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Abstract

Early action prediction deals with inferring the ongoing
action from partially-observed videos, typically at the out-
set of the video. We propose a bottleneck-based attention
model that captures the evolution of the action, through pro-
gressive sampling over fine-to-coarse scales. Our proposed
Temporal Progressive (TemPr) model is composed of mul-
tiple attention towers, one for each scale. The predicted
action label is based on the collective agreement consider-
ing confidences of these towers. Extensive experiments over
four video datasets showcase state-of-the-art performance
on the task of Early Action Prediction across a range of en-
coder architectures. We demonstrate the effectiveness and
consistency of TemPr through detailed ablations.†

1. Introduction

Early action prediction (EAP) is the task of inferring
the action label corresponding to a given video, from only
partially observing the start of that video. Interest in EAP
has increased in recent years due to both the ever-growing
number of videos recorded and the requirement of pro-
cessing them with minimal latency. Motivated by the ad-
vances in action recognition [6, 57], where the entire video
is used to recognize the action label, recent EAP meth-
ods [3,15,34,45,60] distill the knowledge from these recog-
nition models to learn from the observed segments. Despite
promising results, the information that can be extracted
from partial and full videos is inevitably different. We in-
stead focus on modeling the observed partial video better.

Several neurophysiological studies [11, 29] have sug-
gested that humans understand actions in a predictive and
not reactive manner. This has resulted in the direct match-
ing hypothesis [18, 46] where, actions are believed to be
perceived through common patterns. Encountering any of
these patterns prompts the expectation of specific action(s),
even before the action is completed. Although the early pre-

*Work carried out while A. Stergiou was at University of Bristol
†Code is available at: https://tinyurl.com/temprog

Figure 1. Early action prediction with TemPr involves the use
of multiple scales for extracting features over partially observed
videos. Encoded spatio-temporal features are attended by distinct
transformer towers (T ) at each scale. We visualize two scales,
where the fine scale Ti predicts ‘hold plate’, and the coarse scale
Ti+1 predicts ‘hold sponge’. Informative cues from both scales
are combined for early prediction of the action ‘wash plate’.

diction of actions is an inherent part of human cognition, the
task remains challenging for computational modeling.

Motivated by the direct matching hypothesis, we propose
a Temporally Progressive (TemPr) approach to modeling
partially observed videos. Inspired by multi-scale repre-
sentations in images [7, 69] and video [27, 62], we repre-
sent the observed video by a set of sub-sequences of tem-
porally increasing lengths as in Figure 1, which we refer
to as scales. TemPr uses distinct transformer towers over
each video scale. These utilize a shared latent-bottleneck
for cross-attention [28, 37], followed by a stack of self-
attention blocks to concurrently encode and aggregate the
input. From tower outputs, a shared classifier produces la-
bel predictions for each scale. Labels are aggregated based
on their collective similarity and individual confidences.

In summary, our contributions are as follows: (i) We
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propose a progressive fine-to-coarse temporal sampling ap-
proach for EAP. (ii) We use transformer towers over sam-
pled scales to capture discriminative representations and
adaptively aggregate tower predictions, based on their con-
fidence and collective agreement. (iii) We evaluate the
effectiveness of our approach over four video datasets:
UCF-101 [53], EPIC-KITCHENS [8], NTU-RGB [51] and
Something-Something (sub-21 & v2) [21], consistently out-
performing prior work.

2. Related Work
The task of EAP is related to but distinctly different

from the tasks of action recognition and action anticipation.
EAP predicts the ongoing action label, partially observed.
In contrast, recognition assumes the completed action has
been fully observed, while anticipation forecasts potential
upcoming actions, seconds before the action starts. We first
review prior EAP approaches, before relating our method to
those used for other video understanding tasks.
Early action prediction: Most of the early attempts have
focused on the probabilistic modeling of partially observed
videos [4, 36, 38, 39, 47]. For example, Ryoo et al. [47]
used a bag-of-words approach to model feature distributions
over multiple partially observed videos. Later approaches
aimed to overcome errors where large appearance variations
occur, by either sparse coded feature bases [4] or through a
scoring function [31, 33], combining prior knowledge and
the sequential order of frames. Lan et al. [36] studied the
representation of movements within the partially observed
video, using a hierarchical structure.

More recent methods [3, 15, 25, 26, 32, 60, 64, 67, 71]
have used learned-features. Specifically, knowledge dis-
tillation [24, 44] has been used to transfer class knowl-
edge from the complete videos to the corresponding partial
videos. This was achieved using Long Short-Term Mem-
ory (LSTM) models [26, 43, 60] and teacher-student frame-
works [3, 15, 60]. Other methods are based on recurrent ar-
chitectures with additional memory cells [32] for matching
similar characteristics between the full and partial videos.
Xu et al. [67] proposed a conditional generative adversar-
ial network to generate feature representations for the entire
video, from the partially observed video. Approaches have
also focused on the propagation of residual features [71] or
exploration with graph convolutions through relation rea-
soning [63, 64]. Foo et al. [16] proposed specializing fea-
tures during training into instance-specific and general fea-
tures. Instance-specific features are learned from a subset
of videos focusing on subtle cues, while general features
are learned from the entire dataset.

In contrast, we hypothesize that it is more beneficial to
represent the partial video progressively. Our method is
based on sampling at varying-length scales from the ob-
served video to understand the temporal progression of ac-

tions. We show that aggregating these predictors can lead to
notable improvements in accuracy. To our knowledge, we
are the first to study EAP in this progressive manner.
Multi-scale representations for other video understand-
ing tasks. The usage of scales, i.e. sequences of varying
lengths or sampling at differing rates, is common in other
video understanding task. For action recognition, video
scales have been primarily used as a sampling method for
either relational reasoning [14, 50, 73] or to select the most
salient scale(s) as input to the network [42, 65, 72]. Xu
et al. [66] proposed the Long Short-Term Transformer, an
encoder-decoder for relating current actions with their long-
term context. In action anticipation, methods utilize dif-
ferent scales to combine features from video snippets and
anticipate one or more upcoming actions [17,20]. Different
from these tasks, and based on the fact that informative parts
of partially observed videos do not have fixed lengths, we
propose to utilize progressive video scales, which capture
fine-to-coarse representations making them more suitable
for partially observed videos.
Attention for video tasks. Attention-based video meth-
ods [59, 61] have initially been used as part of spatio-
temporal CNNs [6, 57]. The recent introduction of Vision
Transformer [10] has inspired subsequent works on action
recognition by either focusing on how spatio-temporal in-
formation can be processed [1, 2] or architectural optimiza-
tions for spatio-temporal data [12,40,48,68,70]. Motivated
by the recent advances of transformers for action recogni-
tion, we combine multiple transformer towers in TemPr.

3. Our Approach

In this section, we overview our TemPr model (shown
in Figure 2). We first introduce our prime contribution of
progressive scales for sampling from the observed video in
Section 3.2. Each scale corresponds to an attention tower,
which captures the progression of the action, and predicts
the ongoing action, as explained in Section 3.3. Multiple
scales/towers are then combined for a final prediction by an
aggregation function, detailed in Section 3.4.

3.1. EAP: Problem Definition

We follow the standard definition of the EAP task from
recent works [3, 64, 67, 71]. We denote the full video with
T frames as v{1,...,T}. We define the observation ratio
0 < ρ < 1 as the proportion of frames observed. EAP as-
sumes 0 < ρ, i.e. at least one frame of the video depicting
the action has been observed, and ρ < 1, i.e. part of the
video remains unobserved. Accordingly, Tρ = ⌈ρ ·T ⌉ is the
number of observed frames. In EAP, the prediction of the
ongoing action label y conveyed in the full video v{1,...,T}
is attempted from only the observed Tρ frames.

14710




 
  

0

 




...







 
 


...






...

Figure 2. (Left) TemPr architecture. Features are extracted over each input xi sampled from video scale si, and combined with scale
and spatio-temporal positional encodings. The encoded features zi are passed to attention towers Ti which output tensors ẑi,L in the latent
space. Shared-weight classifier f(·) is applied to every tower output to make per-scale predictions. These predictions are aggregated by
aggregation function E(·), for early action prediction over the observed frames. (Right) Attention Tower. Each utilizes pre-norm and a
shared latent array u for the cross-attention block (Cross MAB). This is followed by a stack of L self-attention blocks (Self MAB).

3.2. Progressive Video Scales

Given the partial observation of the action, we speculate
that the sampling strategy is critical for capturing distinc-
tive representations of the ongoing action. This is differ-
ent from the sampling typically utilized in action recogni-
tion, where the video is uniformly split into equally-sized
segments [58]. Equal-sized segments, in partially observed
videos, can miss the discriminative action pattern when this
pattern spans across segments. We thus propose to sample
at multiple scales within the observed video, which we refer
to as progressive sampling.

Given the partially observed video of Tρ frames, we ex-
amine the ongoing action over n scales s{1,..,n}. Each scale
si has a larger temporal extent to sample from than si−1.
We represent each scale si as:

si={1, ..., Tsi} ; Tsi =⌈ i
n
·Tρ⌉ ∀ i ∈ N={1, ..., n} (1)

Over each scale, we sample F frames randomly to capture
a progressive fine-to-coarse representation. Considering the
variable input length per scale, sampling a fixed number of
frames F , is required to standardize the encoder inputs.

3.3. Temporal Progressive Attention Towers

We use a shared encoder Φ(·) to extract features from
the sampled frames, over the progressive scales. Corre-
sponding to each scale si, we define input volume xi of

size 3×F×H×W , with F temporally ordered frames, H
height and W width. We thus define zi = Φ(xi) to be the
per-scale, multi-dimensional spatio-temporal encoded fea-
ture volume, of size C×t×h×w. Given the scales’ spatio-
temporal features z1, ..., zn , we reshape these to C×(thw),
and concatenate Fourier Positional Embeddings (PE) of size
n×(thw) to encode each scale and space-time position. Fea-
tures zi form the input to attention tower Ti.

We attend each scale’s features using tower Ti, so that
ẑi = Ti(zi), where ẑi is the feature volume after attend-
ing input volume zi over the transformer blocks. Motivated
by the recent architectural approaches for dealing with the
quadratic scaling of complexity in transformers [28, 37],
each tower uses two attention components consisting of one
cross-attention bottleneck block and a stack of self-attention
blocks as shown in Figure 2 (right). Towers are indexed
by i ∈ N and attention blocks, per tower, are indexed by
j ∈ {0, .., L}. We describe these components next.
Cross Multi-Head Attention Block (Cross MAB), em-
ploys a latent array u of C × d size (d≪ thw). This latent
array alongside zi are used to create the asymmetric query-
key-value (QKV) attention function in which Q ∈ RC×d,
K∈RC×(thw), V∈RC×(thw). The Cross MAB block con-
sists of Multi-Head Cross Attention (MCA), Layer Normal-
ization (LN), and Multilayer Perceptron (MLP) modules:

ẑi,0 = MLP (LN(hi,0)) + hi,0, where
hi,0 = MCA(LN(u), LN(zi)) + u ∀ i ∈ N

(2)
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in which, the MCA computes the dot-product asymmetric
attention of tensors u and zi.

By exploiting the Cross MAB [28] bottleneck, the trans-
former towers are significantly more efficient than a deep
stack of self-attention blocks. The use of a parameterizable
size latent vector can benefit the creation of performance-
balanced models, minimizing feature redundancies.
Stacked Self-Attention Blocks (Self MAB), correspond
to a stack of L transformer blocks [10], symmetrically at-
tending to tensors ẑi,j ∀j∈ {0, ..., L− 1}. Including Multi-
Head Self Attention (MSA), the block is denoted as:

ẑi,j = MLP (LN(hi,j)) + hi,j , where
hi,j = MSA(LN(ẑi,j-1)) + ẑi,j-1 ∀ i ∈ N, j ∈ {1, ..., L}

(3)
Attention tower predictors. Towers additionally include
a linear classifier ŷi = f(ẑi,L) that maps the output ẑi,L
to ŷi class predictions. As features ẑi,L are bound to scale
si, towers cannot relate features across scales, which limits
their modeling capabilities. We thus share classifier weights
across scales to establish a joint feature space.

Predictions from the n attention towers are thus obtained.
We describe our proposed aggregation approach next.

3.4. Aggregation Function for EAP

We wish to accumulate class predictions from the indi-
vidual fine-to-coarse scales into an overall EAP for the ob-
served Tρ frames.

We introduce an aggregation function E(ŷ1,...,n) for ac-
cumulating tower predictions. The function is formulated
based on the agreement between predictions and the indi-
vidual towers’ confidence in the produced prediction.
Predictor agreement. We trust that predictions with a high
degree of resemblance, in terms of their class probability
distribution, can reduce the uncertainty of individual pre-
dictors. We utilize Exponential Inverse Coefficient Weight-
ing (eICW) [54] for the weighted aggregation of probabili-
ties ŷi per scale, based on their similarity to the mean prob-
ability distribution ŷ:

E
eICW

(ŷi, ŷ) =
eDSC(ŷi,ŷ)

−1∑
k∈N

eDSC(ŷk,ŷ)−1
· ŷi (4)

in which DSC(·) is the Dice-Sørensen coefficient [9] be-
tween class probabilities ŷi and mean probabilities ŷ.
Predictor confidence. Aggregation is performed based on
the sharpness of the probability distribution. We calculate
the exponential maximum (i.e. softmax) across all predic-
tions. Predictions with high class probability for a single or
a small set of classes are weighted higher:

E
eM

(ŷi) =
eŷi∑

k∈N

eŷk
· ŷi (5)

A combination of the two strategies is used for the fi-
nal adaptive predictor aggregation function E(ŷ1,...,n). As
in [54], we use a parameter 0≤β≤1, which we learn dur-
ing training, to determine the proportion of each method:

E(ŷ1,...,n)) =
∑
i∈N

β · E
eICW

(ŷi, ŷ) + (1− β) · E
eM

(ŷi) (6)

We refer to this aggregation function as our proposed adap-
tive aggregation function for attention tower predictions.

During training, we use the adaptive probability distri-
bution from E(ŷ1,...,n) to calculate the divergence from the
target one-hot categorical distribution for class vector y. In
inference, the argmax class is used as the EAP label.

In summary, our proposed method combines progressive
scales of the observed video, individual attention towers
with shared classifier weights, and an aggregation function
that backpropagates through all individual attention towers.
We evaluate our method next.

4. Experiments
The datasets used, alongside implementation and train-

ing scheme details, are explained in Section 4.1. We include
state-of-the-art model comparisons in Section 4.2 followed
by ablation studies in Section 4.3.

4.1. Datasets and Implementation Details

Datasets We report our method’s performance over a
diverse set of video datasets previously used for EAP.
UCF-101 [53] consists of 101 classes and 13K videos
depicting various types of actions such as human-
object interactions, human-human interactions, playing
musical instruments, and sports. Something-Something
(SSv1/SSsub21/SSv2) [21] is a collection of 100K (SSv1)
& 220K (SSv2) videos of 174 fine-grained human-object
action and interaction categories. The v1 of the dataset
also includes a 21-action categories subset (SSsub21) of
11K videos used previously by [63, 64] for EAP. We re-
port on this subset, for direct comparisons and v2 for large-
scale benchmarking. EPIC-KITCHENS-100 (EK-100) [8]
contains unscripted egocentric actions and activities across
45 kitchen environments. Labels are composed of 97 verb
classes, 300 noun classes, and 4025 action classes of com-
bined nouns and verbs. We also use the RGB-only version
of NTU RGB+D [51], as in [34, 38], containing 60 action
classes and 57K videos of daily human actions.

Previous EAP works [3, 4, 32, 34, 49, 60, 63, 64] have
evaluated their performance over smaller datasets (< 100K
videos) that are only partially indicative of the approaches’
generalizability. We thus set new EAP baselines by evaluat-
ing on two large-scale datasets: the temporally challenging
SSv2 as well as EK-100.
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Table 1. Top-1 accuracies (%) of action prediction methods on UCF-101 over different observation ratios (ρ). Methods are grouped
w.r.t. the backbone used. We report TemPr results on 5 backbones. The best results per ρ are in bold and second best are underlined.

Method Backbone dim Observation ratios (ρ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RGN-KF [71]
Inception [55] 2D

83.3 85.2 87.8 90.6 91.5 92.3 92.0 93.0 92.9
GGNN [64] 82.4 85.6 89.0 - 91.3 - 92.4 - 93.0
TS (2×L) [60] 83.3 87.1 88.9 89.8 90.9 91.0 91.3 91.2 91.3

AAPNet [35] C3D [56] 3D 59.9 80.4 86.8 86.5 86.9 88.3 88.3 89.9 90.9

MSSC [4]

ResNet-18

2D [23]

34.1 53.8 58.3 57.6 62.6 61.9 63.5 64.3 62.7
MTSSVM [33] 40.1 72.8 80.0 82.2 82.4 83.2 83.4 83.6 83.7
DeepSCN [34] 45.0 77.7 83.0 85.4 85.8 86.7 87.1 87.4 87.5
mem-LSTM [32] 51.0 81.0 85.7 85.8 88.4 88.6 89.1 89.4 89.7
MSRNN [26] 68.0 87.2 88.2 88.8 89.2 89.7 89.9 90.3 90.4
GGNN [64] 75.9 81.7 87.8 - 88.7 - 89.4 - 90.2
TemPr (ours) 3D [22] 84.3 90.2 90.4 90.9 91.2 91.8 92.1 92.3 92.4

AA-GAN [19]

ResNet-50
2D [23] - 84.2 - - 85.6 - - - -

GGNN [64] 84.1 88.5 89.8 - 90.9 - 91.4 - 91.8
TS+JVS+JCC+JFIP [15] - 85.8 - - - - - - -
TemPr (ours) 3D [22] 84.8 90.5 91.2 91.8 91.9 92.2 92.3 92.4 92.6

DBDNet [43]

ResNeXt101 [22] 3D

82.7 86.6 88.3 89.7 90.6 91.2 91.7 91.9 92.0
IGGNN [63] 80.2 - 89.8 - 92.9 - 94.1 - 94.4
ERA [16] 89.1 - 92.4 - 94.3 - 95.4 - 95.7
TemPr (ours) 85.7 91.4 92.1 92.7 93.5 93.9 94.4 94.6 94.9

TemPr (ours) X3DM [13] 3D 87.9 93.4 94.5 94.8 95.1 95.2 95.6 96.4 96.3
TemPr (ours) MoViNet-A4 [30] 3D 88.6 93.5 94.9 94.9 95.4 95.2 95.3 96.6 96.2
TemPr

MoViNet-A4 3D
87.3 93.1 94.9 94.6 95.2 94.9 94.6 95.1 95.0

TemPr 85.6 92.9 93.6 94.5 94.4 94.2 94.2 94.6 94.8
TemPr 85.2 92.1 92.5 92.9 93.3 93.7 93.5 93.8 93.7

Model settings. We evaluate our model over four scales
n = {1, 2, 3, 4}. We use the concise visual notation: ,

, , to refer to these 4 configurations. Except during
ablations, we follow model configurations similar to [28,37]
for each attention tower (L = 8, d = 256, HC = 4, HS =
8)‡. We sample F = 16 frames for each scale§.

Overall, we employ four encoder architectures.
MoViNet-A4 [30] is used for UCF-101, SSsub21 and
NTU-RGB in Section 4.2 due to its efficiency and high
accuracy on action recognition. A 3D ResNet-18 with
TemPr is used to compare against models with the same
feature encoder in Section 4.2 and for the ablation studies
in Section 4.3. We additionally experiment with the widely
used encoder networks, SlowFast-R50 [14] for EK-100 and
(video) Swin-B [40] on SSv2. All convolutional encoders
are pre-trained on Kinetics-700 [52] and then trained on
each dataset over the full videos. Swin-B is initialized with
the official weights pre-trained on Kinetics-600 [5].

‡L: number of self-attention layers, d: size of the latent bottleneck,
HC and HS : numbers of cross and self-attention heads respectively.

§We use adaptive average pooling for down-scaling encoder output
features zi across datasets to a fixed size of t=16, h=4, and w=4

Training scheme. For UCF-101, EK-100, and NTU-RGB,
we process the videos by scaling the height to 384px and
taking a center crop to size 384×384px followed by a ran-
dom crop of 224×224px. Because of SSsub21’s low frame
resolution, we scale the input frames to 100×176px. We
initialize β with 0.5 and train for 60 epochs with 1e−2 base
learning rate for TemPr and 1e−3 for β. Both learning rates
are reduced on epochs {14, 32, 44} by 1e−1. We use batch
sizes of 32 for UCF-101, EK-100, NTU-RGB & SSv2 and
64 for SSsub21 with AdamW & 1e−5 weight decay.

4.2. Comparative Results

UCF-101. For a fair comparison to prior methods, we struc-
ture our results based on the feature encoder. In the top half
of Table 1, we demonstrate that our TemPr model consis-
tently outperforms all other methods with the same ResNet-
18 encoder [4, 26, 32–34, 64], for every observation ratio.
Across our tests, the largest improvements are observed in
small ratios in which, we achieve +8.4% improvement for
ρ=0.1, +3.0% for ρ=0.2 and +2.2% for ρ=0.3, compared
to the previous top-performing models.

We also outperform prior works [15,19,43,63,64] on the
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Table 2. Top-1 accuracy (%) of EAP over different observation ratios (ρ).

(a) NTU-RGB.

Method Observation ratios (ρ)
0.1 0.2 0.3 0.5 0.7 0.9

RankLSTM [41] 11.5 16.5 25.7 48.0 61.0 66.1
DeepSCN [34] 16.8 21.5 30.6 48.8 58.2 60.0
MSRNN [26] 15.2 20.3 29.5 51.6 63.9 68.9
TS (2×L) [60] 27.8 35.8 46.3 67.4 77.6 81.5

TemPr (ours) 29.3 38.7 50.2 70.1 78.8 84.2

(b) SSsub21.

Method Observation ratios (ρ)
0.1 0.2 0.3 0.5 0.7 0.9

mem-LSTM [32] 14.9 17.2 18.1 20.4 23.2 24.5
MS-LSTM [49] 16.9 16.6 16.8 16.7 16.9 17.1
MSRNN [49] 20.1 20.5 21.1 22.5 24.0 27.1
GGN [64] 21.2 21.5 23.3 27.4 30.2 30.5
IGGN [63] 22.6 - 25.0 28.3 32.2 34.1

TemPr (ours) 28.4 34.8 37.9 41.3 45.8 48.6

(c) SSv2.

Method Obs. ratios (ρ)
0.1 0.3 0.5 0.7

Baseline (Inference) 6.9 17.6 28.9 36.0
Baseline (Fine-tuned) 14.4 23.5 31.1 39.6

TemPr (ours) 20.5 28.6 41.2 47.1

(d) EK-100.

Method
Verb Noun Action

Observation ratios (ρ)
0.1 0.2 0.3 0.5 0.7 0.9 0.1 0.2 0.3 0.5 0.7 0.9 0.1 0.2 0.3 0.5 0.7 0.9

Baseline (Inference) 17.3 19.7 27.0 48.7 60.5 64.2 19.5 21.7 25.3 38.5 46.7 49.1 5.4 7.6 11.1 24.3 34.1 37.6
Baseline (Fine-tuned) 20.6 21.8 29.4 49.8 61.3 64.3 21.3 24.2 27.6 39.4 47.3 49.1 6.9 9.1 12.8 25.5 34.9 37.5

TemPr (ours) 21.4 22.5 34.6 54.2 63.8 67.0 22.8 25.5 32.3 43.4 49.2 53.5 7.4 9.8 15.4 28.9 37.3 40.8

same backbone for every ρ. Our method does not outper-
form [16] on the 48M parameters ResNeXt101 backbone.
However, using the more efficient MoViNet-A4 or X3DM

networks with 5M and 4M parameters respectively, we out-
perform [16] in all but ρ = 0.1. We get best performance
of TemPr when using MoViNet-A4; e.g. at ρ = 0.3 we
outperform all prior work by 2.5%. For ρ = 0.1, we specu-
late that methods like [16] benefit from specializing to sub-
tle differences when only a handful of frames are observed.
The final three rows of Table 1 present results across for
n = 1, 2 and 3. Results steadily increase, across observa-
tion ratios as more scales are incorporated in TemPr. Further
results are available in §S1 in Supplementary Material.
NTU-RGB. Results on NTU-RGB are presented in Ta-
ble 2a. Compared to the state-of-the-art, our TemPr con-
sistently outperforms other models across the six observa-
tion ratios used. We observe the largest improvement in
accuracy over [60] at ρ = 0.3 with 3.9%. For smaller ob-
servation ratios, accuracy increases by 1.5% and 2.9% for
ρ = 0.1 and ρ = 0.2, respectively.
Something-Something (sub21). Table 2b demonstrates the
SSsub21 class-averaged accuracy, across observation ratios
as in [63, 64]. Our proposed TemPr surpasses state-
of-the-art models [63, 64] with a significant improvement
over all observation ratios. Compared to the previous top-
performing model per observation ratio, accuracy increases
include 5.8% at ρ = 0.1, 13.3% at ρ = 0.2, 13.6% at
ρ = 0.7, and 14.5% at ρ = 0.9.
Something-Something (SSv2). Table 2c shows results
on SSv2 per observation ratio with video Swin-B, which
achieves 66.3% when evaluated on full videos (i.e. ρ =
1.0)¶. We note the significant drop in performance when
evaluated on partially-observed videos. Even when ρ =

¶We note that the difference from the reported 69.6% accuracy in [40]
is due to our use of 16 frames instead of the reported 32 frames as input.

0.7, the model can only achieve 36.0% top-1 accuracy. The
improvement remains modest when the classifier is fine-
tuned. On average, TemPr outperforms the inference-only
model by 12.0% and the fine-tuned model by 7.2%. Im-
provements are also evident across ρ. This not only demon-
strates the benefits of our proposed TemPr model for EAP,
but also the distinction between the tasks of action classifi-
cation and EAP, and thus the need for EAP-specific models.
EPIC-KITCHENS-100 (EK-100). We also investigate
EAP on EK-100. We believe that a challenging part of
EK-100 is the inclusion of fine-grained verb labels. For
example, the class ‘hold’ is easily confused with partially-
observed videos of classes ‘put’, ‘throw’, ‘insert’ or ‘stack’.
These classes start with objects being held before the action
is initiated. We are the first to use EK-100 as a benchmark
for EAP. As in SSv2, we report inference-only and classifier
fine-tuned models alongside TemPr .

Table 2d demonstrates the performance per observation
ratio. TemPr outperforms the baselines and showcases
that EK-100 is more challenging than all other benchmarks
when focusing on action performance - 28.9% for ρ = 0.5
compared to 95.4%, 70.1% and 41.2% for UCF-101, NTU-
RGB, and SSv2. We note that EAP is higher for noun
classes in smaller ρ while classifying verbs becomes easier
for larger ρ. This highlights that actions, which require cor-
rect prediction of the verb and the noun, are challenging to
be predicted in cases where very few frames are observed.

4.3. Ablation Studies and Qualitative Results

In this section we conduct ablation studies on UCF-101
reporting accuracy over different observation ratios. Unless
specified, we use the ResNet-18 backbone. Computations
and memory use are reported solely for TemPr, without the
encoder, to demonstrate the differences clearer.
Video scales strategy. Different strategies can be used for
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Table 3. Ablation studies on UCF-101 with TemPr across obs. ratios. We use ♠ to denote softmax during training and ♣ for θ = 1
2n

.

(a) Video Scales Strategy.

Scale strategy Observation ratios (ρ)
0.2 0.4 0.6 0.8

full 86.4 88.3 88.8 89.0
equal 83.7 84.6 86.3 87.1
random 88.8 89.7 90.2 90.6

decreasing 90.0 90.9 91.6 92.6
increasing 90.2 90.9 91.8 92.3

(b) Aggregation function.

Aggregation ρ

0.2 0.4

avg 89.5 90.1
softmax 87.8 89.4
top♠ 84.6 87.5
gate (θ=0.1) 85.4 88.5
ICW 89.7 90.1
weighted 88.5 89.0
weighted (θ) ♣ 83.4 85.8

adaptive (E(·)) 90.2 90.9

(c) Weight sharing over attention
towers and classifiers.

Weight sharing ρ

MAB f(·) 0.2 0.4 0.6

✓ ✗ 73.4 76.2 79.0
✗ ✗ 84.7 85.8 87.3

✓ ✓ 89.2 90.0 90.7
✗ ✓ 90.2 90.9 91.8

(d) Latent array (u) shar-
ing.

u
Mem. ρ

shared (GB) 0.2 0.4

✗ 4.0 90.2 91.0

✓ 3.0 90.2 90.9

(e) CMAB replacements.

MAB ρ

Pa
r.

(M
)

G
FL

O
Ps

0.2 0.4

Self 83.2 84.5 84.6 8.59

Cross 90.2 90.9 23.0 1.47

Table 4. Video Scales Strategies on
SSsub21 with TemPr .

Scale
strategy

Obs. ratios (ρ)
0.2 0.3 0.5 0.7

full 32.6 36.4 39.3 42.9
equal 29.8 34.5 37.2 41.8
random 33.4 37.1 40.6 44.3

decreasing 35.2 38.3 40.7 45.2
increasing 34.8 37.9 41.3 45.8

selecting video scales. We compare our proposed temporal
progressive sampling (Section 3.2) to other common strate-
gies and potential baselines in Table 3a. In all settings, we
keep n = 4 scales. The full strategy uses n scales of
fixed length matching the entire observation video. In equal

, scales/segments have equal lengths as in [58]. The ran-
dom strategy uses scales of random length. Finally, the
increasing and decreasing strategies utilize our pro-
posed progressive approach, sampling the fine scale from
either the start or the end of the observed video. Accuracy is
consistently lower when scales are of the same length, either
matching the observed video (full) or equally-sized (equal).
This is in contrast to the success of this sampling approach
for action recognition [58], further emphasizing the distinc-
tion between the two tasks. The use of progressive (increas-
ing or decreasing) video scales exhibits an average +3.6%
accuracy increase across ρ, compared to other sampling ap-
proaches. We note that no model component depends on the
order of the scales, thus the performance over increasing or
decreasing scales is expected to be similar.

In Table 4, we compare sampling strategies on SSsub21,
as this dataset is more challenging temporally. We use
TemPr with MoViNet-A4. Similar to Table 3a, progres-
sive (increasing or decreasing ) scales is a better-suited
strategy, with an average +2.4% accuracy increase over ρ.
This emphasizes the need for fine-to-coarse sampling, inde-
pendent of where the fine sample is taken from.
Prediction aggregation. Table 3b presents comparisons
over different aggregation functions. In the case that the
predictor with the highest confidence is chosen (top♠), we
use softmax during training to ensure that gradients are
propagated across the entire network. The largest drop in
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Figure 3. Top-1 accuracy of each TemPr tower Ti per ρ.

performance is observed when using individual predictions
(softmax, top, gate). Methods that are instead based on
using all predictors uniformly by averaging them, or by
weighting them with Inverse Covariance Weighting (ICW)
improve the final predictions. A further +0.7% accuracy
over ICW is observed by our adaptive approach with the
combination of predictor agreement and confidences.
Weight sharing combinations. We consider the two model
components that can share their weights across scales. The
first is the multihead-attention blocks (MAB) and the sec-
ond is their classifier layer. Table 3c shows that using in-
dividual classifier weights for each tower decreases perfor-
mance. Classifier weight sharing improves performance.
Latent array (u). Table 3d shows the effect on both per-
formance and memory when sharing the Cross MAB latent
array u across attention towers. With marginal difference in
accuracy, sharing u increases efficiency with a significant
reduction in memory. Thus, we share u in all experiments.
CMAB replacements. We include ablations on the effect
of cross/self-MAB in accuracy, compute and memory on
Table 3e. We note that self-MAB-only towers significantly
increase memory and computation costs.
Scale per Observation Ratio. We additionally plot the per-
formance of individual predictors for both UCF-101 and
SSsub21 in Figure 3 with respect to different observation
ratios. As shown, datasets such as Something-Something
that are less appearance-based can benefit more from the
proposed aggregated progressive scales. Class accuracies
across scales are presented in §S1. Overall, towers of
smaller scales (T1 and T2 ) performed more favor-
ably for classes that are distinguishable from the only first
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Moving part of smthng: 4.73
Moving ... withot falling: 4.46

Moving ... until it falls: 4.57

Clapping: 13.56
Apply cream on hand: 12.49

Wipe face: 12.31

Shoot at basket: 28.14
Arm circles: 16.62
Arm swings: 15.87

BlowDryHair: 16.27
HeadMassage: 6.79

Haircut: 6.65

TemPr
BlowDryHair: 19.81

Haircut: 14.76
Mixing: 13.42

TemPr TemPr TemPr

v_Haircut_g02_c04

BlowDryHair: 19.94
Haircut: 16.38

HeadMassage: 12.80

Haircut: 23.59
BlowDryHair: 19.56
HeadMassage: 12.71

Ball up paper: 23.38
Rub two hands: 20.43

Counting money: 19.71

Counting money: 23.52
Ball up paper: 17.34

Rub two hands: 15.06

ApplyLipStick: 17.17 
BrushingTeeth: 14.46

ApplyEyeMakeup: 10.34

TemPr
ApplyLipStick: 13.73
BrushingTeeth: 13.40

ApplyEyeMakeup: 11.98

TemPr
BrushingTeeth: 21.30
ApplyLipStick: 17.19

ApplyEyeMakeup: 14.93

TemPr
BrushingTeeth: 20.91
ApplyLipStick: 15.75

ApplyEyeMakeup: 11.91

TemPr

TODO

Holding smthng: 3.68
Moving ... without falling: 2.18

Moving ... away ... : 1.75

Letting ... roll ... slanted: 4.17
Letting ... roll back: 3.56
Pushing ... falls off : 2.34

Letting ... roll back: 4.65
Letting ... roll ... slanted: 4.19

Rolling ... flat surface: 2.54

Letting ... roll ... slanted: 5.23
Letting ... roll back: 2.67

Rolling ... flat surface: 2.42

Moving part of smthng: 7.41
Moving smthng away ...: 6.40

Moving smthng closer ...: 1.82

Moving ... withot falling: 3.82
Pushing ... almost falls: 3.56

Pushing smthng ... falls: 3.14

Moving ... until it falls: 4.34
Pushing ... falls off: 4.14

Moving ... without falling: 3.65

take: 1.87
hold: 1.76

lift: 1.54

shoot at basket: 26.07
Arm circles: 21.51

Put palms together: 13.45

Ball up paper: 24.87
Fold paper: 22.45
Tear paper: 22.14

Counting money: 21.21
Ball up paper: 18.93

Rub two hands: 15.43

Shoot at basket: 16.70
Put palms together: 15.38

Clapping: 9.83

pan: 3.48
spatula: 2.91

chicken: 2.42

hold: 2.60
turn: 1.43

move: 1.22

spatula: 3.21
hob: 2.75
pan: 2.61

move: 2.16
cook: 1.94
mix: 1.87

chicken: 2.85
potato: 2.47

pan: 2.10

cook: 2.08
move: 1.91

mix: 1.74

chicken: 3.92
food: 2.76
pan: 2.35

cut: 2.14
check: 1.56
wipe: 1.43

knife: 4.51
cloth: 4.38

sponge: 3.60

take: 1.86
press: 1.74
wipe: 1.73

cloth: 4.43
knife: 4.19
hand: 2.82

wipe: 5.08
hold: 3.25

scrub: 3.19

knife: 5.67
cloth: 5.31
hand: 3.17

wipe: 5.46
take: 2.94

move: 2.78

knife: 5.31
cloth: 4.96
hand: 2.85

Figure 4. Examples from UCF-101, NTU-RGB, SSv2 and EK-100. Top 3 action label confidences are reported for either TemPr model
or over individual tower predictors (Ti). We show the 16 frames sampled per video. Green/red highlight correct/incorrect top 1 predictions,
and we underline true label when in top-3. We show verb and noun predictions for EK-100. See additional examples in §S6.

few frames. In contrast, towers of larger scales (T3 and
T4 ) were better suited for classes that the action become
distinguishable with a larger part of the video observed.

Qualitative results. The first row of Figure 4 demonstrates
UCF-101 instances where predictions differ across TemPr

, , , . The increase in the number of scales allows
the network to capture features that are more descriptive of
the target action e.g. the two BrushingTeeth instances. In
the first example, the subtle motion of Hair Cutting is only
confidently predicted when the finest scale is incorporated
in TemPr (comparing to ). In the following three rows
of Figure 4, predictions from individual towers T1 , T2
, T3 and T4 are shown across NTRU-RGB, SSv2, and
EK-100. In the second row, fine scales benefit subtle mo-
tion e.g. in the Ball up paper. In the third row, coarse scales
assist prediction as the end of the sequence changes the pre-
diction to the correct class, e.g. Moving something until it
falls in SSv2. In the fourth row, coarser scales are required
to distinguish taking cloth from wiping knife in EK-100.

5. Conclusions

We have proposed to utilize progressive scales from par-
tially observed videos for early action prediction. Based on
these scales, we introduce a temporal progressive (TemPr)
model consisting of bottleneck-based attention towers, in
order to capture the progression of an action over multiple
fine-to-coarse scales. We aggregate scale predictors con-
sidering the similarity in their probability distributions as
well as their confidence. Extensive experiments over five
encoders and four video datasets demonstrate the merits of
TemPr . Additionally, we are the first to investigate the
unique difficulties of EAP for large-scale datasets - evaluat-
ing EAP on SSv2 and EK-100. We hope that our approach
of progressive, rather than single continual, scales can pave
a new path for subsequent methods.
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