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Abstract

Modeling sounds emitted from physical object interac-
tions is critical for immersive perceptual experiences in real
and virtual worlds. Traditional methods of impact sound
synthesis use physics simulation to obtain a set of physics
parameters that could represent and synthesize the sound.
However, they require fine details of both the object geome-
tries and impact locations, which are rarely available in
the real world and can not be applied to synthesize impact
sounds from common videos. On the other hand, existing
video-driven deep learning-based approaches could only
capture the weak correspondence between visual content
and impact sounds since they lack of physics knowledge. In
this work, we propose a physics-driven diffusion model that
can synthesize high-fidelity impact sound for a silent video
clip. In addition to the video content, we propose to use ad-
ditional physics priors to guide the impact sound synthesis
procedure. The physics priors include both physics parame-
ters that are directly estimated from noisy real-world impact
sound examples without sophisticated setup and learned
residual parameters that interpret the sound environment
via neural networks. We further implement a novel diffusion
model with specific training and inference strategies to com-
bine physics priors and visual information for impact sound
synthesis. Experimental results show that our model outper-
forms several existing systems in generating realistic impact
sounds. Lastly, the physics-based representations are fully
interpretable and transparent, thus allowing us to perform
sound editing flexibly. We encourage the readers visit our
project page 1 to watch demo videos with the audio turned
on to experience the result.

1. Introduction
Automatic sound effect production has become demand-

ing for virtual reality, video games, animation, and movies.
Traditional movie production heavily relies on talented Foley
artists to record many sound samples in advance and man-

*Work done while interning at MIT-IBM Watson AI Lab
1https://sukun1045.github.io/video-physics-sound-
diffusion/

Figure 1. The physics-driven diffusion model takes physics priors
and video input as conditions to synthesize high-fidelity impact
sound. Please also see the supplementary video and materials with
sample results.

ually perform laborious editing to fit the recorded sounds
to visual content. Though we could obtain a satisfactory
sound experience at the cinema, it is labor-intensive and
challenging to scale up the sound effects generation of vari-
ous complex physical interactions.

Recently, much progress has been made in automatic
sound synthesis, which can be divided into two main cate-
gories. The first category is physics-based modal synthesis
methods [37, 38, 50], which are often used for simulating
sounds triggered by various types of object interactions. Al-
though the synthesized sounds can reflect the differences
between various interactions and the geometry property of
the objects, such approaches require a sophisticated designed
environment to perform physics simulation and compute a
set of physics parameters for sound synthesis. It is, therefore,
impractical to scale up for a complicated scene because of
the time-consuming parameter selection procedure. On the
other hand, due to the availability of a significant amount
of impact sound videos in the wild, training deep learning
models for impact sound synthesis turns out to be a promis-
ing direction. Indeed, several works have shown promising
results in various audio-visual applications [63]. Unfortu-
nately, most existing video-driven neural sound synthesis
methods [7, 62] apply end-to-end black box model training
and lack of physics knowledge which plays a significant role
in modeling impact sound because a minor change in the
impact location could exert a significant difference in the
sound generation process. As a result, these methods are
prone to learning an average or smooth audio representa-
tion that contains artifacts, which usually leads to generating
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unfaithful sound.
In this work, we aim to address the problem of auto-

matic impact sound synthesis from video input. The main
challenge for the learning-based approach is the weak cor-
respondence between visual and audio domains since the
impact sounds are sensitive to the undergoing physics. With-
out further physics knowledge, generating high-fidelity im-
pact sounds from videos alone is insufficient. Motivated
by physics-based sound synthesis methods using a set of
physics mode parameters to represent and re-synthesize im-
pact sounds, we design a physics prior that could contain
sufficient physics information to serve as a conditional sig-
nal to guide the deep generative model synthesizes impact
sounds from videos. However, since we could not perform
physics simulation on raw video data to acquire precise
physics parameters, we explored estimating and predicting
physics priors from sounds in videos. We found that such
physics priors significantly improve the quality of synthe-
sized impact sounds. For deep generative models, recent
successes in image generation such as DALL-E 2 and Ima-
gen [44] show that Denoising Diffusion Probabilistic Models
(DDPM) outperform GANs in terms of fidelity and diversity,
and its training process is usually with less instability and
mode collapse issues. While the idea of the denoising pro-
cess is naturally fitted with sound signals, it is unclear how
video input and physics priors could jointly condition the
DDPM and synthesize impact sounds.

To address all these challenges, we propose a novel sys-
tem for impact sound synthesis from videos. The system in-
cludes two main stages. In the first stage, we encode physics
knowledge of the sound using physics priors, including es-
timated physical parameters using signal processing tech-
niques and learned residual parameters interpreting the sound
environment via neural networks. In the second stage, we
formulate and design a DDPM model conditioned on visual
input and physics priors to generate a spectrogram of impact
sounds. Since the physics priors are extracted from the audio
samples, they become unavailable at the inference stage. To
solve this problem, we propose a novel inference pipeline to
use test video features to query a physics latent feature from
the training set as guidance to synthesize impact sounds on
unseen videos. Since the video input is unseen, we can still
generate novel impact sounds from the diffusion model even
if we reuse the training set’s physics knowledge. In summary,
our main contributions to this work are:
• We propose novel physics priors to provide physics

knowledge to impact sound synthesis, including estimated
physics parameters from raw audio and learned residual
parameters approximating the sound environment.

• We design a physics-driven diffusion model with different
training and inference pipeline for impact sound synthesis
from videos. To the best of our knowledge, we are the first
work to synthesize impact sounds from videos using the

diffusion model.

• Our approach outperforms existing methods on both quan-
titative and qualitative metrics for impact sound synthe-
sis. The transparent and interpretable properties of physics
priors unlock the possibility of interesting sound editing
applications such as controllable impact sound synthesis.

2. Related Work
2.1. Sound Synthesis from Videos

Sound synthesis has been an ongoing research theme
with a long history in audio research. Traditional approaches
mainly use linear modal synthesis to generate rigid body
sounds [50]. While such methods could produce sounds
reflecting the properties of impact sound objects such as
the geometry difference, it is often the case that the simu-
lation and engineering tuning on the initial parameters for
the virtual object materials in the modal analysis is time-
consuming. Suppose we are under a more complicated scene
with many different sounding materials; the traditional ap-
proach can quickly become prohibitively intractable [42]. In
recent years, deep learning approaches have been developed
for sound synthesis. Owens et al. [39] investigated predicting
the sound emitted by interacting in the wild objects using a
wood drumstick. However, instead of directly usuing LSTM
to generate sound, they first predict sound features and then
performed an exemplar-based retrieval algorithm. Instead of
performing retrieval, our work directly generates the impact
sounds. In addition to impact sound, a conditional genera-
tive adversarial network is proposed for cross-modal genera-
tion on music performances collected in a lab environment
by Chen et al. [5]. Moreover, natural sounds are explored
by Zhou et al. [62] who introduced a SampleRNN-based
method to directly predict audio waveform from Youtube
videos data but the number of sound categories is limited to
ten. Next, several works attempt to generate aligned audio
to input videos via a perceptual loss [4] and information
bottleneck [7]. More recently, music generation from visual
input has also achieved various attentions [10, 47, 48].

2.2. Audio-visual learning

In recent years, methods for multi-modality learning
have shown significance in learning joint representation for
downstream tasks [41], and unlocked novel cross-modal ap-
plications such as visual captioning [30, 59], visual ques-
tion answering (VQA) [8, 54], vision language naviga-
tion [1], spoken question answering (SQA) [6,55], healthcare
AI [28, 31, 56–58], etc. In this work, we are in the field of
audio-visual learning, which deals with exploring and lever-
aging both audio and video correlation at the same time. For
example, earlier work from Owens et al. [40] tried using
clustered sound to learn visual representations from unla-
beled video data, and similarly, Aytar et al. [3] leveraged
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the scene to learn the audio representations. Later, [2] in-
vestigated audio-visual joint learning the visual by training
a visual-audio correspondence task. More recently, several
works have also explored sound source localization in im-
ages or videos in addition to the audio-visual representa-
tions [19, 23, 45]. Such works include a lot of applications
such as biometric matching [35], visually-guided sound
source separation [11, 15, 52, 60], understanding physical
scene via multi-modal [12], auditory vehicle tracking [14],
multi-modal action recognition [16, 32, 33], audio-visual
event localization [49], audio-visual co-segmentation [43],
audio inpainting [61], and audio-visual embodied naviga-
tion [13].

2.3. Diffusion Model

The recently explored diffusion probabilistic models
(DPMs) [46] have served as a powerful generative back-
bone that achieves promising results in various generative
applications [9,20,21,25,26,34,36], outperforming GANs in
terms of fidelity and diversity. More intriguing, the training
process is usually with less instability and mode collapse
issues. Compared to the unconditional case, conditional gen-
eration is usually applied in more concrete and practical
cross-modality scenarios. Most existing DPM-based condi-
tional synthesis works [9, 18] learn the connection between
the conditioning and the generated data implicitly by adding
a prior to the variational lower bound. The above methods
mostly focus on image applications, while audio is usually
different in its temporal dependencies. Recently, there are
several works that have explored to apply diffusion models
to text-to-speech (TTS) synthesis [22, 24]. Unlike the task
of text-to-speech synthesis, which contains a strong corre-
lation between phonemes and speech, the correspondences
between impact sounds and videos are weak. Therefore it is
non-trivial to directly apply a conditional diffusion model
to impact sound synthesis from videos. In this work, we
found that only video condition is insufficient to synthesize
high-fidelity impact sounds and additionally apply physics
priors significantly improve the results. Moreover, due to
the difficulty of predicting physics priors from video, we
propose different training and testing strategies that could
benefit the information of physics priors but also synthesize
new impact sounds from the video input.

3. Method
Our method includes two main components: (a) physics

priors reconstruction from sound (shown in Fig. 2), and (b)
a physics-driven diffusion model for impact sound synthesis
(shown in Fig. 3). We first show how we can acquire physics
priors from sounds In (a). Then in (b), we use reconstructed
physics priors as additional information to the video input
and guide the diffusion model to learn impact sound synthe-
sis. Since no sound is available during the test time, we use

different training and inference strategies to keep the benefit
of physics priors and generate novel impact sounds.

3.1. Reconstruct Physics Priors From Sound

We aim to reconstruct physics from sound. There are two
modules: 1) the physics parameters estimation extracting
modes parameters from audio waveform, and 2) the residual
parameters prediction learning to encode the environment
information such as background noise and reverberation
using neural networks.
Physics Parameters Estimation. The traditional linear
modal synthesis is usually used for modeling physics-based
sound synthesis [42]. The displacement x of the system can
be computed via a linear equation described as follows:

Mẍ+ Cẋ+Kx = F, (1)

where F represents the force, M represents the mass, C
represents the damping, and K represents the stiffness. With
such a linear system, we can solve the generalized eigenvalue
problem KU = ΛMU and decouple it into the following
form:

q̈ + (αI + βΛ)q̇ + Λq = UTF (2)

where Λ represents the diagonal matrix that contains eigen-
values of the system, U represents the eigenvectors which
can transform x into the bases of decoupled deformation q
by matrix multiplication x = Uq.

After solving the decoupled system, we will obtain a set
of modes that can be simply expressed as damped sinusoidal
waves. The i-th mode can be expressed by:

qi = pie
−λit sin(2πfit+ θi) (3)

where fi is the frequency of the mode, λi is the decaying
rate, pi is the excited power, and θi is the initial phase. It is
also common to represent qi under the decibel scale and we
have

qi = 10(pi−λit)/20 sin(2πfit+ θi). (4)

The frequency, power, and decay rate can define the physics
parameter feature ϕ of mode i: ϕ = (fi, pi, λi) and we
neglect θi since we assume the object is initially at rest and
struck at t = 0 and therefore it is usually treated as zero in
the estimation process [42].

Given a recorded audio waveform s ∈ RT , from which
we first estimate physics parameters including a set of
damped sinusoids with constant frequencies, powers, and de-
cay rates. We first compute the log-spectrogram magnitude
S ∈ RD×N of the audio by short-time-Fourier-transform
(STFT), where D is the number of frequency bins and N is
the number of frames. To capture sufficient physics parame-
ters, we set the number of modes to be equal to the number
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Figure 2. Reconstruction of physics priors by two components: 1) We estimate a set of physics parameters (frequency, power, and decay rate)
via signal processing techniques. 2) We predict residual parameters representing the environment by a transformer encoder. A reconstruction
loss is applied to optimize all trainable modules.

of frequency bins. Within the range of each frequency bin,
we identify the peak frequency f from the fast Fourier trans-
form (FFT) magnitude result of the whole audio segment.
Next, we extract the magnitude at the first frame in the spec-
trogram to be the initial power p. Finally, we compute the
decay time λ for the mode according to the temporal bin
when it reaches the silence (−80dB). At this point, we obtain
D modes physics parameters {(fi, pi, λi)}Di=1 and we can
re-synthesize an audio waveform ŝ using equation 4.
Residual Parameters Prediction. While the estimated
modes capture most of the components of the impact sound
generated by physical object interactions, the recorded au-
dio in the wild has complicated residual components such
as background noise and reverberation dependent on the
sound environment which is critical for a real and immersive
perceptual experience. Here we propose a learning-based ap-
proach to model such residual parameters. We approximate
the sound environment component with exponentially de-
caying filtered noise. We first randomly generate a Gaussian
white noise N (0, 1) signal and perform a band-pass filter
(BPF) to split it into M bands. Then, for each band m, the
residual component is formulated as

Rm = 10(−γt)/20BPF(N (0, 1))m (5)

The accumulated residual components R is a weighted sum
of subband residual components

R =

M∑
m=1

wmRm, (6)

where wm is the weight coefficient of band m residual com-
ponent. Given the log-spectrogram S ∈ RD×N as input, we
use a transformer-based encoder to encode each frame of

the S. The output features are then averaged and two linear
projections are used to estimate γ ∈ RM and w ∈ RM . We
minimize the error between ŝ+R and s by a multi-resolution
STFT loss Lmr-stft(ŝ + R, s) which has been shown effec-
tive in modeling audio signals in the time domain [53]. By
estimating physics parameters and predicting residual pa-
rameters, we obtain the physics priors and it is ready to be a
useful condition to guide the impact sound synthesis model
to generate high-fidelity sounds from videos.

3.2. Physics-Driven Diffusion Models

With the physics priors and video inputs, we propose
a conditional Denoising Diffusion Probabilistic Model
(DDPM) for impact sound synthesis. Our model performs a
reverse diffusion process to guide the noise distribution to a
spectrogram distribution corresponding to the input physics
priors and video content. We encode all physics and residual
parameters as a latent feature embedding with multi-layer
perceptron (MLPs). The resulting physics latent vector is
denoted by µ. For video inputs, given a sequence of RGB
frames, we use temporal-shift-module (TSM) [29] to effi-
ciently extract visual features, which are then average pooled
to compute a single visual latent representation ν.

We show our physics-driven diffusion model for sound
synthesis in Fig. 3. The main component is a diffusion for-
ward process that adds Gaussian noise N (0, I) at time steps
t = 0, ..., T to a spectrogram x with variance scale β. We
can use a scheduler to change the variance scale at each time
step to have β1, β2, ..., βT [24]. We denote the spectrogram
at diffusion time step t as xt. Given the spectrogram at time
step t− 1 as xt−1, physics latent µ, and visual latent ν, the
explicit diffusion process for spectrogram at time step t can
be written as q(xt|xt−1, µ, ν). Since the complete diffusion
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Figure 3. Overview of the physics-driven diffusion model for impact sound synthesis from videos. (left) During training, we reconstruct
physics priors from audio samples and encode them into a physics latent. Besides, we use a visual encoder to extract visual latent from the
video input. We apply these two latents as conditional inputs to the U-Net spectrogram denoiser. (right) During testing, we extract the visual
latent from the test video and use it to query a physics latent from the key-value pairs of visual and physics latents in the training set. Finally,
the physics and visual latents are used as conditional inputs to the denoiser and the denoiser iteratively generates the spectrogram.

process that takes x0 to xT conditioned on µ and ν is a
Markov process, we can factorize it into a sequence of mul-
tiplication

∏T
t=1 q(xt|xt−1). To generate a spectrogram, we

need the reverse process that aims to recover a spectrogram
from Gaussian noise. The reverse process can be defined
as the conditional distribution pθ(x0:T−1|xT , µ, ν), and ac-
cording to Markov chain property, it can be factorized into
multiple transitions as follows:

pθ(x0, ..., xT−1|xT , µ, ν) =

T∏
t=1

pθ(xt−1|xt, µ, ν). (7)

Given the diffusion time-step with physics latent and vi-
sual latent conditions, a spectrogram is recovered from
the latent variables by applying the reverse transitions
pθ(xt−1|xt, µ, ν). Considering the spectrogram distribution
as q(x0|µ, ν), we aim to maximize the log-likelihood of the
spectrogram by learning a model distribution pθ(x0|µ, ν)
obtained from the reverse process to approximate q(x0|µ, ν).
Since it is common that pθ(x0|µ, ν) is computationally in-
tractable, we follow the parameterization trick in [20, 24] to
calculate the variational lower bound of the log-likelihood.
Specifically, the training objective of the diffusion model
is L1 loss function between the noise ϵ ∼ N (0, I) and the
diffusion model output fθ described as follows:

min
θ

||ϵ− fθ(h(x0, ϵ), t, µ, ν)||1, (8)

where h(x0, ϵ) =

√
β̂tx0 +

√
1− β̂tϵ, and β̂t =

∏t
t=1 1−

βt.

3.3. Training and Inference

During training, we use physics priors extracted from
the audio waveform as an additional condition to guide the

model to learning correspondence between video inputs and
impact sounds. However, since the ground truth sound clip
is unavailable during inference, we could not obtain the cor-
responding physics priors for the video input as we did in
the training stage. Therefore, we propose a new inference
pipeline to allow us to preserve the benefit of physics priors.
To achieve this goal, we construct key-value pairs for visual
and physics latents in our training sets. At the inference stage,
we feed the testing video input and acquire the visual latent
vector ν test. We then take ν test as a query feature and find the
key in training data by computing the Euclidean distance be-
tween the test video latent ν test and all training video latents
{ν train

j }Jj=1. Given the key ν train
j , we then use the value µtrain

j

as our test physics latent µ̂test. Once we have both visual
latent ν test and physics latent µ̂test, the model reverses the
noisy spectrogram by first predicting the added noise at each
forward iteration to get model output fθ(xt, t, µ̂

test, ν test) and
then removes the noise by the following:

xt−1 =
1√

1− βt
(xt −

βt√
1− β̂t

fθ(xt, t, µ̂
test, ν test)) + ηtϵt,

(9)

where β̂t =
∏t

t=1 1− βt, ϵt ∼ N (0, I), η = σ

√
1−β̂t−1

1−β̂t
βt,

and σ is a temperature scaling factor of the variance [24].
After iterative sampling over all of the time steps, we can
obtain the final spectrogram distribution pθ(x0|µ̂test, ν test). It
is worth noting that while we use the physics latent from
the training set, we can still generate novel sound since the
diffusion model also takes additional visual features as input.
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4. Experiments
4.1. Dataset

To evaluate our physics-driven diffusion models and make
comparison to other approaches, we use the Greatest Hits
dataset [39] in which people interact with physical objects
by hitting and scratching materials with a drumstick. Human
annotators labeled the actions with material labels and the
time stamps of the impact sound. According to the dataset
annotation assumption that the time between two consecutive
object sounds is at least 0.25 second, we segment all audios
into 0.25 second clips for training and testing. We use the
pre-defined train/test split for all experiments.

4.2. Implementation Details

We use Pytorch to implement all models in our method.
For physics parameter estimation, all audio waveforms are
in 44.1Khz and we compute log-scaled spectrograms with
2048 window size and 256 hop size, leading to a 1025× 44
spectrogram for each impact sound. Then we estimate 1025
modes parameters from the spectrogram as described in the
Sec 3.1. For residual parameter prediction, the transformer
encoder is a 4-layer transformer encoder with 4 attention
heads. The residual weights and decay rate dimensions are
both 100. In the physics-driven diffusion model, we feed
22 video frames centered at the impact event to the video
encoder which is a ResNet-50 model with TSM [29] to
efficiently handle the temporal information. The physics
encoder consists of five parallel MLPs which take each of
physics priors as input and project into lower-dimension
feature vectors. The outputs are concatenated together into a
256-dim physics latent vector µ. The spectrogram denoiser
is an Unet architecture, which is constructed as a spatial
downsampling pass followed by a spatial upsampling pass
with skip connections to the downsampling pass activation.
We use Griffin-Lim algorithm to convert the spectrogram to
the final audio waveform [17]. We use AdamW optimizer
to train all models on a A6000 GPU with a batch size of 16
until convergence. The initial learning rate is set to 5e− 4,
and it gradually decreases by a factor of 0.95.

4.3. Baselines

We compare our physics-driven diffusion model against
various state-of-the-art systems. For fair comparison, we use
the same video features extracted by TSM [29].
• ConvNet-based Model: With a sequence video features,

we first up-sampled them to have the same number of
frames as the spectrogram. Then we perform a Unet ar-
chitecture to convert video features to spectrogram. Such a
architecture has shown successful results in spectrogram-
based music generation [51].

• Transformer-based Model: We implement a conditional
Transformer Network which has shown promising results

in Text-to-Speech [27]. Instead of using text as condition,
here we use the extracted video features.

• Video conditioned Diffusion model: We also compare our
approach to two video conditioned spectrogram diffusion
model variants. In the first setup, we do not include the
physics priors and keep all other settings the same.

• Video + Class Label conditioned Diffusion model: In the
second variant, we provide a class-label of the impact sound
material as an additional condition to the video features.
All other settings are the same as ours.

• Video + Other Audio Features Diffusion model: To show
the importance of physics latents, we replace the physics
latent with spectrogram/mfcc latent by extracting spectro-
gram/mfcc features from the raw audio and pass them to a
transformer encoder similar to the one used in physics pa-
rameters reconstruction, and then we apply average pooling
to obtain the latent vector. During testing, we still use vi-
sual features to query the corresponding spectrogram/mfcc
latent in the training set and synthesize the final results.

4.4. Evaluation Metrics

We use four different metrics to automatically assess both
the fidelity and relevance of the generated samples. For auto-
matic evaluation purpose, we train an impact sound object
material classifier using the labels in Great Hits Dataset. The
classifier is a ResNet-50 convolutional-based neural network
and we use the spectrogram as input to train the classifier.
• Fréchet Inception Distance (FID) is used for evaluating

the quality of generated impact sound spectrograms. The
FID score evaluates the distance between the distribution
of synthesized spectrograms and the spectrograms in the
test set. To build the distribution, we extract the features
before the impact sound classification layer.

• Kernel Inception Distance (KID) is calculated via maxi-
mum mean discrepancy (MMD). Again, we extract features
from synthesized and real impact sounds. The MMD is cal-
culated over a number of subsets to both get the mean and
standard deviation of KID.

• KL Divergence is used to individually compute the dis-
tance between output distributions of synthesized and
ground truth features since FID and KID mainly rely on
the distribution of a collection of samples.

• Recognition accuracy is used to evaluate if the quality of
generated impact sound samples can fool the classifier.

4.5. Results

Quantitative evaluation results are shown in Table 1. Our
proposed physics-driven diffusion model outperforms all
other methods across all metrics. It is worth noting that
without physics priors, using video features alone as con-
dition to the spectrogram denoiser is not sufficient to gen-
erate high fidelity sounds. While this could be improved
when class labels are available, it is obvious that there is
a large gap to reach the performance of the physics-driven

9754



Model\Metric FID ↓ KID (mean, std)↓ KL Div. ↓ Recog. Acc (%) ↑
ConvNet-based 43.50 0.053, 0.013 4.65 51.69
Transformer-based 34.35 0.036, 0.015 3.13 62.86
Video Diffusion 54.57 0.054, 0.014 2.77 69.94
Video + Class label Diffusion 31.82 0.026, 0.021 2.38 72.02
Video + MFCC Diffusion 40.21 0.037, 0.010 2.84 67.87
Video + Spec Diffusion 28.77 0.016, 0.009 2.55 70.46
Video + Physics Diffusion (Ours) 26.20 0.010, 0.008 2.04 74.09

Table 1. Quantitative evaluations for different models. For FID, KID, and KL Divergence, lower is better. For recognition accuracy, higher is
better. Bold font indicates the best value.

Figure 4. Qualitative Comparison results on sound spectrogram generated by different methods.

method. Fig. 4 illustrates a comparison of three examples
of generated spectrograms given a video by ConvNet-based,
Transformer-based, and our physics-driven approaches to the
ground truth. While the ConvNet and Transformer-based ap-
proaches could also capture some correspondences between
audio and video, it is obvious that a lot of noise appears
in the generated spectrogram because these approaches are
prone to learn an average smoothed representation, and thus
introducing many artifacts in the end. In comparison, our
physics-driven diffusion approach does not suffer from this
problem and can synthesize high fidelity sound from videos.
It is worth noting that the interoperability of our approach
could potentially unlock applications such as controllable
sound synthesis by manipulating the physics priors.

4.6. Human Perceptual Evaluation

In addition to the objective evaluation of our method,
we also perform human perceptual surveys using Amazon
Mechanical Turk (AMT). We aim to use perceptual surveys
to evaluate the effectiveness of our generated samples to
match the video content and the fidelity of the generated

samples. For all surveys, we do not request participants with
any background on the survey or our approach was given to
the participants to avoid perceptual biases. We surveyed 50
participants individually, where each participant was asked
to evaluate 10 videos along with different generated samples
from various methods. A total of 500 opinions were collected
in the end.
• Matching. In the first survey, we asked people to watch

the same video with different synthesized sounds and an-
swer the question: ”In which video the sound best matches
the video content?”. The participants would choose one
soundtrack from the ConvNet-based, Transformer-based
and Physics-driven diffusion approaches. Based on the re-
sults shown in Table. 2 (Top) (left column), we observe
that there exists a clear indication that the sound generated
with our method is selected as the best match to the visual
content with a higher selected rate.

• Quality. In the second survey, we asked people (non-
expert) to choose the video with the highest sound quality,
including 3 variations of samples generated by ConvNet-
based, Transformer-based and Physics-driven diffusion ap-
proaches. Results in Table clearly indicate our approach
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Model\Metric Matching Quality
Comparison to Baselines
ConvNet-based 18% 17.6%
Transformer-based 26.6% 28.8%
Ours 55.4% 53.6%
Perceptual Ablation Studies
Video-only 23.6% 23.6%
Video+label 37.8% 35.8%
Ours 38.6% 40.6%

Table 2. (Top) Human perceptual evaluation on matching and qual-
ity metrics. (Bottom) Ablation study on human perceptual evalua-
tion. The value indicates the percentage of Amazon Turkers who
select the method.

achieves the best sound quality.
• Perceptual Ablation Studies. In the last survey, we per-

formed a perceptual ablation study to test how the physics
priors could influence the perceptual difference of the gen-
erated impact sounds compared to the approaches without
it. Survey results are shown in Table 2 (Bottom) and sug-
gest that the physics priors improve the overall perception
of synthesized sounds in comparison to video only model.

4.7. Ablation Studies

We performed three ablation studies to answer the fol-
lowing questions. Q1: How do residual parameters influence
the physics priors? Q2: What is the contribution of each
component to our approach? Q3: Is our method better than
simple retrieval methods?
Q1. Since the physics and residual parameters are essential in
our approach. We have investigated different physics priors
variants to find the most informative physics priors and use
the multi-resolution STFT loss of the reconstructed sounds
for evaluation. The results in Fig. 5(a) clearly show that the
loss decreases significantly with residual parameters. We
also find that using 100 residual parameters achieves the best
performance, while fewer or more residual parameters may
damage the performance.
Q2. We perform extensive experiments to understand the
contribution of each component. For all studies, we use the
nearest physics parameters/priors retrieved by visual latent
to synthesize the sound. Results are shown in Fig. 5(b). We
first observe that without residual components and diffu-
sion models, using estimated physics parameters to perform
modal synthesis could not obtain faithful impact sounds. The
physics priors could re-synthesize impact sounds with much
better quality with learned residual parameters. We further
show that using physics priors as the condition input to the
diffusion model achieves even better performance. We have
also performed an experiment to predict physics latent from
video input and use it as the condition for the diffusion model
but the quality of generated samples is poor. This is due to
the weak correspondence between video inputs and physics
behind the impact sounds and indicates the importance of
using video inputs to query physics priors of the training set
at the inference stage.

Figure 5. (a) Ablation study on the importance and selection for the
number of residual parameters by testing multi-resolution STFT
loss. (b) Ablation study on the contribution of each component of
our approach using FID score, the lower the better.

Q3. We consider two retrieval baselines for comparison. The
first one is a simple baseline without physics priors and dif-
fusion model. We only use visual features extracted from the
ResNet-50 backbone to search the nearest neighbor (NN) in
the training set and use the audio as output. In the second
experiment, we try our best to reproduce the model in [39]
since no official implementation is available. The model pre-
dicts sound features (cochleagrams) from images via LSTM.
For fair evaluation, a collection-based metric like FID is
invalid because the retrieved audios are in the real data distri-
bution. Therefore, we use sample-based metrics, including
KL Divergence between predicted and ground truth audio
features and Mean Square Error on the spectrogram level.
The table 3 clearly shows that our approach outperforms the
retrieval baselines by a large margin.

Model\Metric KL Div. ↓ Spec. MSE↓
NN via Visual Features 10.60 0.307
NN via Predicted Sound Features [39] 7.39 0.205
Ours 2.04 0.149

Table 3. Comparison with retrieval methods.

5. Conclusion

We present a physics-driven diffusion model for impact
sound synthesis from videos. Our model can effectively gen-
erate high fidelity sounds for physical object interactions.
We achieve such function by leveraging physics priors as
guidance for the diffusion model to generate impact sounds
from video input. Experimental results demonstrate that our
approach outperforms other methods quantitatively and qual-
itatively. Ablation studies have demonstrated that physics
priors are critical for generating high-fidelity sounds from
video inputs. The limitation of our approach naturally be-
comes that our approach cannot generate impact sounds for
unseen physics parameters due to the query process (failure
case demonstration is shown in Supplementary material),
while we can generate novel sounds given an unseen video.
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