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Abstract

The cost of pathological examination makes virtual re-
staining of pathological images meaningful. However, due
to the ultra-high resolution of pathological images, tradi-
tional virtual re-staining methods have to divide a WSI im-
age into patches for model training and inference. Such a
limitation leads to the lack of global information, result-
ing in observable differences in color, brightness and con-
trast when the re-stained patches are merged to generate
an image of larger size. We summarize this issue as the
square effect. Some existing methods try to solve this is-
sue through overlapping between patches or simple post-
processing. But the former one is not that effective, while
the latter one requires carefully tuning. In order to elim-
inate the square effect, we design a bi-directional feature
fusion generative adversarial network (BFF-GAN) with a
global branch and a local branch. It learns the inter-
patch connections through the fusion of global and local
features plus patch-wise attention. We perform experiments
on both the private dataset RCC and the public dataset AN-
HIR. The results show that our model achieves competitive
performance and is able to generate extremely real images
that are deceptive even for experienced pathologists, which
means it is of great clinical significance.

1. Introduction
Pathological examination is the primary method of can-

cer diagnosis. Different dyes can interact with different
components in tissues or cells, making it easier to distin-

*Zhineng Chen is the corresponding author.

guish different microstructures, abnormal substances and
lesions. Among various staining methods, the most com-
mon and basic one is the hematoxylin-eosin (HE) staining.
However, given the result of HE staining, it is not always
enough to make a diagnosis. Therefore, immunohistochem-
istry (IHC) staining based on specific binding of antigen and
antibody is also necessary in diagnosis, even though it is
complex, time-consuming and expensive [7, 25].

Due to the cost of IHC, some researchers have tried to
generate one type of staining images from another type
(usually HE) via computational methods. This can reduce
the consumption of materials, money and time during di-
agnosis. Such a task is usually called virtual re-staining.
This task is close to the style transfer of natural images, so
it is possible to apply style transfer methods to virtual re-
staining. Since pathological images are usually unpaired,
virtual re-staining is generally done by unsupervised meth-
ods, such as [4, 19, 22]. These approaches are all based
on style transfer models for natural images. Researchers
made some improvements according to the characteristics
of pathological images, and finally achieved better results.

However, on the other hand, pathological images have
their own characteristics. For example, the reliability of the
results is more critical for this task due to the clinical sig-
nificance of pathological examination. Meanwhile, the res-
olution of pathological images is usually higher than that of
natural images, reaching 10k×10k or more. Therefore, vir-
tual re-staining requires additional computational resources
as the GPU memory is limited. Most of the existing vir-
tual re-staining models solve this problem by splitting WSI
(whole-slide imaging) images into smaller patches for train-
ing and inference, and then incorporating these patches into
WSI images through post-processing. This results in dif-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3904



Figure 1. Illustration of the square effect. (a) a real 1600 × 1600
HE-stained image. (b) a virtually re-stained CK7 image obtained
by merging separately re-stained 400 × 400 patches (using Cy-
cleGAN) without overlapping. (c) image obtained by merging
448 × 448 patches with an overlap of 64 pixels. (d) the result
generated by our BFF-GAN.

ferences in color and brightness between adjacent patches,
which we call the square effect. As shown in Fig. 1, (a) is
a real HE image, (b) and (c) are CK7 images re-stained by
CycleGAN without and with an overlap. Generally, over-
lapping is used to solve this problem, but we can see that
the square effect always exists no matter whether there is an
overlap. Meanwhile, the result of our BFF-GAN is shown
in (d), and it is not easy to find the square effect in it.

Indeed, the square effect exists because patch-based vir-
tual re-staining lacks global information, resulting in mis-
matches in hue, contrast and brightness between adjacent
patches, especially for the regions with different tissue
structures and the boundary regions. In addition, since the
re-staining of each patch is independent, there may also be
color differences between the re-staining results of patches
with similar tissue structures. Most existing studies did not
consider the global information, leading to serious square
effect. To solve this problem, [18] proposed perceptual
embedding consistency (PEC) loss, which forces the gen-
erator to learn features like color, brightness and contrast.
But it is hard to say only using the PEC loss on the patch
level can solve this problem to what extent. Subsequently,
URUST [11] attempted to correct the mean value and stan-
dard deviation of the central patch with those of the sur-
rounding patches. However, the parameters of this method
are artificially designed and may not generalize well.

In the natural image domain, some researchers have at-
tempted to get improvement through context aggregation.
For example, PSPNet [39] improved the performance of se-
mantic segmentation by increasing the receptive field with
pooling kernels of different sizes. HRNet [32] designed par-
allel branches with different resolutions and integrated fea-
ture maps between different branches, achieving impressive
performance in a number of visual tasks. GLNet [6] com-
bined feature maps of the entire image with those of patches
to improve segmentation performance of high-resolution
images. These methods obtained nulti-scale information
through feature fusion, and worked well on multiple tasks.

Based on these observations, in this paper, we propose

a model that combines global-local features to learn the re-
lationship between patches to solve the square effect, and
meanwhile, bypasses the memory constraint for ultra-high
resolution images. We design an architecture that consists
of a global branch and a local branch, where the former
takes the down-sampled whole images as input, and the lat-
ter takes the patch-level images coming in batches as input.
The two branches perform feature fusion in both directions
in the encoder and use patch-wise attention and skip con-
nections to enhance feature expression capability. Finally,
we fuse the features of the two branches to output the re-
staining results. To verify the effectiveness of the method,
extensive experiments were conducted on the private dataset
RCC and the public dataset ANHIR [3]. The results show
that our model achieves good performance on a variety of
metrics, not only significantly eliminating the square effect,
but also being generalizable to various datasets. Mean-
while, subjective experiments have also demonstrated the
clinical significance of our model. In summary, our main
contributions are listed as follows:

- The square effect significantly influences the quality
of the virtually re-stained images. Thus, we propose
to solve the square effect through the fusion of global
and local features. Such an idea can be used in various
networks, not only CycleGAN, but also other more ad-
vanced style transfer models.

- We propose a model with feature fusion between two
branches called BFF-GAN to learn the inter-patch re-
lations. To our knowledge, it is the first network for
style transfer of ultra-high resolution images.

- Our proposed BFF-GAN achieves impressive results.
It is of great clinical significance and can be general-
ized to various datasets.

2. Related work
2.1. Style transfer for natural images

Generative adversarial networks (GANs) [9] are com-
monly used for style transfer. After the original GAN, a
conditional GAN (cGAN) [24] is proposed, which adds
conditional information to the input so that the generated
results can be controlled. Then, Philip Isola et al. pro-
posed supervised style transfer models pix2pix [14] and
pix2pixHD [33] based on cGAN. However, due to the lack
of paired datasets, more subsequent works chose unsuper-
vised approaches. These methods can be broadly classified
into two types, one of which uses only a pair of genera-
tor and discriminator, improving performance by proposing
various constraints. For example, distanceGAN [2] consid-
ered that the distance between the generated images was
highly correlated with the distance between the source im-
ages. In [27], Alec Radford et al. considered that simple
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geometric transformation would not change the semantic in-
formation of the image. Therefore, a geometric consistency
loss was proposed. CUT [26] improved the performance
by combining contrastive learning with style transfer. The
other type is to use a dual model to train two symmetric
generators with a cycle consistency loss. The earliest dual
models included CycleGAN [41], discoGAN [16] and du-
alGAN [35]. For example, CycleGAN imposes constraints
to various unpaired data in the task of style transfer through
symmetric generators, thus has greatly inspired many other
researchers. Therefore, a lot of work after that was still
based on the dual model of CycleGAN. For example, NICE-
GAN [5] used a part of the discriminator as the encoder
to enhance the ability of the encoder; UGATIT [15] added
AdaIN [12] and attention modules to the model. Other
works such as ACLGAN [40] and so on were also improve-
ments of the dual model.

2.2. GAN in virtual re-staining

Several methods of virtual re-staining have been pro-
posed to ease the pathological examination. In [1, 28],
cGAN was used to achieve virtual staining of unstained and
HE-stained images. Rivenson et al. [29] used a supervised
UNet-like generator to virtually stain HE images from un-
stained ones. Haan et al. [8] used paired datasets to trans-
fer HE images to PAS, MT and JMS images. However,
in most cases, paired data is not available, therefore most
of the researches of virtual re-staining usually use unsuper-
vised models with changes in loss function and model struc-
ture suitable for pathological images. For example, Lahiani
et al. [17] implemented unsupervised virtual re-staining of
Ki67-CD8 to FAP-CK using a Cyclegan-based approach.
Li et al. [19] proposed a saliency constraint loss to constrain
the model for better results. Liu et al. [22] added a patho-
logical representation network to dig the pathological rep-
resentation heatmap of the input image and at the same time
introduced a cycle structural consistency loss. And Boyd et
al. [4] proposed a region of interest discriminator to replace
the patch-based discriminator.

In general, pathological images have ultra-high resolu-
tion, which makes GPU memory the bottleneck for virtual
re-staining tasks. The aforementioned studies split patho-
logical images into small patches, train the model and per-
form inference at the patch level, then combine the obtained
patches to get the final result. Although the square effect
can be reduced to some extent through overlapping, this ap-
proach still results in obvious boundaries between patches.
Several studies have attempted to address these issues. La-
hani et al. [18] proposed a perceptual embedding consis-
tency (PEC) loss to force the generator to learn features such
as color, brightness and contrast, but the use of PEC loss at
patch level alone does not fully resolve the squared effect.
After that, URUST [11] solves the problem by averaging

the mean value and standard deviation of the surrounding
patches. However, the parameters of this method are artifi-
cially designed, so it may be less generalizable.

2.3. Context aggregation

In the CNN, the shallow network contains more geo-
metric information, and the deep network contains more
semantic information. Images of different resolutions and
receptive fields of different sizes can also obtain different
features. Thus, the idea of multi-stage, multi-scale and con-
text aggregation are widely used. For example, [13, 30, 37]
etc. achieved better performance with multi-stage train-
ing and inference. Many approaches also improved the
performance through multi-scale fusion. ICNet [38] intro-
duced cascaded feature fusion units, which merged multi-
resolution branches; RefineNet [20] proposed refine blocks,
fusing feature maps of different resolution levels; PSPNet
[39] used pooling kernels of different sizes to increase the
receptive field; FPN [21] fused deep and shallow features;
HRNet [32] designed parallel branches of different resolu-
tions and did feature fusion between those branches. More-
over, context aggregation was also commonly used in fron-
tier research. ParseNet [23] used global context to achieve
semantic segmentation; BiSeNet [36] preserved spatial in-
formation and generated high-resolution features with the
spatial path, and a context path was designed to obtain suf-
ficient receptive field. GLNet [6] chose to fuse global fea-
tures and local features of high-resolution images, whose
idea was truly instructive and also used in MedT [31].

3. Method
3.1. Base model

Inspired by CycleGAN, we propose a new bi-directional
feature fusion generative adversarial network (BFF-GAN),
which includes a global branch (G) and a local branch (L),
as shown in Fig.2. Given a H ×W image X, for the global
branch, X is down-sampled to Xg as input, and the res-
olution of Xg is h × w. For the local branch, X is di-
vided into patches x0, ..., x H

h′ × W
w′

whose sizes are h′ × w′.
The global branch and the local branch have the same basic
structure. The encoder contains three convolutional blocks,
each of which contains a convolutional layer, an instance
norm layer and a ReLU. The kernel of the first convolu-
tional block is 7, while the others are 3. Each convolutional
block is followed by a patch-wise attention module (PAM),
which will be described in detail in Section 3.3. After the
encoder, there are 6 resblocks [10], and then the decoder
contains two up-sampling blocks, in which there are a 3×3
transposed convolution layer, an instance norm layer and a
ReLU. The output head contains a 7×7 convolutional layer
and a tanh function. Besides, skip connections are added
between the encoder and the decoder.
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Figure 2. Overview of BFF-GAN, which consists of two branches, i.e. the global branch and the local branch. Through bi-directional
feature fusion between these two branches, the model could get inter-patch information and solve the problem of the square effect.

BFF-GAN has two heads for auxiliary and the final out-
put is obtained with an ensemble output head. It has the
same structure as the auxiliary heads, but fuses feature maps
from skip connections and feature maps of the global and
the local branches.

3.2. Feature fushion

In the encoder, the feature fusion of two directions
(G→L, L→G) is done after each patch-wise attention mod-
ule (PAM). The feature maps of the global branch are cut
and up-sampled according to the corresponding positions
and sizes of each patch in the local branch, and then con-
catenated with the feature maps of the local branch. In this
way, each time the feature fusion in the G→L direction is
done, the local branch will obtain more global information.
In addition, the feature maps of the local branch are com-
bined together, then down-sampled and concatenated with
the feature maps of the global branch. The parameters of the
global branch are continuously optimized by feature fusion
in the L→G direction, and the local branch is affected in the
next fusion step in the G→L direction. The two branches
then complete the process of feature fusion, making the lo-
cal branch learn the information of global features, and the
global branch learn the information of local features.

Our model fuses features three times in the encoder
stage, covering from shallow to deep features, so the local
branch can fully consider the global information. Of course,
we could apply this feature fusion to each stage of the model
if we would like to, but this would consume more compu-
tational resources and just three feature fusion steps at the
encoder stage are sufficient to solve the problem indeed.

3.3. Patch-wise attention

To help the model focus on important channel, spatial
and patch-wise information, we propose a patch-wise atten-

tion module based on CBAM [34]. PAM contains channel,
spatial and patch-wise attention parts. The channel and spa-
tial attention adopt a similar approach to CBAM. But due
to the parameter redundancy of fully connected layer, we
replace it with a convolutional layer.

In BFF-GAN, the information of multiple patches ex-
ists at the same time. Thus, to obtain the information of
the importance between patches, we add patch-wise atten-
tion to the module. In this part, given the input Fs ∈
RN×C×H×W , the patch-wise attention feature Fpa, Fpm ∈
RN×1×1×1 are obtained through average and max pooling,
then they are concatenated and passed to a convolutional
block and a sigmoid function.

In PAM, spatial and patch-wise attention can be chosen
to be used or not depending on the needs of the model. In
BFF-GAN, we choose not to use patch-wise attention in the
global branch, since its feature map is a singleton.

3.4. Loss function

The loss function includes the global, the local, and the
ensemble parts. The global part computes the losses be-
tween down-sampled original, re-stained (e.g. CK7) and
reconstructed (e.g. recovered HE) images. For local and
ensemble parts, they are both designed to contain two parts.
The first part computes the losses between real, re-stained
and reconstructed patches, while the second one computes
the loss between images merged together. Thus, the pro-
posed loss function actually contains five parts.

Thus, the total loss function is shown in Eq.1. Lg is the
loss of the global head. Ll p and Le p are the loss of patches
of the local and ensemble head. Ll m and Le m are the loss
of merged images of these two heads.

L=Lg + α · (Ll p + Ll m + Le p + Le m) (1)
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Here α is a hyperparameter empirically set to 5.

4. Experiment

4.1. Implementation details

In the experiments, we used two datasets: the private
dataset RCC and the public dataset ANHIR. RCC contains
pathological images of renal cell carcinoma, including two
staining types: HE and CK7. ANHIR [3] was proposed
for pathological image registration task. It contains patho-
logical images from a variety of tissues, including kidney,
breast, lung, stomach, and so on. In fact, some of its sub-
datasets are also suitable for virtual re-staining task, so we
selected two sub-datasets of ANHIR: breast and lung le-
sion for experiments. Among them, the staining types of
the breast dataset are HE and PR, and the staining types of
the lung lesion dataset are HE and Ki67.

Due to the lack of WSI images in the dataset, this paper
increased the size of the dataset by splitting the WSI images,
and made training and test sets come from different WSI
images. For RCC, we used 120 and 50 1600× 1600 images
as the training and test sets. Our main experiments were
performed at 10×, but also at 20× and 40×. For ANHIR,
the resolution of the images used for training and inference
was also 1600×1600. The size of the training and test set of
the breast set was 72 and 22. As for lung lesion set, because
the number of WSI images in it is too few, its training set
has to be also used as test set, and the number of images in
the training and test set was 68. Of course, it is also feasible
to use this model on images larger than 1600× 1600.

In our model, the patch size of the local branch and the
input size of the global branch was both 448 × 448, and
there was an overlap of 64 pixels between patches. The
experiment used a constant learning rate for 70 epochs and

a linear-decay learning rate for the remaining 70 epochs.

4.2. RCC

4.2.1 Comparison with other methods

As shown in Fig. 3, we compared our method with some
representative style transfer and virtual re-staining methods.
We use black boxes to indicate the areas with the square ef-
fect. Among these models, most of them could identify the
tissue area and the background area except CycleGAN [41],
but an obvious square effect could be seen. Besides, some
of the generated CK7 images were quite different from real
CK7 images. But our method has a significant advantage
in visual perception. It eliminate the square effect consider-
ably. Meanwhile, its generated images are quite realistic.

Fig. 4 is an example of a 17580 × 15798 WSI image
generated by our model. It shows that we could obtain a
virtual re-staining result with almost no square effect. In
fact, we got Fig. 4 through a simple post-processing, merg-
ing 1600 × 1600 images re-stained by BFF-GAN with an
overlap of 200 pixels. Due to the insufficiency of data, we
had not been able to train on images of larger size, and cer-
tainly could not inference directly. However, in general,
the cause of the square effect makes the phenomenon more
likely to occur in areas with changes in tissue structure and
in the boundaries. For smaller patches such as the ones of
448 × 448 pixels, due to their extremely tiny coverage, the
numbers of patches cross the tissue areas or boundaries are
usually small. What is more likely is that adjacent patches
do not belong to the same type of tissue or the same side of
boundaries, resulting in a fairly obvious square effect. Such
a problem of the square effect that is easy to appear on adja-
cent small scale patches can be reduced by BFF-GAN with
image size of 1600 × 1600 pixels. Thus, the square effect
would be subtle and inconspicuous in larger scales. So here

Figure 3. The virtual re-staining result on 10x RCC. The first column is real images in the dataset, following with generated images of
different models. The black boxes indicate the areas with square effect. Our model achieves the best result.
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Figure 4. An example of virtually re-stained WSI image and its zoom-in views at different scales. It is generated by merging separately re-
stained 1600× 1600 images with 200 pixels’ overlap. The square effect is reduced a lot when images of a larger resolution are considered.

Table 1. Quantitative results on 10×, 20× and 40× RCC, compared with five other models.

Model 10x 20x 40x

SSIM↑ PSNR↑ CSS↑ FID↓ SSIMp ↑ PSNRp ↑ CSSp ↑ SSIM↑ PSNR↑ CSS↑ FID↓ SSIMp ↑ PSNRp ↑ CSSp ↑ SSIM↑ PSNR↑ CSS↑ FID↓ SSIMp ↑ PSNRp ↑ CSSp ↑
CycleGAN [41] 93.02 30.46 25.39 148.89 92.95 30.82 25.18 96.01 35.09 11.13 165.34 95.97 35.29 11.02 97.49 36.20 28.34 168.70 97.50 36.50 22.06
UGATIT [15] 91.98 30.26 67.80 134.63 91.90 30.46 67.31 96.06 34.50 71.82 148.56 95.98 34.49 71.39 96.38 34.53 76.92 152.10 96.30 34.53 76.63
UTOM [19] 99.65 44.31 66.96 272.09 99.66 44.63 66.15 99.84 50.13 42.07 335.70 99.90 54.70 38.52 99.80 49.39 50.49 371.99 99.84 52.13 47.01

PEC [18] 89.58 28.90 79.80 142.47 89.37 29.03 79.70 94.26 32.67 82.82 144.22 94.20 32.91 82.81 97.27 34.47 87.17 156.11 97.30 34.90 87.17
URUST [11] 86.97 25.45 79.70 149.79 86.89 25.63 79.69 89.10 25.20 84.69 158.88 89.01 25.36 84.71 91.08 27.28 86.58 179.38 91.02 27.53 86.63
BFF-GAN 95.63 32.79 85.05 142.14 95.58 32.81 84.94 96.48 35.63 86.05 147.39 96.41 35.64 85.96 97.17 36.29 90.30 155.15 97.12 36.41 90.30

we choose to solve the possible color differences between
the larger images through such a simple post-processing.

To quantitatively evaluate the performance of the mod-
els, we calculated four metrics: SSIM, PSNR, CSS and FID.
Among them, SSIM and PSNR are calculated between real
and reconstructed images in the same domain (e.g. HE),
indicating whether the model has the ability to preserve the
structural details. However, as they only consider the recon-
structed images, they cannot evaluate the quality of the gen-
erated re-stained images indeed. Therefore, we also need
other metrics such as FID and CSS to evaluate the perfor-
mance in other aspects complementarily. FID is calculated
between the real and re-stained images in the target domain
(e.g. CK7), measuring the similarity of style and indicat-
ing whether the model can achieve more realistic virtual
re-staining. CSS was proposed in PC-stain GAN [22]. It
is inspired by SSIM, but removes the brightness part and
only compares the contrast and structure, thus claimed suit-
able for evaluating the similarity between real images in the
source domain and generated re-stained images in the target
domain. Besides, we also calculated SSIM, PSNR and CSS
at patch level to describe the differences between the two
kinds of images more thoroughly.

As shown in Tab. 1, The performance of our BFF-GAN
is relatively balanced and the results on all metrics are good.
UTOM [19] has achieved good performance on SSIM and
PSNR, but its FID is far higher than other models, which
is also consistent with the visual results in Fig. 3. Among
other models, BFF-GAN achieves the highest scores in
most cases. Its CSS is always the highest, indicating its abil-

Table 2. The result of the validation experiment. The table shows
the correct rate of the two pathologists to find out 100 real images
apart from 100 fake images.

P1 P2

merged image patch merged image patch

HE 63.5 61.5 64.0 60.5
CK7 68.5 63.5 65.5 62.5

ity to preserve structural cross-staining details, while SSIM
is only slightly lower than CycleGAN at 40×. Meanwhile,
though its FID is slightly higher than PEC [18] at 20× and
UGATIT [15] at 10× and 40×, but still at a relatively low
level. What is more important is that though these meth-
ods have a lower FID, our method has a better ability to
eliminate the square effect. Compared with the most re-
cent URUST [11], BFF-GAN also has an obvious advan-
tage, which is largely attributed to the more global informa-
tion included in our model. Its SSIM is about 8.66% higher,
PSNR is about 7.34 higher, CSS is about 5.35% higher, and
FID is about 7.65 lower than URUST on 10x RCC. The
metrics at 20× and 40× also exceed URUST a lot.

4.2.2 Subjective Experiment

To further demonstrate the clinical value of our model,
we invited two pathologists, a senior expert (P1) and a ju-
nior expert (P2), to do subjective experiments, including
validation and classification experiments as follows.

In the validation experiment, we gave the pathologists
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Figure 5. The proportion of real and fake images among the im-
ages considered real.

Table 3. The result of the classification experiment. It shows that
the reconstructed images are close to the real images.

real HE rec HE real CK7 rec CK7

ResNet50 96.05 90.95 92.01 91.86
P1 95.05 94.06 96.04 96.04
P2 95.05 95.05 94.06 92.08

HE and CK7 images with sizes of both 1600 and 448 pixels.
In every single experiment, they would randomly get 100
real and 100 fake images. Pathologists had to choose the im-
ages they thought were real. We calculated the correct rate
of them, as shown in Tab. 2. No matter in the merged image
or patch level, their correct rates are not very high, just at
the level of 60-70%. The correct rates of merged images
are always higher than that of patches. In fact, this is quite
reasonable. In general, the information included in merged
images is always more than that included in patches. There-
fore, it is easier for pathologists to make an accurate judge-
ment while provided merged images. On the other hand, the
correct rate of CK7 images is always higher than HE im-
ages. HE staining is the most common staining method, but
CK7 staining is an IHC staining method used for specific
cancer types which stains specific antibodies. Generally, it
is more difficult to capture the specific antibodies than cel-
lular structures. Therefore, obtaining realistic CK7 images
through virtual re-staining is usually harder than obtaining
HE images. Therefore, it is easier for pathologists to judge
whether a CK7 image is true or virtually re-stained, mak-
ing the result of CK7 images higher. Fig. 5 shows the pro-
portion of real and fake images considered real. This also
shows that the images generated by BFF-GAN can deceive
experienced pathologists to a certain extent, which means
our method has a considerable clinical significance.

In the classification experiment, we asked pathologists
to classify the real and reconstructed images into two cate-
gories: cancer and non-cancer. We also trained a ResNet50
classifier for comparison. As shown in Tab. 3, the classifica-
tion accuracy of the reconstructed images of the ResNet50
classifier is lower than that of the real images on the HE
domain. The convolutional classifier always focuses more

on subtle details which would not be considered by pathol-
ogists but are likely to be more different. What is more
important is that the accuracy of the two pathologists on the
real and the reconstructed images is close, though the accu-
racy of reconstructed images is a little lower than that of real
images. This indicates that the possibility for the patholo-
gists to give different diagnoses according the the real and
reconstructed images is low, and the reconstructed images
have similar clinical usage with real images.

4.2.3 Ablation study

Table 4. An ablation study of overlap. It indicates that overlapping
only affect the result slightly.

SSIM↑ PSNR↑ CSS↑ FID↓

0 pix overlap 95.02 32.19 84.60 143.07
128 pix overlap 95.24 31.25 84.36 141.07

proposed (64 pix overlap) 95.63 32.79 85.05 142.14

Table 5. The results of the ablation study of attention blocks in
PAM, indicating the necessity of all the attention blocks.

channel spatial patch-wise SSIM↑ PSNR↑ CSS↑ FID↓

✓ ✓ 94.31 31.35 78.30 148.49
✓ 94.17 31.60 69.19 147.98

✓ ✓ ✓ 95.63 32.79 85.05 142.14

Table 6. The metrics of our model with different structural config-
urations. All the parts listed are useful for a better result.

G→L L→G sc PAM SSIM↑ PSNR↑ CSS↑ FID↓

✓ ✓ ✓ 94.43 31.75 83.40 140.00
✓ ✓ ✓ 95.50 32.55 83.64 144.07
✓ ✓ ✓ 91.62 29.96 75.78 147.05
✓ ✓ ✓ 93.95 30.39 79.47 156.16
✓ ✓ ✓ ✓ 95.63 32.79 85.05 142.14

As shown in Tab. 4, we did experiments on different
overlaps. The gap on the performance with or without over-
lap is really small, and there is no significant improvement
when the overlap is larger. So in other experiments in this
paper, we chose a 64 pixels’ overlap.

Tab. 5 shows the ablation experiments on the attention
blocks in PAM. PAM includes three attention blocks: chan-
nel, spatial and patch-wise attention block. When there is
only channel and spatial block or only patch-wise block, the
metrics are always lower than BFF-GAN with all the blocks
available. Such a result prove that all these blocks can im-
prove the performance to some extent.

We also designed ablation experiments on the network
structure, and the results are recorded in Tab. 6. Experi-
ments show that single-direction feature fusion and remov-
ing the skip connections (sc) plus PAM will all lead to a de-
cline in performance. All of these structures play important
roles in the model. The only exception is that when there is
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Figure 6. The virtual re-staining results obtained on the breast dataset of ANHIR. The first column is real images, followed by generated
images of different models. The black boxes indicate the areas with square effect.

Table 7. Quantitative results on breast and lung lesion subset of ANHIR, which indicates the generalization of our model.

Model breast lung lesion

SSIM↑ PSNR↑ CSS↑ FID↓ SSIMp ↑ PSNRp ↑ CSSp ↑ SSIM↑ PSNR↑ CSS↑ FID↓ SSIMp ↑ PSNRp ↑ CSSp ↑
CycleGAN [41] 90.20 26.69 42.61 202.35 90.14 27.32 42.62 94.97 34.67 28.20 124.15 94.97 34.94 28.51
UGATIT [15] 78.21 21.33 55.77 204.11 78.19 22.58 55.76 90.14 27.25 76.63 92.63 89.90 28.50 76.31
UTOM [19] 98.41 35.83 72.28 282.48 98.37 36.49 70.07 98.65 41.65 93.04 127.04 98.67 42.12 92.93

PEC [18] 91.07 26.93 83.84 248.37 91.23 27.71 83.91 95.28 33.26 93.22 83.16 95.27 33.77 93.27
URUST [11] 92.07 25.73 86.27 257.22 92.22 26.57 86.30 91.90 27.30 93.17 106.33 91.91 27.59 93.19
BFF-GAN 95.31 28.88 87.59 140.68 95.20 28.98 87.56 96.22 35.41 93.56 85.47 96.15 35.42 93.50

no feature fusion from the global to the local branch, FID
is a little lower compared with our model. However, in this
situation, its SSIM, PSNR and CSS have a larger drop.

4.3. ANHIR

To demonstrate the generalization of BFF-GAN, we also
did experiments on ANHIR without tuning hyperparame-
ters. Fig. 6 shows the result on the breast dataset. The result
of the lung lesion dataset is illustrated in the supplementary
materials. Just like on RCC, CycleGAN still cannot iden-
tify the foreground and the background area, and the square
effect inevitably can be seen in the results of other models,
including PEC and URUST which are claimed to be able to
eliminate the square effect. However, our model can still
reduce the square effect well and generate the most realistic
images, far ahead of other models in visual perception.

Tab. 7 records the results of quantitative experiments on
ANHIR. As on RCC, though UTOM has a higher SSIM and
PSNR, our BFF-GAN achieves a more competitive visual
results with relatively good metrics. The CSS of BFF-GAN
is also the highest on ANHIR, indicating that BFF-GAN
well preserves structural details. Among the rest results, our
model has certain advantages in various scores, only lower
than PEC in FID on lung lesion dataset, but is still the top
two. Compared to URUST, our model is always better than
it. Our SSIM, PSNR and CSS are relatively 3.24%, 3.15 and
1.32% higher on breast, and 5.13%, 8.11 and 0.39% higher

on lung lesion. Meanwhile, FID is 116.54 and 20.86 lower
than URUST. All of these prove that our model is the best
one in both visual perception and quantitative experiments,
and the impressive results on ANHIR demonstrate that our
model has the ability to generalize to different datasets.

5. Conclusion

The square effect of the virtual re-staining of ultra-high
resolution pathological images has been the pain point so
far. To address this problem, we creatively adopted the idea
of context aggregation in the natural image field with a sim-
ple CycleGAN, proposing BFF-GAN to fuse the global and
local features. Meanwhile, we added patch-wise attention
to the model to strengthen its ability to learn connections
between patches. Extensive experiments were performed
on the private dataset RCC and the public dataset ANHIR.
We evaluated the performance of the model through quanti-
tative metrics and subjective experiments. The results show
that our model surpasses most of the models and gets im-
pressive results. Moreover, the generated images can de-
ceive experienced pathologists to a certain extent, proving
the clinical significance of the proposed BFF-GAN.
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