
understanding of model ability, we performed 5-fold cross-
validation. Crucially, because dataset splits from this frame-
work aren’t amenable to being shuffled and repartitioned
(without violating character and tuple holdout), for each
dataset split, we generated each fold with random seeds, and
trained three randomly-initialised models on each. The size
of dataset folds is similar to RAVEN [39], containing 8,000

- 10,000 problems each. All models were trained to a maxi-
mum number of epochs given their architecture type, found
by preliminary fitting of each model on the Average rule set.
All materials, including splits, their folds, seeds and other
parameters, are made available on our project page.

4.3. Establishing a human baseline

In keeping with RAVEN and Bongard-LOGO, we estab-
lished a baseline of human performance over a set of repre-
sentative problems to better direct model development. We
employed 30 subjects using the Prolific.co research plat-
form, who were remunerated at a rate consistent with the
minimum wage in our country. The two selection criteria
required subjects to hold a graduate degree, and to form
a gender-balanced sample. Subjects were presented with
short instructions as to the structure of problems they would
encounter, and familiarised with an initial set of presolved
problems, sampled from the train set. They were then in-
structed to complete a set of 15 problems, sampled ran-
domly from the test set. To obtain these sets, we first gen-
erated one fold with a 50-50 train-test split. Across human
subjects, at least one problem per potential rule-concept tu-
ple was shown. Our experiment was designed using Psy-
choPy [30] and hosted on Pavlovia.org.

4.4. Experimentally informing a new challenge split

By sorting the list of problem types in the fold used for
the human baseline, in order of performance difference (hu-
man accuracy minus model accuracy), and retaining the top
50%, we establish a Challenge split to help guide the devel-
opment of perception models towards human-like analogi-
cal reasoning. In doing so, there is diagnostic potential to
uncover weak spots in vision systems and indicate which
inductive biases might be necessary to engineer. This also
increases the quality of problems, assuming that human ac-
curacy is representative of problem intuitiveness.

5. Performance analysis
In this section, we present and analyse the outcomes of

our five key experiments. Results reported as accuracy (%).

Rule (Tab. 1). Across the different rule sets, we notice that
model accuracy is almost universally below 35%, while
humans are still above the top solver on the Average (joint)
set by 24.4%. This difference is increased to 36.5% over
the Progression set, which is hypothesised to be due to
humans excelling at counting objects (a weakness of deep
neural networks [13]). This hypothesis is evidenced by
the results of the following experiments, performing more
fine-grained analysis on concept types. Union problems
appear unintuitive for humans, but we believe that this
performance could be improved with other experimental
designs as the different possible rules were not compre-
hensively described to participants. While this wouldn’t
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invalidate this data (participants would still be required
to perform fluid perception over unseen concepts and
characters), it was obtained to serve as a baseline, not a
goal to beat. The context-blind solver never achieves more
than 5% above what would be expected of random chance,
with more advanced architectures only performing within
10% of it, suggesting that overall this dataset succeeds in
presenting a significant challenge, while our answer set
sampling strategy mitigates exploitable bias.

Schema (Tab. 2). Of the three schema subcategories,
the most accurately modelled was Global, likely due
to concepts such as ink amount and global size being
less abstract and more amenable to feature extraction.
Meanwhile, Object and Relations saw the human baseline
double the leading model’s accuracy. Such problems seem
to be much harder for machine solvers due to their concepts
being abstract and able to be instantiated on a large variety
of object types. Unlike many Global concepts, which may
be partially solvable by pixel counting (e.g. pixels near
image borders might be correlated with global size), it
is unclear how a network might acquire the features to
robustly perceive this.

Extrapolation (Tab. 3). Moving from No Shift to
Extrapolation-plus, we observe a general trend of perfor-
mance loss across all solvers as expected. With stronger
future models, we expect this discrepancy to become even
more apparent, as these datasets progressively prohibit
memorisation and require solvers to extrapolate learned
concepts to increasingly OOD problems.

Challenge (Tab. 4). To our knowledge, the Challenge split
presents the highest discrepancy between human and ma-
chine performance of any PMP dataset in this area, with
the leading model trailing 40.2% behind, and most mod-
els displaying near-random performance. As clued in by
the Schema experiment, we continue to notice that the most
successfully modelled concepts belong to the Global cate-
gory. Humans perform very well in counting local features,
while models were largely unable to do so.

To further explore how concepts were perceived in prob-
lems, Tab. 5 presents the set unions of concepts deemed
relatively ‘easy’ and ‘hard’, for both human and machine
solvers. To obtain these, we first ordered all concepts in the
schema by the average accuracy of problems in which they
are featured, and then retained the concepts outside the
interquartile range. From this, we can see that Global prob-
lems are often easier for all solvers, while perceiving empty
spaces as objects is unintuitive. Not surprisingly, humans
perform very well on problems that explore both global
and relational object size, whereas models only succeed at
global size, further suggesting that their comprehension of
size as an abstract concept is limited.

Method Avg Const Prog Arith Dist3 Union

Blind 27.0 29.5 29.6 24.3 28.1 29.7
ResNet 27.4 30.9 26.7 25.7 31.9 30.0
MRNet 31.1 33.9 26.8 27.4 34.4 32.9
SCL 28.9 30.1 25.2 25.8 30.7 31.2
RelBase 30.8 34.5 28.5 29.7 36.9 34.2

Human 55.5 55.0 65.0 54.0 55.0 42.0

Table 1. Human vs. model performance across rule types. Average
(avg) performance is over the combined test set and is therefore
weighted to rule types that have more available concepts.

Method Global Local Obj. & Rel.

Blind 34.0 25.8 25.3
ResNet 35.1 26.5 25.6
MRNet 39.3 30.1 24.9
SCL 34.1 26.0 24.9
RelBase 39.0 30.0 26.3

Human 52.6 58.3 52.2

Table 2. Human vs. model performance across schema categories.

Method No Shift Neutral Extra Extra +

Blind 27.0 26.9 26.7 25.6
ResNet 27.4 27.0 27.0 24.9
MRNet 31.1 30.2 28.9 27.9
SCL 28.9 27.9 27.5 25.7
RelBase 30.8 31.0 28.1 29.5

Table 3. Extrapolation performance on datasets with all rules.

Hold-out (Tab. 6). Comparing models on both Constant
rule splits – one with character hold-out, and one without
– we notice a significant performance increase in some
models when the same character set is used to assemble
both train and test problems, despite rule-class-value
tuples being disjoint across splits. This strongly suggests
that the use of disjoint character sets is an important
design consideration for this framework, and had datasets
been constructed without this, we might have critically
overestimated model abilities.

A consideration worth mentioning for reproducibility
is that models were prone to overfitting, which was par-
tially alleviated by enabling dropout. Given our com-
pute resources, we prioritised k-fold cross-validation with
maximum epochs to give a useful first pass of contem-
porary PMP architectures on this dataset. With hyperpa-
rameter tweaking and more nuanced regularisation, along
with training schemes such as early stopping and best
model selection, additional performance might be achieved.
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We leave tailoring and developing models to future work.
Across all experiments, we notice that despite architectural
differences between tested models, similar results were
achieved, with the exception of experimentation on differ-
ent hold-out sets. We believe this observation implies that
across models, the same kinds of non-robust features are
being extracted, and further motivates the UA challenge by
inviting a new class of solvers.

6. Broader Impact and Future Work

While this framework is intended to be of primary use for
supervised learning techniques in abstract visual reasoning,
it is easily extended to new concepts and annotations, invit-
ing future work in artificial intelligence and cognitive sci-
ence. Investigating the impact of controlling features such
as domain shift, distractors and misleading factors, is likely
to be of interest in testing models of human concept dis-
covery and category learning. There is also the option to
run more targeted generalisation experiments: one could
test for model numeracy by generating a split with all nu-
meric concepts, but train and test exclusively on arithmetic
and progression problems, respectively. Alternatively, one
might want to train on local feature concepts, and test for
extrapolation to global features. Or, one might implement
and test schemas of their own. The released code performs
all experiments automatically, given a user-defined schema.

Since we have chosen the concepts used in problem for-
mation, and possess algorithms that are capable of extract-
ing many of these concepts, there is potential to perform
more direct probing of concept acquisition in trained mod-
els, using methods such as those introduced by [26]. To our
knowledge, this has not yet been performed in this area.

Finally, this framework can be adapted for use across dif-
ferent learning paradigms, including meta and unsupervised
learning. For example, the Omniglot dataset [19] presents a
challenge for few-shot methods aiming to cluster handwrit-
ten characters. The problems in Unicode Analogies are gen-
erated from an underlying set of annotated polysemic char-
acters, which might pose its own challenge to such methods.

7. Conclusion

Of the abstraction datasets that aren’t focused on gestalt
perception (including all based on Raven’s Progressive Ma-
trices), the implication for solvers is that there is a singu-
larly correct way to parse a scene. We argue that testing for
analogical reasoning needs to incorporate fine-grained and
concept-based analysis, over datasets built to expose non-
robust feature learning. We introduce the Unicode Analo-
gies challenge, which assembles novel PMPs from diverse
and disjoint sets of character images, and brings fluid per-
ception to the progressive matrix format. In doing so, we
demonstrate that state-of-the-art solvers are still far from

Human Model (RelBase)

Challenge split performance (accuracy and difference)
71.9% 31.7% (-40.2)

Top-5 concepts
negative global-size

horns negative

arrow-quantity ink

dash-quantity latin-style

internalsolid dash-quantity

Bottom-5 concepts
oddoneout u-quantity

opening zig-quantity

base-contacts arrow-quantity

space interaction

uniquesolid uniquesolid

Challenge split performance, other models
Blind ResNet MRNet SCL

Accuracy 24.8 27.2 28.1 27.7
Difference -47.1 -44.7 -43.8 -44.2

Table 4. Breakdown of performance on the Challenge split, in-
cluding a summary of the top and bottom concepts that experi-
mentally informed this split, for human participants and models.

Concepts Model (RelBase)
Human >Q3, ‘easy’ <Q1, ‘hard’

>Q3,
‘easy’

latin-style,

negative,

global-size,

horns,

dash-quantity

arrow-quantity,

relational-size

<Q1,
‘hard’

opening,

closure

space,

interaction,

uniquesolid

Table 5. Two-by-two table depicting set unions of concepts. These
concepts feature in problem types outside the interquartile ranges
of human and model performance.

Constant split performance, all models
H-O Blind ResNet MRNet SCL RelBase

None 25.8 31.3 38.5 41.0 52.2
Diff. 29.5 30.9 33.9 30.1 34.5

Table 6. Performance on two Constant rule splits, generated with
character hold-out set to None and Set difference (Diff.).

achieving the founding goals their datasets were created for,
and encourage new solvers to overcome these limitations.
We are excited to see how this framework is adopted by our
research community.

19089



References
[1] David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and

Timothy Lillicrap. Measuring abstract reasoning in neural
networks. In International conference on machine learning,
pages 511–520. PMLR, 2018. 2, 3

[2] Yaniv Benny, Niv Pekar, and Lior Wolf. Scale-localized
abstract reasoning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
12557–12565, 2021. 5

[3] M. M. Bongard. Pattern Recognition. New York, Spartan
Books, 1970. 1, 3

[4] Daniel Casasanto. All concepts are ad hoc concepts. In The
conceptual mind: New directions in the study of the concepts,
pages 543–566. MIT press, 2015. 2

[5] David J Chalmers, Robert M French, and Douglas R Hofs-
tadter. High-level perception, representation, and analogy: A
critique of artificial intelligence methodology. Journal of Ex-
perimental & Theoretical Artificial Intelligence, 4(3):185–
211, 1992. 1, 3

[6] François Chollet. On the measure of intelligence. arXiv
preprint arXiv:1911.01547, 2019. 3

[7] Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and
Ingmar Posner. Genesis: Generative scene inference and
sampling with object-centric latent representations. arXiv
preprint arXiv:1907.13052, 2019. 1

[8] Karl Friston. The free-energy principle: a unified brain the-
ory? Nature reviews neuroscience, 11(2):127–138, 2010. 1

[9] Karl Friston. The history of the future of the bayesian brain.
NeuroImage, 62(2):1230–1233, 2012. 1

[10] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis,
Richard Zemel, Wieland Brendel, Matthias Bethge, and Fe-
lix A Wichmann. Shortcut learning in deep neural networks.
Nature Machine Intelligence, 2(11):665–673, 2020. 2

[11] Dedre Gentner, Keith J Holyoak, and Boicho N Kokinov. The
analogical mind: Perspectives from cognitive science. MIT
press, 2001. 2

[12] Mary L Gick and Keith J Holyoak. Analogical problem solv-
ing. Cognitive psychology, 12(3):306–355, 1980. 2

[13] Shuyue Guan and Murray Loew. Understanding the ability
of deep neural networks to count connected components in
images. In 2020 IEEE Applied Imagery Pattern Recognition
Workshop (AIPR), pages 1–7. IEEE, 2020. 6

[14] Felix Hill, Adam Santoro, David GT Barrett, Ari S Mor-
cos, and Timothy Lillicrap. Learning to make analogies
by contrasting abstract relational structure. arXiv preprint
arXiv:1902.00120, 2019. 3, 4

[15] Douglas R Hofstadter. Analogy as the core of cognition. The
analogical mind: Perspectives from cognitive science, pages
499–538, 2001. 1, 2

[16] Douglas R Hofstadter, Melanie Mitchell, and
Robert Matthew French. Fluid concepts and creative
analogies: A theory and its computer implementation.
University of Michigan, Cognitive Science and Machine
Intelligence Laboratory, 1987. 2

[17] Andreas Holzinger, Michael Kickmeier-Rust, and Heimo
Müller. Kandinsky patterns as iq-test for machine learning.

In International cross-domain conference for machine learn-
ing and knowledge extraction, pages 1–14. Springer, 2019. 3

[18] Jack Koch, Lauro Langosco, Jacob Pfau, James Le, and Lee
Sharkey. Objective robustness in deep reinforcement learn-
ing. arXiv preprint arXiv:2105.14111, 2021. 2

[19] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B
Tenenbaum. The omniglot challenge: a 3-year progress re-
port. Current Opinion in Behavioral Sciences, 29:97–104,
2019. 8

[20] Alexandre Linhares. A glimpse at the metaphysics of bon-
gard problems. Artificial Intelligence, 121(1-2):251–270,
2000. 1

[21] Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-
centric learning with slot attention. Advances in Neural In-
formation Processing Systems, 33:11525–11538, 2020. 1

[22] Norman RF Maier. Reasoning in humans. ii. the solution of
a problem and its appearance in consciousness. Journal of
comparative Psychology, 12(2):181, 1931. 1
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