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Abstract

Scanpath prediction for 360◦ images aims to produce dy-
namic gaze behaviors based on the human visual perception
mechanism. Most existing scanpath prediction methods for
360◦ images do not give a complete treatment of the time-
dependency when predicting human scanpath, resulting in
inferior performance and poor generalizability. In this pa-
per, we present a scanpath prediction method for 360◦ im-
ages by designing a novel Deep Markov Model (DMM)
architecture, namely ScanDMM. We propose a semantics-
guided transition function to learn the nonlinear dynam-
ics of time-dependent attentional landscape. Moreover, a
state initialization strategy is proposed by considering the
starting point of viewing, enabling the model to learn the
dynamics with the correct “launcher”. We further demon-
strate that our model achieves state-of-the-art performance
on four 360◦ image databases, and exhibit its generalizabil-
ity by presenting two applications of applying scanpath pre-
diction models to other visual tasks – saliency detection and
image quality assessment, expecting to provide profound in-
sights into these fields.

1. Introduction

360◦ images, also referred to as omnidirectional, sphere
or virtual reality (VR) images, have been a popular type of
visual data in many applications, providing us with immer-
sive experiences. Nevertheless, how people explore virtual
environments in 360◦ images has not been well understood.
The scanpath prediction model that aims at generating real-
istic gaze trajectories has obtained increasing attention due
to its significant influence in understanding users’ viewing
behaviors in VR scenes, as well as in developing VR ren-
dering, display, compression, and transmission [51].

Scanpath prediction has been explored for many years in
2D images [29]. However, 360◦ images are different greatly
from 2D images, as a larger space is offered to interact with
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Figure 1. Existing scanpath prediction models for 360◦ images
could be classified to two types: saliency-based models [2, 70, 71]
and generative models [42, 43]. The scanpaths produced by
saliency-based models, taking the study [2] as an example, com-
monly exhibits unstable behavior with large displacements and
scarce focal regions. Generative models, taking the study [43] as
an example, shows less attention to regions of interest. The pro-
posed ScanDMM can produce more realistic scanpaths that focus
on regions of interests.

– humans are allowed to use both head and gaze move-
ments to explore viewports of interest in the scene. In such a
case, viewing conditions, e.g., the starting point of viewing,
has an important impact on humans’ scanpaths [20, 21, 52],
and leads to complex and varied scanpaths among humans.
This is inherently different from what happens in 2D visu-
als since humans can directly guide their attention to the
regions of interest. Therefore, scanpath prediction for 360◦

images is a more complex task.
Current 360◦ image scanpath prediction methods could
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be roughly divided into two categories: saliency-based [2,
70, 71] and generative methods [42, 43]. The basic idea of
the former one is to sample predicted gaze points from a
saliency map. The performance of such methods is highly
dependent on that of the saliency maps. Furthermore, con-
structing a satisfactory sampling strategy to account for
time-dependent visual behavior is non-trivial – the results of
SaltiNet [2] exhibit unstable behavior with large displace-
ments and scarce focal regions (see Fig. 1). The latter group
of methods utilizes the advance of generative models, e.g.,
Generative Adversarial Network (GAN), to predict realis-
tic scanpaths. However, such methods show less attention
to regions of interests (see Fig. 1). In addition, the GAN-
based methods are less flexible in determining the length of
scanpaths and commonly suffer from unstable training.

None of above-mentioned studies give a complete treat-
ment of the time-dependency of viewing behavior, which
is critical for modeling dynamic gaze behaviors in 360◦ im-
ages. For time-series data, a popular approach is to leverage
sequential models, e.g., recurrent neural networks (RNNs),
as exemplified in gaze prediction for 360◦ videos [17, 35,
45]. However, such deterministic models are prone to over-
fitting, particularly on small 360◦ databases. More impor-
tantly, they typically make simplistic assumptions, e.g., one
choice is to concatenate the saliency map to the model’s hid-
den states [17, 45], which assumes that the network learns
how the states evolve by learning from saliency maps. Nev-
ertheless, the neuroscience research [62] reveals that in ad-
dition to top-down and bottom-up features, prior history and
scene semantics are essential sources for guiding visual at-
tention. Moreover, to be identified as interests or rejected
as distractors, items must be compared to target templates
held in memory [62]. Inspired by this, we argue that hu-
mans’ scanpaths in 360◦ scenes are complex nonlinear dy-
namic attentional landscapes over time as a function of in-
terventions of scene semantics on visual working memory.
We present a probabilistic approach to learning the visual
states that encode the time-dependent attentional landscape
by specifying how these states evolve under the guidance of
scene semantics and visual working memory. We instanti-
ate our approach in the Deep Markov Model (DMM) [28],
namely ScanDMM. Our contributions can be summarized
as follows:

• We present a novel method for time-dependent vi-
sual attention modeling for 360◦ images. Specifically,
we model the mechanism of visual working memory
by maintaining and updating the visual state in the
Markov chain. Furthermore, a semantics-guided tran-
sition function is built to learn the nonlinear dynamics
of the states, in which we model the interventions of
scene semantics on visual working memory.

• We propose a practical strategy to initialize the visual
state, facilitating our model to focus on learning the

dynamics of states with correct “launcher”, as well as
enabling us to assign a specific starting point for scan-
path generation. Moreover, ScanDMM is capable of
producing 1, 000 variable-length scanpaths within one
second, which is critical for real-world applications.

• We apply the proposed ScanDMM to two other com-
puter vision tasks – saliency detection and image qual-
ity assessment, which demonstrates our model equips
with strong generalizability and is expected to provide
insights into other vision tasks.

2. Related Work
2.1. Visual Attention for 2D Images

Modeling Spatial Distribution of Gazes. Visual attention
depends on two distinct types of attentional mechanisms:
bottom-up and top-down mechanisms [10]. The perfor-
mance of classic saliency detection methods for 2D images
primarily depends on bottom-up features, e.g., colour, lu-
minance, contrast and texture, for modeling visual atten-
tion [15, 18, 19, 24]. Although the studies [40, 69] incorpo-
rate top-down features, e.g., human faces and texts, there are
still obstacles in combining bottom-up and top-down visual
features. Deep learning methods [36, 57, 59, 68] take ad-
vantage of large-scale databases and well-established con-
volutional neural networks (CNNs), and they have achieved
remarkable success.
Modeling Dynamic Gaze Behaviors. The studies in neu-
roscience suggest that scanpath generation can be an iter-
ative process: while the eye fixates on an image location,
the brain selects the next location to look at [26, 48]. Bio-
logically inspired methods model such mechanism in differ-
ent ways, e.g., considering the inhibition-of-return mecha-
nism [25, 49, 53], maintaining the residual perceptual infor-
mation maps [58], modeling the retina transformation [1],
and utilizing low-level semantic information [55, 67]. An-
other class of methods is statistically inspired for modeling
dynamic gaze behaviors. A typical approach is to model fix-
ation distributions by the product of the saliency map and
the previous fixation location [4, 5, 13, 30, 33, 63]. Some
studies regard fixation distributions as Gaussian densities,
and model scanpath by leveraging component analysis [54]
or hidden markov models [12]. Different from interpretable
models, fitting the data using deep generative models can
also achieve competitive performance [9, 42, 66].

2.2. Visual Attention for 360◦ Images

Modeling Spatial Distribution of Gazes. Saliency detec-
tion of 360◦ images is more challenging compared with 2D
images, mainly due to complex viewing behaviors and in-
sufficient available data for 360◦ images. According to the
space that the model is applied to, saliency detection mod-
els of 360◦ images can be grouped into two categories: 2D-
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plane-based methods [2, 22, 38] and viewport-based meth-
ods [8, 34, 44, 64]. The former models visual attention by
using hand-craft features [22,38] or data-driven features [2]
extracted from the distorted (caused by the equirectangular
projection) 2D plane, while the latter is designed by apply-
ing well-established 2D visual saliency detection methods
on viewport plane with less distortions.
Modeling Dynamic Gaze Behaviors. Current scanpath
prediction models of 360◦ images can be classified to two
types: saliency-based models [2, 3, 70, 71] and generative
models [42, 43]. The former first produces the saliency
map by extracting low-level and high-level features [70,71]
or learned features from data [2, 3]. Then, scanpaths are
sampled from the saliency map by maximizing informa-
tion gains [70, 71] or using a stochastic approach [2, 3].
The latter group of methods models scanpaths by learning
from human data. PathGAN [42] is a generative model
originally developed for 2D images, and it is fine-tuned
on Salient360! [47] database to be applied on 360◦ im-
ages. However, the generated scanpaths lose sphere prop-
erties (e.g., longitudinal continuities) due to the assumption
that a 360◦ image is similar to a traditional 2D image. To
address this problem, ScanGAN [43] propose to learn the
image and coordinate representations by using sphere con-
volutional neural network (S-CNN) [11] and CoordConv
layer [39], respectively. Besides, a loss function that mea-
sures the spherical distance is proposed for model training.

3. The Proposed Method

3.1. Problem Definition

In 360◦ environment, a human scanpath could be
defined as a time series of gaze points x1:T =
(x1,x2, ...,xT ) ∈ R3×T , where xt is a three-dimensional
coordinate (xt, yt, zt). Given a 360◦ image, a scanpath pre-
diction model aims at producing realistic scanpaths x̃1:T

based on the human visual perception mechanism. This pa-
per presents a probabilistic method – ScanDMM, for scan-
path prediction for 360◦ images, as shown in Fig 2. We
model the mechanism of visual working memory by main-
taining a set of visual states z1:T = (z1, z2, ..., zT ) ∈
Rn×T that encodes the dynamic attentional landscapes over
time (n is the dimension of the state space). Basically, the
ScanDMM predicts a scanpath using the following genera-
tive process:

Transition : zt ∼ pθt(zt|zt−1), (1)
Emission : x̃t ∼ pθe(xt|zt), t = 1, 2, ..., T (2)

where ∼ means the sample operation. pθt(zt|zt−1) denotes
the transition probabilities between the visual states, and
pθe(xt|zt) denotes the emission probabilities that describe
how the visual state generates a gaze point. Let θ denotes all
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Figure 2. An illustration of the proposed ScanDMM. Noting that
the scene semantic ŝ is deterministic for an image.

parameters involved in the ScanDMM. We approximate the
realistic scanpaths by maximizing the log-likelihood func-
tion log p(x) (we omit subscripts here for simplicity):

max log pθ(x) = logEpθ(z|x)pθ(x)

= logEpθ(z|x)
pθ(x, z)

pθ(z|x)

= logEpθ(z|x)
pθe(x|z)pθt(z)

pθ(z|x)
.

(3)

The posterior pθ(z|x) can be approximated by using Vari-
ational Inference [61], which seeks to derive a distribu-
tion qϕ(z|x) that is parameterized by neural networks,
s.t. qϕ(z|x) ≈ pθ(z|x). Based on Jensen’s inequality,
f(E[x]) ⩾ E[f(x)] where f is a concave function, we
adopte the Evidence Lower Bound of log pθ(x) as the loss
function L(θ;ϕ;x) to be maximized:

log pθ(x) ⩾ Eqϕ log
pθe(x|z)pθt(z)

qϕ(z|x)
= Eqϕ [log pθe(x|z) + log pθt(z)− log qϕ(z|x)]
= Eqϕ [log pθe(x|z)]︸ ︷︷ ︸

Reconstruction

−KL(qϕ(z|x)∥pθt(z))︸ ︷︷ ︸
Regularization

:= L(θ;ϕ;x),
(4)

where KL(·∥·) denotes the Kullback–Leibler (KL) diver-
gence. The reconstruction term evaluates the model’s ac-
curacy and the regularization term enforces the closeness
between qϕ(z|x) and pθt(z). The loss function also can be
interpreted as the summation of transition pθt(z), emission
pθe(x|z) and inference qϕ(z|x). In the following section,
we describe how we design the three functions tailored for
scanpath prediction for 360◦ images.

3.2. State Initialization

Different from the common strategy that simply sets the
initial state to zero vector [28] or random vector [27], we
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propose a practical strategy considering the starting points
of scanpaths. The motivation derives from recent stud-
ies [20, 21,52], which reveal that the starting point of view-
ing has an important influence on the scanpaths. To make
our model better focus on learning the dynamics of vi-
sual states with the correct “launcher” rather than random
scratch, in the training stage, we directly use the starting
point x1 to initialize z0:

z0 = F(ẑ0,x1), (5)

where ẑ0 is a learnable parameter. F denotes linear neu-
ral networks (see Fig. 2 for details). An advantage of such
configuration is that we can assign a specific starting point
for scanpath generation, which is flexible and even crucial
in some visual tasks, e.g., image quality assessment (see
Section 5.2). Notably, to fairly compare ScanDMM with
other scanpath prediction models, in the model evaluation,
we randomly sample the starting points from an Equator
Bias Map that covers the whole longitude and 20% latitude.

3.3. Transition Function

Transition function pθt(zt|zt−1) controls the dynamics
of the visual states, in which the the history state zt−1 func-
tions as visual working memory that maintains the history
attentional landscape. Inspired by the recent study in neu-
roscience [62], we propose to learn the dynamics guided by
scene semantics. Due to the space-varying distortions in-
herent to equirectangular projections, we choose to extract
scene semantics ŝ ∈ Rn×1 using S-CNN [11]. Moreover,
by considering the spatial locations of semantic features are
critical for scanpath prediction, we utilize the CoordConv
strategy [39] to give convolutions access to their own input
coordinates, as suggested in [43]. Given the scene seman-
tics ŝ and the history visual state zt−1, transition function
samples zt from the following Gaussian densities:

zt ∼ N (µz
t , σ

z
t ), (6)

where µz
t and σz

t ∈ Rn×1 are the mean and scale of Gaus-
sian densities describing an attentional landscape of the vi-
sual state zt.

Here, we present how we produce the two Gaussian pa-
rameters. Firstly, we compute the new underlying gaze dis-
tributions ẑt by

ẑt = Wt
z(zt−1 ⊕ ŝ) + bt

z, (7)

where ⊕ is the concatenate operation, Wt
z ∈ Rn×2n and

bt
z ∈ Rn×1 are learnable parameters of the neural networks.

Inspired by the Long Short-Term Memory [23], we intro-
duce the uncertainty weighting for adaptively determining
how much components of the previous visual state zt−1 to
be updated:

αt = σ(Wt
αzt−1 + bt

α), (8)

where αt is an uncertainty weighting determined by the
history state zt−1, and σ denotes the sigmoid function.
Wt

{α,σ} ∈ Rn×n and bt
{α,σ} ∈ Rn×1 are learnable pa-

rameters of the neural networks. Finally, the two Gaussian
parameters, µz

t and σz
t , are computed by:

µz
t = αtẑt + (1− αt)zt−1, (9)

σz
t = log(1 + exp(Wt

σẑt + bt
σ)). (10)

3.4. Emission Function

Emission function pθe(xt|zt) describes how a gaze point
x̃t is generated from the visual state zt. As a gaze point
is parameterized as a three-dimensional coordinate, we
model the emission process by sampling x̃t from the three-
dimensional Gaussian densities that are parameterized by
µx
t and σx

t ∈ R3×1:

x̃t ∼ N (µx
t , σ

x
t ), (11)

where µx
t and σx

t are determined by the current visual state
zt:

µx
t = 2σ(We

µzt + be
µ)− 1, (12)

σx
t = log(1 + exp(We

σzt + be
σ)). (13)

We
{µ,σ} ∈ R3×n and be

{µ,σ} ∈ R3×1 are learnable parame-
ters of the neural networks.

3.5. Inference

Inference for a latent state can be made using informa-
tion from past and future true observations [28], i.e., GT
gaze points in this study. In other words, the goal of in-
ference is to provide an approximation to the exact poste-
rior pθ(z1:T |x1:T ). Here, we leverage the Variational In-
ference [61] to approximate pθ(z1:T |x1:T ) with a tractable
family of conditional distributions qϕ(z1:T |x1:T ):

qϕ(z1:T |x1:T ) =

T∏
t=1

qϕ(zt|zt−1,H(xt:T ))

s.t. qϕ(zt|zt−1,H(xt:T )) ∼ N (µi
t, σ

i
t),

(14)

where H(·) ∈ Rm×1 is the variational parameter com-
puted by mapping a variable-length sequences xt:T to its m-
dimensional space. We implement this by using RNN [28].
The Gaussian parameters µi

t and σi
t ∈ Rn×1 are produced

by the following process:

Ct =
1

2
((Wi

czt−1 + bi
c) +H(xt:T )), (15)

µi
t = Wi

µCt + bi
µ, (16)

σi
t = log(1 + exp(Wi

σCt + bi
σ)), (17)

where Ct denotes the combined feature of the previous state
zt−1 and the RNN hidden state H(xt:T ). Wi

c ∈ Rn×m,
Wi

{µ,σ} ∈ Rn×m, bi
c ∈ Rm×1, and bi

{µ,σ} ∈ Rn×1 are
learnable parameters of the neural networks.
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4. Experiments
In this section, we present the experimental results to val-

idate the effectiveness of the proposed ScanDMM. We refer
the interested readers to the supplementary file for more de-
tails on ScanDMM, datasets, and qualitative comparisons.

4.1. Dataset

We use four 360◦ image databases to conduct experi-
ments, including Sitzmann [51], Salient360! [47], AOI [65],
and JUFE [20]. Sitzmann [51] database contains 22 images
and 1, 980 scanpaths, 19 of 22 images are used for training,
and the remaining are used for validation. Salient360! [47]
database contains two sets: training and benchmark sets.
In this paper, we consistently use its training set that con-
tains 85 images and 3, 036 scanpaths for evaluation since its
benchmark set is not publicly available. AOI [65] database
contains 600 high-resolution 360◦ images and 18, 000 scan-
paths. JUFE [20] database is constructed for studying 360◦

image quality assessment, containing 1, 032 images and
30, 960 scanpaths. For the latter two databases, we ran-
domly select 20% images for model evaluation. To ob-
tain Ground-Truth (GT) scanpaths for model training and
evaluation, we sample the raw scanpaths at 1 Hz on each
database. Noting that the scanpaths of the AOI database
had been processed by the authors, so we did not make any
post-processing.

4.2. Experimental Setup

Implementation Details. We train the proposed model us-
ing Sitzmann [51] database. To augment data, we longi-
tudinally shift the 360◦ images and adjust their scanpaths
accordingly [43], which yields 19 × 6 = 114 images for
training. Before the panoramic images are fed into the net-
work, they are resized as (128, 256). The learning rate is
set to 3e-4 and is decreased by a factor of 0.99998 at each
epoch. The dimensions of the visual state and RNN hidden
state are set to 100 and 600, respectively. The network was
trained for 500 epochs.

Evaluation Metrics. We use three metrics to evaluate the
performance of 360◦ scanpath prediction models, includ-
ing the Levenshtein distance (LEV), dynamic time warp-
ing (DTW), and recurrence measure (REC), as suggested
in [16, 43]. Generally, lower LEV/DTW values and higher
REC values mean better prediction performance. For an
image with N GT scanpaths x1:N , we generate N̂=N fake
scanpaths x̃1:N̂ for comparison. The lengths of generated
scanpaths are equal to that of the viewing time1. To com-
pare a set of GT scanpaths x1:N to another set of predicted
scanpaths x̃1:N̂ , taking LEV as an example, we choose to
compute each metric for all possible pairwise comparisons

1For ScanGAN, we cut the produced scanpaths to the required lengths.

and average the results:

mLEV =
1

NN̂

N∑
i=1

N̂∑
j=1

LEV(xi, x̃j). (18)

To reduce the evaluation bias caused by the randomly gener-
ated scanpaths, we test each generative model with 10 times
and average these 10 results to obtain the final performance.
To make the results more comparable and interpretable, for
each metric, we compute the human consistency [43] as a
realistic upper bound for model performance (see Human in
Tab. 1). Specifically, we compare each GT scanpath against
all the other ones and average the results. We also com-
pare to the results of a chance model – produce scanpaths
by adding a random Brownian motion to the previous posi-
tions (see Random walk in Tab. 1).

Database Method LEV ↓ DTW ↓ REC ↑

Sitzmann
[51]

Random walk 48.942 2232.987 2.669
CLE [4] 45.176 1967.286 3.130
DeepGaze III [30] 46.424 1992.859 3.082
SaltiNet [2] 51.370 2305.099 1.564
ScanGAN [43] 45.270 1951.848 3.241
ScanDMM 44.966 1965.427 3.475
Human 41.188 1836.986 6.345

Salient360!
[47]

Random walk 40.802 2231.681 2.744
CLE [4] 39.774 1714.409 3.323
DeepGaze III [30] 40.006 1742.351 2.588
SaltiNet [2] 40.848 1855.477 2.305
ScanGAN [43] 38.932 1721.711 3.099
ScanDMM 37.272 1528.592 3.576
Human 35.084 1382.590 5.202

AOI
[65]

Random walk 13.696 711.516 2.993
CLE [4] 12.865 547.892 3.617
DeepGaze III [30] 13.155 558.445 2.892
SaltiNet [2] 14.695 596.544 2.244
ScanGAN [43] 12.889 552.446 3.750
ScanDMM 12.127 537.504 4.024
Human 9.243 389.477 6.228

JUFE
[20]

Random walk 24.039 1193.725 3.109
CLE [4] 24.844 1172.150 3.013
DeepGaze III [30] 24.129 1104.848 2.774
SaltiNet [2] 26.074 1287.144 1.540
ScanGAN [43] 24.209 1094.978 3.075
ScanDMM 23.091 1086.014 4.329
Human 18.306 1038.880 7.745

Table 1. Performance of scanpath prediction models on different
databases. The best performance is highlighted.

4.3. Performance Comparison

Model Selection. We compare ScanDMM to four state-
of-the-art scanpath prediction models: CLE [5], DeepGaze
III [30], SaltiNet [2], and ScanGAN [43]. The first two
models are built for traditional images, and the latter two
are tailored for 360◦ images. For DeepGaze III and SaltiNet
with larger sizes, we choose to use the pre-trained weights
provided by the corresponding authors to avoid overfitting
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Figure 3. Qualitative comparison to different scanpath prediction models for four different scenes. From left to right: scanpath samples
obtained by a observer, scanpath results obtained by CLE [4], DeepGaze III [30], SaltiNet [2], ScanGAN [43], and the proposed model.
From top to bottom: the Room from Sitzmann [51] database, the Museum from Salient360! [47] database, the Party from AOI [65] database,
and the Park from JUFE [20] database.

Method Paramters Running Time

CLE [4] - ≈ 39 seconds
DeepGaze III [30] 78.9MB ≈ 11 minutes
SaltiNet [2] 103.6MB ≈ 49 minutes
ScanGAN [43] 33.9MB 0.987 seconds
ScanDMM 18.7MB 0.737 seconds

Table 2. Efficiency comparison in terms of the model size and
running time (computed by the time cost of producing 1, 000
scanpaths). Noting that CLE is a traditional model that built on
saliency maps, we only count the time to produce the scanpaths.

on small 360◦ image datasets. PathGAN [42] and Zhu et
al. [71] are the other two popular scanpath prediction meth-
ods for 360◦ images. Nevertheless, we do not include them
in comparison since the study [43] had shown their failures
in producing realistic scanpaths for 360◦ images.

Accuracy Comparison. Table 1 and Fig. 3 show that our
model could provide results closer to the human scanpaths.
In Fig. 3, we observe that CLE and DeepGaze III exhibit
large displacements that might caused by the treatment that
regarding 360◦ images as 2D images. SaltiNet, a saliency-
based scanpath prediction model, exhibits unstable behavior
with large displacements and scarce focal regions (e.g., re-
ferring to Room or Park of Fig. 3), leading to worse results
than the Random walk model. The proposed model could
better focus on the salient objects in scenes than ScanGAN
(e.g., referring to Museum, Party or Park of Fig. 3).

Efficiency Comparison. We also compare the efficiency
in terms of the model size and running time. The results
are shown in Table 2. Our model has the smallest size -
18.7MB, which is about 1/5 of the size of SaltiNet. For
running time comparison, we record the time cost to gen-

Database Method LEV ↓ DTW ↓ REC ↑

Sitzmann
[51]

ScanDMM(I) 45.949 1996.456 3.091
ScanDMM(S) 46.800 2098.412 2.833
ScanDMM(IS) 46.489 2011.157 2.904
ScanDMM 44.966 1965.427 3.475

Salient360!
[47]

ScanDMM(I) 38.340 1698.517 3.168
ScanDMM(S) 39.194 1787.674 2.744
ScanDMM(IS) 38.958 1720.894 2.853
ScanDMM 37.272 1528.592 3.576

Table 3. Ablation study. The effectiveness of our designs is well
justified.

erate 1, 000 scanpaths for a given image. The results show
that our model has the fastest inference speed - 0.737 sec-
onds.

4.4. Ablation Study

We conduct ablation experiments to analyze the impact
of the state initialization strategy and the scene semantics
on the proposed model. We compare the proposed Scan-
DMM with three baselines: (1) ScanDMM(I), initializing
state directly using learnable parameter: z0 = ẑ0. (2)
ScanDMM(S), removing scene semantics ŝ in Eq. 7. (3)
ScanDMM(IS), performing both of the two modifications.
All baseline models are trained in the same settings, and the
results are shown in Table 3. We can observe that the model
achieves the best performance when incorporating both the
state initialization strategy and the scene semantics.

5. Applications

In this section, we demonstrate the generalizability of
our model by applying it to two downstream applications –
saliency detection and quality assessment for 360◦ images.
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Database Method AUC ↑ NSS ↑ CC ↑ KLD ↓

Sitzmann
[51]

BMS360 [34] 0.831 1.328 0.666 0.475
GBVS360 [34] 0.845 1.433 0.693 0.374
SaltiNet [2] 0.762 0.948 0.497 0.671
SalNet360 [44] 0.841 1.467 0.718 0.421
SalGAN360 [8] 0.813 1.188 0.612 0.561
ScanGAN [43] 0.761 0.902 0.475 0.654
ScanDMM 0.767 0.958 0.521 0.609
Human 0.877 2.265 1.000 0.117

Salient360!
[47]

BMS360 [34] 0.748 0.907 0.567 0.476
GBVS360 [34] 0.712 0.775 0.484 0.576
SaltiNet [2] 0.737 0.842 0.530 0.514
SalNet360 [44] 0.744 0.989 0.602 0.476
SalGAN360 [8] 0.759 0.975 0.613 0.495
ScanGAN [43] 0.728 0.774 0.491 0.556
ScanDMM 0.777 1.042 0.660 0.384
Human 0.860 2.395 1.000 0.290

Table 4. Performance of saliency prediction models on Sitz-
mann [51] and Salient360! [47] databases.

5.1. Saliency Detection for 360◦ images

Visual attention prediction, commonly known as
saliency detection, is the task of inferring the objects or re-
gions that attract human attention in a scene. Intuitively, an
ideal scanpath prediction model should be able to model
spatially visual attention. In this section, we apply the
proposed ScanDMM and ScanGAN [43] to the saliency
detection task by generating 1, 000 scanpaths and post-
processing these gaze points to yield continuous saliency
maps. Specifically, we convolve fixation maps, the two-
dimensional records of the locations of all the gaze points,
with a modified Gaussian [56]:

G(x, y) =
1

2πσ2
y

exp(− x2

2σx
) exp(− y2

2σy
) (19)

where σx =
σy

cos(θ) . σy = 19◦ is a constant value, and
θ ∈ [−π

2 ,
π
2 ] is the latitude of the gaze point.

Evaluation Metrics. We evaluate saliency detection mod-
els using 4 metrics: the Judd variant of the area under curve
(AUC) [6], normalized scanpath saliency (NSS) [46], cor-
relation coefficient (CC) [32], and Kullback–Leibler diver-
gence (KLD) [31]. Similarly, for each metric, we compute
the human consistency as a realistic upper bound for model
performance [7], referring to Human in Table 4. Specifi-
cally, we first compare the fixations of two groups of M ob-
servers, where M varies from 1 to N/2 (i.e., half of the total
N observers). We then fit the N/2 performance scores to a
power function (i.e., aM b + c), and predict the human per-
formance as that of two groups of infinite observers (which
is equal to c, for b < 0).

Performance Comparison. We compare different saliency
detection models on Sitzmann [51] and Salient360! [47]

Method CC ↑ SRCC ↑ RMSE ↓
PSNR 0.156 0.016 0.787
PSNRGAN 0.135 0.014 0.790
PSNRDMM 0.563 0.546 0.659
PSNRHuman 0.585 0.583 0.646

SSIM 0.148 0.046 0.788
SSIMGAN 0.162 0.046 0.790
SSIMDMM 0.519 0.509 0.681
SSIMHuman 0.527 0.532 0.677

VIF 0.163 0.096 0.786
VIFGAN 0.147 0.092 0.788
VIFDMM 0.597 0.572 0.639
VIFHuman 0.616 0.601 0.628

DISTS 0.162 0.081 0.786
DISTSGAN 0.176 0.100 0.784
DISTSDMM 0.662 0.675 0.597
DISTSHuman 0.700 0.711 0.569

DeepWSD 0.160 0.044 0.786
DeepWSDGAN 0.162 0.072 0.786
DeepWSDDMM 0.635 0.628 0.616
DeepWSDHuman 0.668 0.667 0.593

Table 5. Performance of quality assessment models on JUFE [20]
database.

databases. In addition to ScanGAN [43], we also compare
the proposed ScanDMM with 5 saliency detection models
tailored for 360◦ images: BMS360 [34], GBVS360 [34],
SalGAN [8], SalNet [44], and SaltiNet [2], the results
are shown in Table 4 and Fig. 4. Table 4 shows that
the proposed ScanDMM achieves the best performance on
Salient360! database, while its performance drops appar-
ently on Sitzmann database. One reason might be that
scanpath-to-saliency models are worse at suppressing non-
salient regions than the models tailored for 360◦ images
(please refer to the supplementary file for the complete com-
parison), e.g., referring to Robat in Fig. 4. The results show
that applying the scanpath prediction model for the saliency
detection task is encouraging. Nevertheless, there is signifi-
cant room for improvement, as evidenced by a large perfor-
mance gap between computational models and humans.

5.2. Quality Assessment for 360◦ Images

The image quality assessment (IQA) model aims at pre-
dicting the perceived quality of visual images [41]. Recent
studies [20,21,52] reveal that the viewing behaviors may be
indispensable for quality assessment for 360◦ scenes, high-
lighting the importance of scanpath prediction in 360◦ IQA.
In this section, we show how much gain scanpath prediction
models can provide for 360◦ IQA. Specifically, we leverage
the computational framework [52], which offers us a natural
way to utilize scanpaths for 360◦ IQA. Basically, there have
4 steps: (1) Extracting the sequences of rectilinear projec-
tions of viewports along different generated scanpaths. (2)
Computing the “frame-level” (i.e., viewport-level) quality
scores by using existing 2D IQA models. (3) Computing the
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Figure 4. Qualitative comparison to different saliency detection models for six different scenes. First two columns: Square and Robot of
Sitzmann [51] database. Last four columns: Theater, Mall, Gallery and Airplane of Salient360! [47] database. From top to bottom: 360◦

images, GT saliency maps, the predictions of ScanGAN [43] and the proposed ScanDMM.

perceived quality of a “video” (i.e., a viewport sequence) by
temporally pooling the frame-level quality scores. (4) Av-
eraging the quality scores of all videos to obtain the final
perceived quality of the 360◦ image.

Evaluation Metrics. We use 3 evaluation metrics to
quantify the quality prediction performance, including
CC, Spearman’s rank-order correlation coefficient (SRCC)
and root mean square error (RMSE). Generally, higher
CC/SRCC values and lower RMSE values mean better per-
formance.

Performance Comparison. We conduct comparison ex-
periments on JUFE [20] database, in which each image has
4 quality labels corresponding to 4 different viewing con-
ditions (2 starting point × 2 exploration time). Consider-
ing this database is goal-directed (i.e., IQA), we retrain the
ScanDMM and ScanGAN [43] on 80% training set. We
generate N̂=N fake scanapths for extracting viewport se-
quences for each image. For frame-level quality calcula-
tion, we employ five 2D IQA models, including the Peak
Signal-to-Noise Ratio (PSNR), the Structural SIMilarity in-
dex (SSIM) [60], the Visual information fidelity (VIF) [50],
the Deep Image Stracture and Txture Similarity metircs
(DISTS) [14], and the DeepWSD [37]. Then, the Gaussian
weighting function [52] is chosen to temporally pool the
frame-level quality scores. We add “GAN”, “DMM”, and
“Human” to the five IQA methods as the subscripts to name
the quality model that uses the scanpaths generated by Scan-
GAN [43], ScanDMM, and human, respectively. We also
directly apply 2D IQA models to equirectangular projec-
tions as baselines. The results are shown in Table 5, where
we can observe that all baseline models fail to predict the
perceived quality, which is reasonable since they produce
one quality score for a given image that has four quality la-
bels. Conversely, our ScanDMM can simulate the viewing
behaviors under the specific viewing condition thanks to the

state initialization strategy, which significantly improves the
performance of 2D IQA models and have competitive per-
formance compared with Human models. ScanGAN [43],
however, is not applicable due to the uncontrollable starting
points. Current work only tests traditional 2D IQA models,
future models that take better account for VR-specific dis-
tortions will have great potential to boost the performance.

6. Conclusion and Discussion
This paper presents a scanpath prediction model for 360◦

images and demonstrates its crucial capabilities, i.e., high
accuracy, efficiency and generalizability, for real-world ap-
plications. Moreover, we provide a novel perspective for
saliency detection and quality assessment in 360◦ scenes –
constructing models by simulating humans’ viewing behav-
iors, which is an extremely natural way if we recall how we
obtain the GT labels. Nevertheless, there is still much to ex-
plore, as we only simply exploit generated scanpaths with-
out elaborately designing for a specific task. While this pa-
per primarily focuses on static 360◦ images, our ScanDMM
can be easily adapted to dynamic 360◦ videos by feeding
dynamic scene semantics to the network. Moreover, as a
probabilistic approach, ScanDMM is able to learn the gen-
eral pattern of the viewing behaviors in 360◦ scenes, thus
could also be applied to VR transmission, automatic cine-
matography, navigation, virtual scene design, etc.
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[48] A.Zénon RJ Krauzlis, LP Lovejoy. Superior colliculus and
visual spatial attention. Annual Review of Neuroscience,
36(1):165–182, 2013. 2
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