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Abstract

Graph is a highly generic and diverse representation,
suitable for almost any data processing problem. Spec-
tral graph theory has been shown to provide powerful algo-
rithms, backed by solid linear algebra theory. It thus can
be extremely instrumental to design deep network build-
ing blocks with spectral graph characteristics. For in-
stance, such a network allows the design of optimal graphs
for certain tasks or obtaining a canonical orthogonal low-
dimensional embedding of the data. Recent attempts to
solve this problem were based on minimizing Rayleigh-
quotient type losses. We propose a different approach of
directly learning the graph’s eigensapce. A severe prob-
lem of the direct approach, applied in batch-learning, is the
inconsistent mapping of features to eigenspace coordinates
in different batches. We analyze the degrees of freedom of
learning this task using batches and propose a stable align-
ment mechanism that can work both with batch changes and
with graph-metric changes. We show that our learnt spec-
tral embedding is better in terms of NMI, ACC, Grassman
distnace, orthogonality and classification accuracy, com-
pared to SOTA. In addition, the learning is more stable.

1. Introduction
Representing information by using graphs and analyz-

ing their spectral properties has been shown to be an effec-
tive classical solution in a wide range of problems including
clustering [8,21,32], classification [13], segmentation [26],
dimensionality reduction [5, 10, 23] and more. In this set-
ting, data is represented by nodes of a graph, which are em-
bedded into the eigenspace of the graph-Laplacian, a canon-
ical linear operator measuring local smoothness.

Incorporating analytic data structures and methods
within a deep learning framework has many advantages.
It yields better transparency and understanding of the net-
work, allows the use of classical ideas, which were thor-
oughly investigated and can lead to the design of new ar-
chitectures, grounded in solid theory. Spectral graph algo-

rithms, however, are hard to incorporate directly in neural-
networks since they require eigenvalue computations which
cannot be integrated in back-propagation training algo-
rithms. Another major drawback of spectral graph tools is
their low scalability. It is not feasible to hold a large graph
containing millions of nodes and to compute its graph-
Laplacian eigenvectors. Moreover, updating the graph with
additional nodes is combersome and one usually resorts to
graph-interpolation techniques, referred to as Out Of Sam-
ple Extension (OOSE) methods.

An approach to solve the above problems using deep
neural networks (DNNs), firstly suggested in [24] and re-
cently also in [9], is to train a network that approximates the
eigenspace by minimizing Rayleigh quotient type losses.
The core idea is that the Rayleigh quotient of a sum of n vec-
tors is minimized by the n eigenvectors with the correspond-
ing n smallest eigenvalues. As a result, given the features
of a data instance (node) as input, these networks generate
the respective coordinate in the spectral embedding space.
This space should be equivalent in some sense to the ana-
lytically calculated graph-Laplacian eigenvector space. A
common way to measure the equivalence of these spaces is
using the Grassman distance. Unfortunately, applying this
indirect approach does not guarantee convergence to the de-
sired eigenspace and therefore the captured might not be
faithful.

An alternative approach, suggested in [18] for computing
the diffusion map embedding, is a direct supervised method.
The idea is to compute the embedding analytically, use it
as ground-truth and train the network to map features to
eigenspace coordinates in a supervised manner. In order to
compute the ground truth embedding, the authors used the
entire training set. This operation is very demanding com-
putationally in terms of both memory and time and is not
scalable when the training set is very large.

Our proposed method is to learn directly the eigenspace
in batches. We treat each batch as sampling of the full graph
and learn the eigenvector values in a supervised manner.
A major problem of this kind of scheme is the inconsis-
tency in the embedding coordinates. Thus, two instances
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Figure 1. Toy examples. An Illustration of trained BASiS models over common spectral-clustering toy examples. Each figure describes
the embedding values given by the network to each point in the space and the clustering results over selected points. BASiS performs
successful clustering and is able to interpolate and extrapolate the training data smoothly.

in different batches with the same features can be mapped
to very different eigenspace coordinates. Our solution is to
use affine registration techniques to align the batches. Fur-
ther, we use this alignment strategy to also allow changes
in the graph affinity metric. Our proposed method retains
the following main qualities: 1) Scalability. Data is learnt
in batches, allowing a training based on large and complex
input sets; 2) OOSE. Out of sample extension is immediate.
3) High quality approximation of the eigenspace. Since
our learning method is direct and fully supervised, an ex-
cellent approximation of the graph eigenspace is obtained.
4) Robustness to features change. We can train the model
also when features and affinities between nodes change; All
the above properties yield a spectral building block which
can be highly instrumental in various deep learning algo-
rithms, containing an inherent orthogonal low dimensional
embedding of the data, based on linear algebraic theory.

2. Settings and Notations
Let {xi}n

i=1 be a set of data instances denoted as X which
is a finite set in Rd . These samples are assumed to lie on a
lower dimensional manifold M .

These instances are represented as nodes on an undi-
rected weighted graph G = (V,E,W ), where V and E are
sets of the vertices and edges, respectively, and W is the ad-
jacency matrix. This matrix is symmetric and defined by a
distance measure between the nodes. For example, a com-
mon choice is a Gaussian kernel and Euclidean distance,

Wi j = exp

(
−
||xi− x j||22

2σ2

)
, (1)

where σ is a soft-threshold parameter.
The degree matrix D is a diagonal matrix where Dii is

the degree of the i-th vertex, i.e., Dii = ∑ j Wi j. The graph-
Laplacian operator is defined by,

L := D−W. (2)

The graph-Laplacian is a symmetric, positive semi-definite
matrix, its eigenvalues are real, and its eigenvectors form

an orthogonal basis. The eigenvalues of L are sorted in as-
cending order λ1 ≤ λ2 ≤ ...≤ λn, where the corresponding
eigenvectors are denoted by u1,u2...,un. The sample xi is
represented in the spectral embedding space as the ith row
of the matrix U =

[
u1 · · · uK

]
∈ Rn×K , denoted as ϕi.

Thus, more formally, the dimensionality reduction process
can be formulated as

xi 7−→ ϕi = [u1(i),u2(i), ...,uK(i)] ∈ RK , (3)

where K≪ d. This representation preserves well essential
data information [10, 15, 17, 22]

Alternatively, one can replace the Laplacian definition
(2) with

LN := D−
1
2 LD−

1
2 = I−D−

1
2 WD−

1
2 . (4)

This matrix may yield better performances for certain tasks
and datasets [25–27].

3. Related Work
OOSE and scalability of graph-based learning methods

are ongoing research topics. Mathematical analyses and an-
alytical solutions to these problems can be found, for exam-
ple, in [1, 4, 7, 12, 30]. However, neural networks learning
the latent space of the data usually yield an efficient, ro-
bust and reliable solution for these problems. Moreover,
neural network modules can be easily integrated in larger
networks, employing this embedding. For a recent use of
learnable graphs in semi-supervised learning and data visu-
alization see [2]. The effectiveness of modeling PDE’s and
certain eigenproblems in grid-free, mesh-free manner was
shown in [3, 6, 29]. We review below the main advances in
eigenspace embedding.

Diffusion Nets [18]. Diffusion Maps (DM) is a spectral
embedding, resulting from the eigendecomposition of

P :=WD−1, (5)

known as the random-walk matrix [10]. More formally,
similarly to Eq. (3), diffusion maps is defined by

xi 7−→ ϕi = [γ t
1Φ1(i),γ t

2Φ2(i), ...,γ t
KΦK(i)] ∈ RK , (6)
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where {Φ j}K
j=1 are the first non-trivial eigenvectors of

P, {γ}K
i= j are the corresponding eigenvalues and t > 0 is the

diffusion time. Note, that P and LN have the same eigen-
vectors, in reverse order with respect to their eigenvalues.

Diffusion Net (DN) is an autoencoder trained to map be-
tween the data and the DM. The loss function of the encoder
is defined by,

L e
DN(θ

e) =
1

2n

n

∑
i=1

∥∥ f e
θ e(xi)−φi

∥∥2
+F(θ e,X), (7)

where θ e denotes the encoder’s parameters, f e
θ e(xi) is

the encoder output and F(θ e,X) = µ

2 ∑
L−1
l=1 ∥θ

e
l∥2

F +
η

2m ∑
d
j=1 ||(P− γ jI)(oe

j)
T ||2 is a regularization term such

that θ e
l are the weights of the l-th layer, oe

j is the j-th col-
umn of the output matrix, µ and η are regularization pa-
rameters. Note, Diffusion Net requires to compute the em-
bedding of the training set in advance, meaning it cannot be
trained with mini-batches and therefore has difficulty deal-
ing with large datasets.

SpectralNet1 [24] (SpecNet1). This DNN learns the
embedding corresponds to L by minimizing the ratio-cut
loss of Ng et al. [21], without adding an orthogonality con-
straint on the solution, with the loss

LSN1(θ) =
1

m2

m

∑
i, j=1

Wi, j||yi− y j||2 =
2

m2 tr(Y T LY ), (8)

where yi = fθ (xi) is the network output, m is the batch size,
and tr is the trace operator. In order to calculate the eigen-
vectors of LN , one should normalize yi,y j with the corre-
sponding node degree. In SpectralNet1 orthogonality of the
training is gained by defining the last layer of the network
as a linear layer set to orthogonalize the output. The last
layer’s weights are calculated during training with QR de-
composition over the DNN’s outputs. The authors point out
that in order to get good generalization and approximate or-
thogonal output at inference, large batches are required.

SpectralNet2 [9] (SpecNet2). In this recent work the
authors suggested to solve the eigenpair problem of the ma-
trix pencil (W,D). The loss function is defined by,

LSN2(θ) =
1

m2 tr
(
−2Y TWY +

1
m2 Y T DYY T DY

)
, (9)

where Y is the network’s output. Given the output Y , an
approximation to the eigenvectors of P, Eq. (5), can be cal-
culated as Û = YO where O ∈ RK×K satisfies

Y TWYO = Y T DYOΛ, (10)

where Λ is a refined approximation of the eigenvalue matrix
of (W,D). Note that Eq. (10) requires a batch for its compu-
tation, which may be problematic at inference. The authors
show qualitatively a successful approximation to the analyt-
ical embedding.

(a) (b)

(c) (d)

Figure 2. Illustration. The full dataset of three separated clusters,
divided into two subsets and anchors is shown in Fig. 2a. Figs.
2b-2c show the embedding spaces of subset #1 and subset #2, re-
spectively. Fig. 2d shows the embedding space of the entire data
after aligning the embedding of subset #1 to that of subset #2.

4. Our Method
4.1. Motivation

Our goal is to learn a model f : M → RK , where given
a sample x ∈M approximates well the corresponding ϕ

of Eq. (3). As is common with DNN learning, given a large
training set, we would like to train the model by splitting the
dataset into batches. A batch can be viewed as sampling the
graph of the training set. A straightforward approach would
be to compute the eigenspace of each batch and to learn a
mapping from x to ϕ , using a data loss similar to Diffusion
Nets. The problem is that different samples of the training
set most often lead to different embeddings. Specifically,
the same instance xi can be mapped very differently in each
batch.

This can be demonstrated in a very simple toy exam-
ple, shown in Fig. 2, which illustrates the core problem and
our proposed solution. Three distinct clusters in Euclidean
space are sampled in two trials (batches) and the eigenspace
embedding is computed analytically. Three samples appear
in both subsets, one for each cluster (red color). We refer to
the common samples as anchors. The plots of the instances
in the embedding space for the two subsets are shown in
Figs. 2b-2c. One can observe the embeddings are different.
Specifically, all anchors, which appear in both samplings,
are mapped differently in a substantial way. It is well known
that eigenvector embedding has a degree of freedom of ro-
tation (as shown for example in [32]). However, in the case
of uneven sampling of clusters there may be also some scale
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changes and slight translation (caused by the orthonormal-
ity constraints). We thus approximate these degrees of free-
dom in the general case as an affine rigid transformation
according to the anchors. Aligning one embedding space
to the other one, using this transformation, yields a consis-
tent embedding, as can be seen in Fig. 2d. Following the
alignment process, the embedding can be learnt well using
batches.

In the toy example of the Three Moons, see Fig. 3, we
show the mapping of 9 anchor-points, as shown in Fig. 3b.
In Figs. 3c-3d the analytic computation of the first two non-
trivial eigenvectors are plotted for 20 different batch sam-
ples of size 256 (out of 9000 nodes in the entire dataset), all
of which contain the 9 points. In this simple example an-
chors located on the same moon receive approximately the
same value. However, in different batches the embedding
of the anchors is clearly inconsistent. Surely, a network
cannot be expected to generalize such a mapping. After
learning the transformation and performing alignment, the
embedding values are consistent. In Figs. 3e-3f the values
are shown after our correction procedure. This consistency
allows to train DNN to learn the desired embedding, by di-
viding the data into batches. The result of the trained DNN
model for the Three Moons dataset appears in Fig. 1 (sec-
ond from left). These toy examples lead us to the detailed
description of our algorithm.

4.2. BASiS Algorithm

We propose to calculate the embedding space with
batches. To obtain consistency in this representation, we
calculate the first-order approximation of the distortion ob-
tained in the eigenvector values between different samples
of the data. The main steps of our algorithm are as follows:
First we perform two preliminary initialization steps.

Defining an anchor set. Draw l samples from the data.
This subset is denoted as V a and will be added to any batch
in the learning process.

Defining the reference embedding space. We would
like to define the embedding space of the anchor set as a
reference space. However, to get more information about
the manifold M , we add m− l samples (randomly) and term
it as the reference set V re f . After calculating the embedding
V re f → ϕre f (as in Eq. (3)), one can extract the coordinates
of the anchor samples,

V a→{ϕa,re f
i }l

i=1. (11)

Following this initialization, the main steps of the train-
ing are as follows:

Calculate the embedding space over a new batch.
Draw m− l new samples and add them to the anchor set.
Let us denote the union set as V b. We calculate {ϕi}m

i=1,
the embedding of V b and extract the embedding {ϕa

i }l
i=1

corresponding to the anchors.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Three-Moons toy example. The full dataset is shown in
Fig. 3a and the chosen anchor-nodes in Fig. 3b. Figs. 3c- 3d show
the values of the two leading eigenvectors for the anchors, for 20
different graph-samples. Figs. 3e- 3f show those values after our
proposed alignment.

Calculate the alignment transformation. Now, we cal-
culate the alignment transformation between {ϕa

i }l
i=1 to

{ϕa,re f
i }l

i=1. More formally, for ϕa,ϕa,re f ∈ RK we find
A ∈ RK×K and b ∈ RK which minimize

min
A,b

l

∑
i=1

∥∥∥ϕ
a,re f
i − (Aϕ

a
i +b)

∥∥∥2
. (12)

Alternatively, one can define ϕ̂a = [ϕa,1] and find the trans-
formation T ∈ RK×(K+1) such that

min
T

l

∑
i=1

∥∥∥ϕ
a,re f
i −T ϕ̂

a
i

∥∥∥2
. (13)

In this case there are K× (K+1) degrees of freedom. Each
anchor provides K constraints, that means at least K+1 an-
chors are needed in order to solve this least squares prob-
lem. Since in many real-world problem there is noise in the
measurements, it is customary to solve such problems in an
overdertermined setting, using a higher number of anchors.
In addition, given a large number of anchors, the transfor-
mation can be calculated using best matches - for example
by using the RANdom SAmple Consensus (RANSAC) al-
gorithm [11].

Batch Alignment. Given the transformation T , we can
align the embedding {ϕi}m

i=1 of all the instances of V b. We
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define ϕ̂ = [ϕ,1] and update

ϕ ← T ϕ̂. (14)

Gradient Step. Now that we have a mechanism that
allows to get consistent embedding, we can train the DNN
by dividing the data into batches and use a simple MSE lose
function

LBASiS(θ) =
1
m

m

∑
i=1
∥yi−ϕi∥2 , (15)

where yi = fθ (xi) is the DNN’s output and ϕi is the embed-
ding of xi after alignment.

The full training scheme is detailed in Algorithm 1.

Algorithm 1 BASiS Training Scheme

1: Inputs:
data features {xi}n

i=1, number of
eigenvectors K, batch size m, number of
anchors l.

2: Outputs:
Spectral embedding model f : M → RK

3: Initialize:
Define anchor set V a.
Extract {ϕa,re f

i }l
i=1, the reference

embedding of V a using Eq. (11)
4: while LBASiS(θ) not converged do
5: Draw m− l new samples.
6: Define node set V b as union of the anchors with the

new sampled nodes.
7: Calculate the embedding {ϕi}m

i=1 of V b.
8: Calculate the optimal transformation T , Eq. (13).
9: Align {ϕi}m

i=1 with T , Eq. (14).
10: Do a gradient step of LBASiS, Eq. (15).
11: end while

4.3. BASiS for feature perturbation

In the process of network training, the features are often
not fixed and slightly change each iteration during training.
In this case the adjacency values change and hence natu-
rally also the embedding space. We suggest an algorithm to
allow iterative changes in the feature space (inducing differ-
ent graph metric). This algorithm is also based on an align-
ment technique. Similar to Algorithm 1, we define anchor
nodes. Given the current features, we extract {ϕa,prev

i }l
i=1,

the current spectral embedding of the anchors. When the
features are updated, we find the new embedding of the an-
chors {ϕa,update

i }l
i=1. In order to maintain consistency in the

learning process, we find a transformation TG, as in Eq. (13),
that aligns the updated anchor embedding to the previous
one. Then we align the entire embedding space according
to the calculated transformation. Algorithm 2 summarizes
the proposed method.

Algorithm 2 BASiS under iterative feature change

1: Inputs:
{ϕa,prev

i }l
i=1 the anchors embedding over

previous features {xi}n
i=1, updated features

{x̂i}n
i=1.

2: Outputs:
{ϕupdate

i }n
i=1 the spectral embedding over

the updated features, aligned to
{ϕa,prev

i }l
i=1.

3: Calculate the embedding {ϕupdate
i }n

i=1 over the updated
features.

4: Extract {ϕa,update
i }l

i=1 the embedding correspond to the
anchors.

5: Calculate the transformation TG between {ϕa,prev
i }l

i=1
and {ϕa,update

i }l
i=1.

6: Align {ϕupdate
i }n

i=1 with TG.

5. Experimental Results
In this section we examine the ability of BASiS to learn

the graph-spectral embedding over different datasets quan-
tifying its success using several performance measures. Our
method is able to learn any desired eigen embedding (since
it is supervised by analytic calculations). To fairly com-
pare our method to the ones mentioned in Sec. 3 we cal-
culate the eigenspace of LN (Eq. (4)). For all methods the
DNN’s architecture includes 5 fully connected (FC) layers
with ReLU activation in between (see full details in the sup-
plementary).

5.1. Evaluation Metrics

We evaluate our results using several measures. We cal-
culate the Grassmann distance (projection metric) [14] be-
tween the network output and the analytically calculated
eigenvectors. The squared Grassmann distance between
two orthonormal matrices Y1,Y2 ∈ Rn×K is defined as:

dG(Y1,Y2) = K−
K

∑
i=1

cos2
θi, (16)

where 0 ≤ θ1 ≤ ... ≤ θK ≤ π

2 are the principal angles be-
tween the two subspaces span(Y1) and span(Y2). The dis-
tance is in [0,K] where lower values indicate greater prox-
imity between the subspaces.

A second measure is the degree of orthogonality of the
DNN’s output Y . We use the following orthogonality mea-
sure:

d⊥(Y ) = ||Y TY − I||2F , (17)

where I is an identity matrix and || · ||F is the Frobenius
norm. For Y containing columns of orthonormal vectors we
get d⊥(Y ) = 0. In general, we expect this measure to be
close to zero in proper embeddings.
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Measures Networks MNIST Fashion-MNIST SVHN CIFAR-10

dG↓
Diffusion-Net 0.204±0.058 0.488±0.238 1.909±0.238 1.022±0.250

SpecNet1 0.386±0.074 0.375±0.132 3.526±0.529 2.256±0.471
SpecNet2 1.388±0.262 1.976±0.210 1.903±0.242 2.970±0.682

BASiS (Ours) 0.107±0.038 0.284±0.073 1.656±0.170 0.803±0.085

d⊥↓
Diffusion-Net 0.535±0.365 0.823±0.664 1.532±0.354 2.957±1.837

SpecNet1 6.296±0.922 6.384±0.899 4.507±0.821 5.169±0.775
SpecNet2 9.486±0.001 8.561±1.397 4.104±0.269 4.922±0.102

BASiS (Ours) 0.247±0.076 0.590±0.144 0.488±0.098 0.407±0.095

NMI↑
Diffusion-Net 0.944±0.041 0.759±0.085 0.645±0.016 0.466±0.034

SpecNet1 0.911±0.008 0.761±0.011 0.665±0.018 0.443±0.012
SpecNet2 0.925±0.012 0.759±0.010 0.701±0.009 0.466±0.013

BASiS (Ours) 0.961±0.001 0.798±0.001 0.736±0.001 0.501±0.001

ACC↑
Diffusion-Net 0.944±0.030 0.781±0.179 0.687±0.303 0.620±0.062

SpecNet1 0.963±0.005 0.815±0.029 0.811±0.039 0.637±0.029
SpecNet2 0.966±0.007 0.801±0.023 0.813±0.015 0.606±0.039

BASiS (Ours) 0.986±0.001 0.865±0.003 0.880±0.001 0.688±0.001

Accuracy(%)↑
Diffusion-Net 95.508±1.449 86.207±0.196 86.850±1.386 67.316±2.112

SpecNet1 92.278±4.776 84.123±1.229 85.154±0.377 65.336±0.626
SpecNet2 97.026±0.546 85.953±0.240 87.469±0.130 67.093±0.644

BASiS (Ours) 98.522±0.065 87.202±0.187 88.021±0.064 68.887±0.128

Table 1. Spectral embedding performance comparison. Average performance obtained over 10 different installations of each of the four
methods. In each experiment we learn an embedding space in dimension of 10 for 1000 training iterations using batches of size 512.

To evaluate the potential clustering performance we ex-
amined two common metrics: Normalized mutual informa-
tion (NMI) and unsupervised clustering accuracy (ACC).
The clustering result is achieved by preforming the K-
Means algorithm over the spectral embedding. Both indi-
cators are in the range [0,1], where high values indicate a
better correspondence between the clustering result and the
true labels. NMI is defined as,

NMI(c, ĉ) =
I(c, ĉ)

max{H(c),H(ĉ)}
, (18)

where I(c, ĉ) is the mutual information between the true la-
bels c and the clustering result ĉ and H(·) denotes entropy.
ACC is defined as,

ACC(c, ĉ) =
1
n

max
π∈Π

n

∑
i=1

1{ci = π(ĉi)}, (19)

where Π is the set of possible permutations of the clustering
results. To choose the optimal permutation π we followed
[24] and used the Kuhn-Munkres algorithm [19].

Finally, we examine how suitable the embedding is for
classification. We trained (with Cross-Entropy loss) a su-
pervised linear regression model containing a single fully
connected layer without activation, and examined its accu-

racy:

Accuracy(c, ĉ) =
1
n

n

∑
i=1

1{ci = ĉi}. (20)

5.2. Spectral Clustering

In this section we examine the ability of our method
to learn the spectral embedding for clustering of different
datasets. First, we examine the performance for well-known
spectral clustering toy examples, appearing in Fig. 1. In
these examples the dataset includes 9000 nodes and the
model is trained by calculating the first non-trivial eigen-
vectors (sampling 256 nodes, using 1000 iterations). In all
the experiments NMI and ACC of 1.0 were obtained over
the test set (i.e., perfect clustering results). In addition, as
demonstrate in Fig. 1, the learnt model is able to general-
ize the clustering result and performs smooth interpolation
and extrapolation of the space mapping. We note that no
explicit regularization loss is used in our method, general-
ization and smoothness are obtained naturally through the
neural training process.

Next we compare the performance of BASiS to those
of the models mentioned in Sec. 3. We examine the re-
sults over 4 well-known image datasets: MNIST, Fashion-
MNIST [31], SVHN [20] and CIFAR-10 [16]. For each
dataset we first learn an initial low-dimensional represen-
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tation, found to be successful for graph-based learning, by
a Siamese network, a convolutional neural network (CNN)
trained in a supervised manner using Contrastive loss

LCont(xi,x j,θ) = 1{yi = y j}
∥∥ f rep

θ
(xi)− f rep

θ
(x j)

∥∥2
2

+1{yi ̸= y j}max(0,ε−
∥∥ f rep

θ
(xi)− f rep

θ
(x j)

∥∥
2)

2,
(21)

where f rep
θ

(xi) is the Siamese network’s output for input im-
age xi labeld as yi , ε ∈R+. More details on the architecture
of the Siamese network are in the supplementary material.
We use this representations as inputs to the spectral embed-
ding models. In all the experiments the graph affinity matrix
W is defined by Eq. (1), using the 50 nearest neighbors of
each node. We use 50 neighbors in order that all methods
could perform well (see sensitivity analysis hereafter). The
model is trained to learn the first K eigenvectors, where K
is equal to the number of clusters. The batch size is set to
m = 512. For our method, we randomly select 25 anchor-
nodes from each cluster and use RANSAC to find the best
transformation.

Comparison between the methods is summarized in Ta-
ble 1. The numbers are obtained by showing the average
and empirical standard deviation of each measure, as com-
puted based on 10 experiments.

Since the training process in Diffusion Net is not scal-
able, in each initialization we randomly sampled a single
batch from the training set and trained the model with the
analytically calculated spectral embedding. In relation to
SpecNet2, as indicated in Sec. 3, to obtain an approximation
of the spectral space, SpecNet2 requires a post-processing
stage over the network’s output. In order to maintain consis-
tency and obtain reasonable performance for all measures,
the post-processing is performed over the entire test set (this
naturally limits the method and increases the level of com-
plexity at inference). More implementation details are in the
supplementary. Table 1 shows that our method is superior
and more stable in approximating the analytical embedding
and in clustering.

We further examined the robustness of the methods to
changes in the number of neighbors for each node. This pa-
rameter defines the connectivity of the graph in the affinity
matrix. Fig. 4 shows the average and the empirical stan-
dard deviation of the performance measures, for 50 training
procedures over the MNIST dataset. It is shown that our
method is highly robust and consistent. We note the high
sensitivity of Diffusion Net to this meta-parameter.

5.3. Diffusion Maps Encoding

We examine the ability of our model to learn the DM em-
bedding (6). For this purpose we use the dataset from [17]
which includes 2000 snapshots of toy bunny located on a
rotating surface. Six examples of such frames are shown in
Fig. 5a. We define a graph using the 20 nearest neighbors

(a) (b)

(c) (d)

Figure 4. Robustness to the node neighborhood. The average
and standard deviation of 50 different training experiments over
the MNIST dataset, for different number of neighbors per node.

(a) (b) (c) (d)

Figure 5. Diffusion Maps encoding. Data set of 2000 snapshots
of bunny on rotating display [17]. Fig. 5a shows snapshot exam-
ples. Fig. 5b present the analytically calculated DM embedding
for the full dataset . The test set analytical embedding is shown in
Fig. 5c and the network output for the test set in Fig. 5d.

of each node, and calculate the random-walk matrix P (5).
Raw pixels are used as features (dimension 288,000). Di-
mension reduction is performed with DM to R2. In Fig. 5b
the analytically calculated embedding obtained based on the
entire dataset is shown. Our model was trained to approxi-
mate this embedding using 1500 images. Test is performed
over 500 images. Fig. 5c shows the analytically calculated
embedding over the test snapshots. Fig. 5d shows the em-
bedding obtained by our trained model. Our method ap-
proximate well the analytic calculation.

5.4. Iterative Change of Features

In this section we illustrate the performance of Algo-
rithm 2 for aligning the spectral embedding space under
changing features. We define two DNN models. The first
one is for feature extraction, trained to minimize the Con-
trastive loss (21). The second is trained for calculating the
spectral embedding, using Algorithm 1, based on the out-
put of the features model. Both models are trained simul-
taneously. The feature model is trained for 1500 iterations,
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where every tenth iteration we perform an update step for
the spectral embedding model. To maintain consistency un-
der the feature change, we align the spectral space using
Algorithm 2 before performing an update step for the spec-
tral model. Fig. 6 shows the results of the training process
over the MNIST dataset where the learnt features are of di-
mension 16 and the eigenvectors are of dimension 9. Fig. 7
shows a visualization (TSNE [28]) of the test set embedding
at the beginning and the end of the training process. The two
modules were able to converge and to reach good cluster-
ing results. In addition, when the loss of the spectral mod-
ule is sufficiently low (around iteration 800, marked with a
red line in Fig. 6) the clustering performance of the spec-
tral module is comparable to the analytic embedding, cal-
culated with the current features (the orange and the green
plots tightly follow the blue plot).

To illustrate the role of the transformation TG, we show
in Fig. 8 the results of another experiment using a simi-
lar setting. For better visualization, the training is only for
three digits of MNIST: 4,7 and 9. The embedding (and vi-
sualization) is two dimensional. It can be seen that TG im-
poses consistency of the resulting embedding under feature
change, allowing convergence and good approximation of
the eigenvector space.

(a) (b)

(c) (d)

Figure 6. Training under feature change. Evolution of measures
during training (MNIST). 6a-6b losses of the features module and
the spectral embedding module, respectively. 6c-6d – clustering
measures. Blue, analytic calculation of the eigenvectors based on
current features. Orange and green, output of spectral embedding
module (training and validation sets, respectively).

6. Conclusion
In this paper we introduced BASiS, a new method for

learning the eigenspace of a graph, in a supervised manner,
allowing the use of batch training. Our proposed method
has shown to be highly robust and accurate in approximat-

(a) (b)

Figure 7. Test set embedding. Visualization (TSNE) of the spec-
tral embedding, MNIST test set. Fig. 7a shows the spectral em-
bedding at the beginning of training, Fig. 7b at the end.

Figure 8. Features change demonstration Left column: the ana-
lytically calculated spectral embedding of V re f obtained over the
features module output. Distortion is a consequence of feature
change. Middle column: Spectral embedding of V re f after align-
ment with TG . Right column: Network spectral embedding of the
test set. Each row represents the embeddings for the 10th, 100th,
500th and 1500th iteration, respectively.

ing the analytic spectral space, surpassing all other meth-
ods with respect to Grassman distance, orthogonality, NMI,
ACC and accuracy, over various benchmarks. In addition,
we proposed an adaptation of our procedure for learning the
eigenspace during iterative changes in the graph metric (as
common in neural training). Our method can be viewed
as a useful building block for integrating analytical spectral
methods in deep learning algorithms. This enables to effec-
tively use extensive theory and practices available, related
to classical spectral embedding.
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