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Figure 1. Dense visual correspondence generated by state-of-the-art algorithms, including SCOT [30], CATs [8], MMNet [49] and our
asymmetric correspondence transformer. Images are warped with predicted key points using thin-plate splines algorithm [4].

Abstract

This paper solves the problem of learning dense visual
correspondences between different object instances of the
same category with only sparse annotations. We decompose
this pixel-level semantic matching problem into two easier
ones: (i) First, local feature descriptors of source and tar-
get images need to be mapped into shared semantic spaces
to get coarse matching flows. (ii) Second, matching flows
in low resolution should be refined to generate accurate
point-to-point matching results. We propose asymmetric
feature learning and matching flow super-resolution based

†: Corresponding Authors

on vision transformers to solve the above problems. The
asymmetric feature learning module exploits a biased cross-
attention mechanism to encode token features of source im-
ages with their target counterparts. Then matching flow in
low resolutions is enhanced by a super-resolution network
to get accurate correspondences. Our pipeline is built upon
vision transformers and can be trained in an end-to-end
manner. Extensive experimental results on several popular
benchmarks, such as PF-PASCAL, PF-WILLOW, and SPair-
71K, demonstrate that the proposed method can catch sub-
tle semantic differences in pixels efficiently. Code is avail-
able on https://github.com/YXSUNMADMAX/ACTR.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Robust semantic matching methods aim to build dense

visual correspondences between different objects or scenes
from the same category regardless of the large variations
in appearances and layouts. These algorithms have been
widely exploited in various computer vision tasks, such as
object recognition [12,48], cosegmentation [1,40], few-shot
learning [20, 29], image editing [15, 18] and etc. Different
from classical dense matching tasks, such as stereo match-
ing [6,41] and image registration [2,19], semantic matching
aims to find the visual consistency in image pairs with large
intra-class appearance and layout variations.

State-of-the-art methods, such as Proposal Flow [16],
NCNet [37], Hyperpixel Flow [34], CATs [8] and etc, typ-
ically extract features from backbones to measure point-to-
point similarity in 4-D correlation tensors, and then refine
these 4-D tensors to enforce neighborhood matching con-
sistency. Despite that these algorithms have achieved im-
pressive results, there are still two key issues that haven’t
been discussed thoroughly. First, how to learn feature rep-
resentations appropriate for semantic correspondence? Sec-
ond, how to enforce neighborhood consensus when the 4-
D correlation tensors that are in high resolution? For the
first problem, Hyperpixel Flow [34] selects feature maps in
convolutional neural networks with Beam search [32], and
MMNet [49] aggregates feature maps at different resolu-
tions in a top-down manner to get feature maps in high res-
olution. For the second problem, VAT [20] firstly reduces
the resolutions of 4-D correlation tensors with a 4-D con-
volution operation and then conducts shifted window atten-
tion [31] to further reduce the computational cost. Although
these exploratory works brought a lot of new ideas, ques-
tions listed above still deserve to be discussed seriously.

In this paper, we aim to answer the above questions and
propose a novel pipeline for semantic correspondence. Our
pipeline consists of feature extraction based on pre-trained
feature backbone [5, 17, 50], asymmetric feature learning,
and matching flow super-resolution. Different from state-
of-the-art methods [8, 34, 49] which directly calculate 4-D
matching scores with refined generic backbone features, our
core idea focuses on finding a shared semantic space where
local feature descriptors of images can be aligned with
their to-match counterpart. The asymmetric feature learn-
ing module reconstructs source image features with target
image features to reduce domain discrepancy between the
two thus avoiding reconstructing source and target image
features synchronously as in [9, 28]. Meanwhile, to high-
light important image regions in target images, we also use
source images to identify discriminative parts of foreground
objects. In this way, a specific feature space is found for ev-
ery image pair to conduct semantic matching.

To avoid huge computational cost during neighborhood
consensus enhancement, we map the matching information

hidden in 4-D correlation matrices to 2-D matching flow
maps through the soft argmax [25]. By reducing the di-
mension of the optimization goal from 4-D to 2-D, com-
putational cost is alleviated drastically. To achieve pixel-
level correspondence, we conduct matching flow super-
resolution to enhance neighborhood consensus and improve
matching accuracy at the same time. We find that the pro-
posed method works quite well in conjunction with trans-
former feature backbones, such as MAE [17], DINO [5],
and iBOT [50], so we call the proposed method asym-
metric correspondence transformer, written as ACTRans-
former, and train it end-to-end. We summarize our contri-
butions as follows.

• We introduce a novel pipeline for semantic correspon-
dence which contains generic feature extraction, asymmet-
ric feature learning, and matching flow super-resolution. By
conducting asymmetric feature learning, we extract specific
features for every image pair and thus get more accurate
correspondences. Besides, we replace the 4-D correlation
refinement with the 2-D matching flow super-resolution,
which saves computational cost greatly.

• We propose asymmetric feature learning that can project
features of image pairs into a shared feature space easily and
reduce the feature ambiguity at the same time. For match-
ing flow super-resolution, we conduct multi-path super-
resolution to benefit from different matching tensors and
acquire significant improvements.

• Experiments on several popular benchmarks indicate that
the proposed ACTRansformer outperforms previous state-
of-the-art methods by clear margins. Qualitative results are
presenred in Figure 1.

2. Related Work
Symmetric Cross Attention. Symmetric cross attention
can capture dependencies between image pairs efficiently
and has been widely used in various computer vision tasks,
such as image matching [38], object tracking [7], video
segmentation [22] and style transfer [39]. MixFormer [9]
utilized cross attention structure to conduct mutual interac-
tion of target template and search area for object tracking.
Works in [28, 46] introduced bi-directional cross attention
to map images in the left and right views into a shared fea-
ture space, and thus generate a much more accurate match-
ing flow. And in video style transfer, the cross attention
mechanism was exploited to learn a transfer matrix between
image pairs for makeup transfer and removal [39]. While
in this paper, we just adopt an asymmetric feature learning
scheme that avoids mapping image pairs into shared seman-
tic spaces symmetrically and just focuses on reconstructing
source features with target references, which makes seman-
tic matching relatively easier to learn.
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Figure 2. Illustration of Asymmetric Correspondence TRansformer (ACTR). (a) The proposed asymmetric correspondence trans-
former contains a pre-trained vision transformer backbone, an asymmetric semantics alignment module, and a multi-path matching flow
super-resolution module. (b) The matching flow super-resolution module concatenates coarse matching flows and its features and feeds
them through a set of windowed self-attention to get refined matching flows.

Matching Flow/Correspondence Refinement. Matching
flow or correspondence refinement is vital for image match-
ing. STTR [28] proposed a context adjustment layer that
used raw images as additional features to guide disparity
refinement. HITNet [41] relies on a U-Net-like structure
to refine estimated disparity through differentiable 2D geo-
metric propagation and warping mechanisms. For semantic
correspondence, NCNet [37] enforced neighborhood con-
sensus with 4-D convolution to refine source-target 4-D cor-
relation tensors. Recent works [49] find that a 4-D matching
score in higher resolutions can improve the accuracy of cor-
respondence efficiently. However, higher resolutions will
lead to rapid growth in computational cost and reach a bot-
tleneck in matching performance. In this paper, we turn the
4-D correlation optimization into 2-D matching flow super-
resolution, thus reducing the computational cost and mak-
ing our framework much more flexible.

3. Asymmetric Correspondence Transformer

In this section, we introduce our end-to-end ACTRans-
former for learning dense visual correspondences from im-
age pairs with sparse annotations. Given a pair of images,
our model: (1) aligns local patch features of the source im-
age with its target counterpart, which can reduce local se-
mantics discrepancy between source and target images to
get a much more reliable matching flow; (2) estimates high-
resolution matching flows from low-resolution inputs to dis-
tinguish subtle differences in neighborhood pixels and keep
spatial consistency of correspondences. An overview of the
ACTRansformer architecture is presented in Figure 2 (a).
For an image pair

(
Is, It

)
and the ground truth of their

matched key points Mgt = {mi = (ps
i ,p

t
i) |i = 1, ...,K},

images are divided into patches as in ViT [11] and sent into
ACTRansformer Φ to produce the matching flow ∆.

3.1. Feature Extraction with ViT

Vision transformer (ViT [11]) and its variants [31,44,47]
have achieved impressive results on various computer vi-
sion tasks [27, 31, 45]. We adopt ViT with iBOT pre-
training [50] as our feature backbone. For an input image
I with the resolution H × W , ViT reshapes I into a set
of flattened patch tokens T p ∈ RN×D. To get the global
representation of I , T p is usually augmented with a learn-
able [cls] token. So there are N + 1 tokens to describe
one image. We partition an image into 16 × 16 patches.
Then, there are N = HW/162 patch tokens, each of which
represents parts of objects or scenes. The overall N + 1
tokens are passed through a consecutive set of multi-head
self-attention blocks and get their semantic representations.
Given an image pair

(
Is, It

)
, their features are denoted

as F s ∈ R(hs×ws+1)×c and F t ∈ R(ht×wt+1)×c. With
those token embeddings, we conduct the subsequent seman-
tic correspondence learning.

3.2. Asymmetric Feature Learning

Figure 2 (a) shows that source and target images are
processed with different modules in an asymmetric feature
learning block: (1) the source branch contains a robust self-
attention module and a cross-attention module; (2) the tar-
get branch conducts salient target reweighting to enhance
foreground patches. The source branch needs to identify the
subtle differences between patches with high semantic sim-
ilarities. Hence a learnable positional encoding (PE) [14]
is added to source features to stress the location unique-
ness. Then these tokens are sent into a standard transformer
block [43]. The target branch aims to distinguish fore-
ground patches and remove background clutters. We use
all source tokens to reweight target tokens by projecting all
source tokens into queries and target tokens into keys and
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conduct attention matrix calculation (MAP). Attention val-
ues of different heads are summed up to produce the over-
all attention At

l ∈ R(htwt+1)×(hsws+1). For every target
token, attention values across all source tokens are added
together and we get the attention vector vt

l ∈ R(htwt+1).
After broadcasting vt

l to c channels,the attention matrix as
vt
l ∈ R(htwt+1)×c. For target features zl−1 at the (l− 1)-th

layer, the reweighting process are performed as below:

z′
l = MultiHead(LN(zl−1),LN(zl−1),LN(zl−1)),

z′′
l = z′

l + zl−1,

z∗
l = z′′

l ⊗ vt
l ,

zl = FFN(LN(z∗
l )) + z∗

l ,

(1)

where ⊗ stands for element-wise multiplication, vt
l is used

to align with htwt + 1 tokens of z, LN stands for layer
normalization [3], MultiHead stands for multi-head self at-
tention [43] and FFN stands for feed-forward network [43].
With foreground target tokens enhanced, we reconstruct
source tokens with target tokens. This is implemented with
an attention function Attention(Q,K, V ) as in [43], where
source tokens provide Q, and target tokens provide K and
V (Figure 2 (a)). Several (usually M = 6) asymmetric
feature learning blocks are concatenated to increase the dis-
criminative ability of local feature descriptors.

3.3. Generating Matching Flow from Features

With feature maps F̃ s ∈ R(hs×ws+1)×c and F̃ t ∈
R(ht×wt+1)×c from the previous section, we need to gener-
ate a dense matching flow ∆c|s 7→t from the source to target.
Here we remove the [cls] token for the subsequent flow esti-
mation. Each of these feature maps corresponds to hs ×ws

(or ht×wt) grids of c-dimensional local features. Different
from that in [25, 37], to build pairwise correspondence be-
tween F̃ s and F̃ t, matching scores are computed through
a multi-head attention scheme, resulting in a 4-dimensional
correlation map of hs × ws × ht × wt:

Cst =
1

H

∑
h

softmax


(
F̃ sW

Q
h

)(
F̃ tW

K
h

)T

√
c

 , (2)

where H (=8) is the head number. For every point on the
source feature map, directly applying the argmax function
over a ht × wt correlation map can get the best matches
and then generate matching flows. However, the argmax
function is discrete and not differentiable. So we adopt the
soft argmax in [25] to generate the raw matching flows.

∆c|s7→t = soft argmax (Cst;hs, ws, ht, wt) . (3)

3.4. Matching Flow Super-Resolution

Though the above matching flow ∆c|s 7→t describes
source-target semantic flow in high accuracy, it is not ad-
equate to distinguish subtle appearance differences among
neighborhood pixels or regions. Inspired by the idea of
super-resolution [13,42] which hallucinates high resolution
details from low resolution inputs, we develop the matching
flow super-resolution block to upscale the spatial resolution
of ∆c|s7→t by 4 times, as shown in Figure 2 (b). There are
two inputs: coarse matching flow ∆c|s 7→t ∈ Rhs×ws×2 ,
source token features F̃ s ∈ R(hs×ws+1)×c with [cls] to-
ken removed. We use bilinear interpolation to upsample the
coarse matching flow and source feature map to the resolu-
tion of 4hs×4ws. These two tensors are concatenated along
the channel dimension to generate the super-resolution in-
put F ∈ R4hs×4ws×d.

The matching flow super-resolution block simply con-
tains several transformer blocks with shifted window atten-
tion [31] to generate high resolution matching flow. To in-
corporate diversities in representation learning, we utilize
two branches of windowed attention whose kernel size is
4×4 and 8×8 respectively. Then their output feature maps
are concatenated and sent into a 3 × 3 convolution fusion
layer. We then shift the window by stride 2 to conduct two
shifted window attention in the same manner and fuse their
features with a convolution layer again. Finally, after sev-
eral rounds of window attention, we get the upscaled fine
matching flow ∆f |s7→t in the resolution of 4hs × 4ws.
Multi-Path Super-Resolution. To enhance the match-
ing flow during super-resolution, we generate matching
flows after each cross attention block and conduct super-
resolution respectively. We averaged all matching flows of
different super-resolution branches to get the final flow out-
put. Figure 3 visualizes matching flows generated by dif-
ferent cross-attention blocks in asymmetric feature learn-
ing. We find that the multi-path aggregation improves the
matching accuracy significantly.

3.5. Training

For training, there are only sparse annotations on pop-
ular semantic correspondence benchmarks, such as PF-
PASCAL [16] and SPair-71K [34]. To augment these
sparse key point pairs, we followed work [8] and gener-
ating pseudo semantic flow [16] to supervise the training
of ACTRansformer. For each key point, we estimate the
matching flow of its 35 × 35 neighborhood for subsequent
training and denote remaining regions as unvisited with a
mask Ss as that in [8, 20]. We resize the matching flow to
the resolution of 4hs×4ws, and generate the matching flow
∆gt

(
Is, It

)
for Is and It. Then our goal becomes finding

the optimal parameters of Φ = (Φb,Φa,Φs) to minimize
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(a) Path 1 (b) Path 2 (c) Path 3 (d) Path 4 (e) Path 5 (f) Path 6 (g) Fused (h) Ground Truth

Figure 3. Matching results of different paths. Results show that the multi-path design can summarize complementary information from
cross-attention blocks to refine flows. From left to right, matching results from path 1-6 (a-f), fused (g) and ground truth (h) are given.

the following objective function:

L =
1

N

∑
(Is,It)∈D

Ss ⊗
∥∥Φ (

Is, It; θ
)
−∆gt

(
Is, It

)∥∥2

|Ss| , (4)

where |Ss| is the number of non-zero elements in Ss, θ is
the learnable parameters in all modules of ACTR, N is the
number of samples in training set D, Ss and ∆gt

(
Is, It

)
are the matching mask and flow generated by Mgt.

4. Experiment
Datasets. We conducted experiments on several datasets:
SPair-71K [34], PF-PASCAL [16], PF-Willow [16]. SPair-
71K [34] is a challenging large-scale benchmark that con-
tains 70,958 image pairs of 18 categories with large intra-
class variations, scale differences, occlusion, and trunca-
tion. We used the same split as previous works [8, 49]
in which for training, validation, and testing split, 53,340,
5,384, and 12,234 image pairs were used respectively. PF-
PASCAL [16] contains 1,351 image pairs from 20 classes,
we split them as approximately 700, 300, 300 for train, val-
idation, and test process following the work [49] and PF-
WILLOW [16] with 900 image pairs from 10 classes are
used to test the generalization ability of models trained on
PF-PASCAL [16].

Evaluation Metric. To evaluate the performance, we em-
ploy PCK@α (percentage of correct keypoints with thresh-

old α) as in previous works [8, 21, 26, 30, 34, 49]. A pre-
dicted keypoint is considered correct when it falls into the
circle of radius α× d centering at its ground-truth counter-
part, where d is the longer side of the image in PF-PASCAL
(denoted as αimg) or object bounding box in SPair-71K and
PF-WILLOW (denoted as αbbox). For PF-WILLOW, met-
ric αbkp is used with d standing for the maximum distance
of annotated key points.

Implementation Details. We use ViT-B/16 pre-trained
with iBOT on ImageNet [10] 1K as our backbone. We
test two input resolutions as 256 × 256 and 512 × 512.
There are 6 asymmetric semantics alignment blocks whose
hyper-parameters are the same as the feature backbone. For
matching flow super-resolution, the fusion module is a cas-
caded two layers 3 × 3 convolution with 32 and 2 kernels.
The feature dimension and the number of the attention head
in the 4 × 4 and 8 × 8 shifted window attention block are
96 and 8 respectively. During training, we used an AdamW
optimizer with 0.05 weight decay. The learning rates are
set as 6e-6 and 6e-5 for the backbone and the following two
modules respectively. Our model is implemented on Py-
Torch [36] and trained on two NVidia TITAN RTX GPUs.
The batch size is set to 8 for 256× 256 resolution and 6 for
512 × 512 for all the experiments. The training converged
within 50 and 10 epochs for PF-PASCAL [16] and SPair-
71K [34] dataset respectively. Note that we exploit the
model with ViT-B/16 backbone pre-trained on ImageNet
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Table 1. Quantitative results on standard benchmarks. Higher PCK is better. The best results are in bold, and the second-best results are
underlined. ∗: Method used dynamic resolution with the listed maximum threshold. Multi-Scale: whether to employ multi-scale features.

Methods Backbone Input Resolution Multi-Scale
SPair-71K PF-PASCAL
α : bbox α : img

0.1 0.05 0.1 0.15

SCOT [30] ResNet-101 300× 300∗ ✓ 35.6 63.1 85.4 92.7
DHPF [35] ResNet-101 240× 240 ✓ 37.3 75.7 90.7 95
CHM [33] ResNet-101 256× 256 × 46.3 80.1 91.6 94.9
CATs [8] ResNet-101 256× 256 ✓ 49.9 75.4 92.6 96.4
MMNet-FCN [49] ResNet-101 224× 320 ✓ 50.4 81.1 91.6 95.9
TransforMatcher [24] ResNet-101 240× 240 ✓ 53.7 80.8 91.8 -

CATs [8] iBOT-B 256× 256 ✓ 55.2 77.8 93.1 96.8
TransforMatcher [24] iBOT-B 240× 240 ✓ 57.9 77.3 93.3 96.6
Baseline iBOT-B 256× 256 × 57.7 78.9 93.2 96.5
ACTR iBOT-B 256× 256 × 62.1 81.2 94.0 97.0

VAT [20] ResNet-101 512× 512 ✓ 54.2 - 92.3 -

VAT [20] iBOT-B 512× 512 ✓ 59.0 73.0 92.6 96.7
Baselineh iBOT-B 512× 512 × 61.6 79.3 91.6 95.9
ACTRh iBOT-B 512× 512 × 65.4 82.0 93.5 96.7

Table 2. Generalizability evaluation on PF-WILLOW dataset with
PF-PASCAL trained model. ‡ stands for the method implemented
with iBOT-B backbone same with ACTR.

Methods
PF-WILLOW

α : bbox α : bkp
0.05 0.1 0.05 0.1

DHPF [35] 49.5 77.6 - 71.0
CHM [33] 52.7 79.4 - 69.6
CATs [8] 50.3 79.2 40.7 69.0
SCOT [30] - - 47.8 76.0
TransforMatcher [24] - 65.3 - 76.0

CATs‡ 59.4 86.3 51.1 79.5
TransforMatcher‡ 57.0 84.3 48.8 78.3
ACTR 60.3 87.2 52.6 79.9

1K with resolution 256 × 256 as our base model, since it
has learnable parameters comparable with other methods.

Baseline Models. We add 6 transformer blocks with sym-
metric cross attention [23,46] after the iBOT-B backbone to
conduct baseline experiments. We adopt the multi-head at-
tention scheme for 4-D correlation computation and use the
bilinear interpolation for upsampling the matching flow. We
name this model Baseline which contains 171.13 million
learnable parameters almost the same as ACTR. Except for
the network structure, we use identical settings with ACTR
to train and test the Baseline. We also implemented sev-
eral state-of-the-art methods such as CATs [8] and Trans-
forMatcher [24] for 256 × 256 input resolution as well as
VAT [20] for 512× 512 resolution using iBOT-B backbone
like ACTR. This allows us to compare matching head de-
signs with the same feature quality.

Figure 4. The PCK@α curves of our method and previous works
on SPair-71K [34]. Our method performs better than other meth-
ods with small error thresholds (small α).

4.1. Comparison with State-of-The-Art

We report our quantitative results in comparison with
other state-of-the-art methods on two popular benchmarks,
SPair-71K [34] and PF-PASCAL [16] in Table 1. To en-
sure a fair comparison, we explicitly list backbone types,
input image sizes, and whether to employ multi-scale fea-
tures with each method. When in resolution 256 × 256,
our base model ACTR outperforms other methods with
62.1% PCK@0.1 on SPair-71K, and 94.0% PCK@0.1 and
97.0% PCK@0.15 on PF-PASCAL, better than previous
state-of-the-art algorithms. Especially, it is 4.2% higher
than TransforMatcher [24] with the same iBOT-B backbone
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Table 3. Comparison of efficiency between ACTR and state-of-the-art methods. We compared total learnable parameters, memory con-
sumption as well as run time between our ACTR and state-of-the-arts. All models are tested on NVidia TITIAN RTX GPU with 24GB
memory. ‡ stands for the method implemented with iBOT-B backbone same with ACTR.

Methods Total Parameters (M) Memory (GB) Run time (ms) SPair-71K
Backbone Matching head Total αbbox = 0.1

SCOT [30] 44.5 - 44.5 4.6 133.5 35.6
CATs [8] 44.5 4.7 49.2 2.0 45.4 49.9
MMNet-FCN [49] 54.4 10.3 64.7 5.4 258.6 50.4
TransforMatcher [24] 87 0.9 87.9 2.7 54.0 53.7

CATs‡ [8] 85.0 5.7 90.7 2.8 54.2 55.2
TransforMatcher‡ [24] 85.0 1.6 86.6 2.4 48.5 57.9
ACTR-S 21.0 23.2 44.2 1.9 43.7 55.8
ACTR 85.0 87.8 172.8 3.9 84.1 62.1

VAT [20] 44.5 3.3 48.4 3.9 141.2 54.2

VAT‡ [20] 85.0 4.2 89.2 4.4 172.4 59.0
ACTRh-S 21.0 25.2 46.2 2.3 64.8 59.7
ACTRh 85.0 91.9 176.9 4.7 121.5 65.4

on PCK@0.1 for SPair-71K. Moreover, ACTR also shown
an overall improvement than previous works at different
evaluation standards reported on Figure 4. It indicates that
ACTR has a strong ability in capturing complex appearance
and layout variations.

When we compare with VAT [20] and VAT with iBOT
backbone(VAT‡) in higher resolution 512 × 512, ACTRh

get 65.4% PCK@0.1 on SPair-71K, which is 11.2% and
6.4% higher than VAT and VAT‡. We attribute these re-
sults to that VAT focus on 4-D matching correlation refine-
ment in a symmetric manner which makes the backbone
feature fine-tuning more difficult. Since ACTR and ACTRh

are only different in input resolution, we find that the input
resolution can directly impact the performance of models.
Experiments on PF-PASCAL do not show obvious advan-
tages as that in SPair-71K which may be attributed to in-
sufficient training pairs (1,351). But transfer evaluation on
PF-WILLOW (trained on PF-PASCAL) in Table 2 indicates
that ACTR has a strong generalization ability.

Parameters, Memory, and Speed. We also conducted ef-
ficiency analysis in Table 3. In which we implemented
ACTR-S and ACTRh-S with a smaller ViT-S/16. Results
show that our ACTR-S and ACTRh-S have fewer learn-
able parameters than listed state-of-the-art methods but
have impressive results. Especially, our ACTRh-S outper-
forms the VAT‡ [20] which used iBOT feature, and our
ACTR-S also has comparable performance to CATs‡ [8]
and TransforMatcher‡ [24]. Meanwhile, they run faster than
other models for comparison. If we adopt our ACTR model,
the computational cost increases, but ACTR and ACTRh

still have comparable performance to most of the previous
methods in memory consumption and running time while
getting impressive results.

Table 4. Ablations on components in ACTR.

Methods SPair-71K
αbbox = 0.1

ACTR 62.1

w/o source branch positional encoding 60.4 (1.7↓)
w/o target branch token reweighting 60.7 (1.4↓)
w/o asymmetric cross attention module 60.1 (2.0↓)

w/o multi-path super-resolution 61.0 (1.1↓)
w/o dual window flow refinement 60.6 (1.5↓)
w/o flow super-resolution module 59.0 (3.1↓)

Baseline 57.7 (4.4↓)

4.2. Ablation Studies

We designed several experiments of evaluating the
design of asymmetric feature learning and flow super-
resolution modules in ACTR and micro components (in Ta-
ble 4). All the experiments were held on SPair-71K [34]
dataset and using PCK metric and the αbbox is set as 0.1.

Ablation on designed modules. To investigate whether
asymmetric feature learning and matching flow super-
resolution is necessary, we report performances in Table 4
by replacing each of them with the baseline transformer
blocks. Performances decline 2.0%, 3.1% for each setting.
It indicates that the asymmetric feature learning mechanism
brings benefits while matching flow super-resolution can
further improve accuracy.

In Table 4, we also zoom inside proposed modules and
discuss how our design takes effect. For asymmetric feature
learning, we conduct ablations on noise embedding learn-
ing in the source branch and token reweighting in the tar-
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(a) SCOT (b) CATs (c) MMNet (d) ACTR(ours) (e) GroundTruth

Figure 5. Visual comparison of matched key points. From left to right: (a) SCOT [30], (b) CATs [20], (c) MMNet [49], (d) ours ACTR
and (e) the ground truth. Source and target images are in odd and even rows. Crosses denote destination key points on target images.

get branch. For the multi-path flow super-resolution mod-
ule, we evaluated the effectiveness of fusing flows gener-
ated by different attention stages as well as the dual win-
dow design for each flow refinement layer. The perfor-
mance dropped by 1.7% and 1.4% for two micro designs
on the asymmetric feature learning stage. And the perfor-
mance dropped by 1.1% and 1.5% for the design of multi-
path super-resolution. We find that all these micro designs
in ACTR can help to get better results, which validates our
motivations of asymmetric feature learning and matching
flow super-resolution.

4.3. Qualitative Results and Visual Analysis

We provide a visual comparison with point-level
matches and image-level warping results using the model-
predicted keypoint pairs. In Figure 5, the predicted key
point pairs are linked with line segments while the ground-
truth matching pairs are labeled with crosses. Com-
pared with the state-of-the-art methods such as SCOT [30],
CATs [8], and MMNet [49], our ACTR can clearly distin-
guish the subtle semantic differences which usually leads to
mismatching for previous methods. In Figure 1, we warped
the source image with the target one guide by predicted key-
point pairs. We also provide warp results using ground truth
pairs as the reference. The result shows our ACTR can bet-
ter build up global correspondence for an image pair. The
three chosen image pairs have great variation in appearance
and viewpoint, especially for the first-row objects that be-
come difficult to observe in dark conditions. However, our
method can well overcome these challenges and build up ac-
curate matching for the whole instance in both image pairs.

5. Conclusions and Limitations
In this paper, we have proposed, for the first time, a

fully Transformer-based pipeline for semantic matching
which enables end-to-end training, dubbed ACTR. We
have made two architectural designs: an asymmetric
cross-attention mechanism to establish reliable flows and
super-resolution flow refinement for more precise repre-
sentation. Results have shown that our method surpasses
the state-of-the-art in several benchmarks by a great margin
and also made great improvement over our backbone
baseline. Moreover, extensive studies are conducted to vali-
date our choices and evaluate sources of performance gains.

Limitations. Several limitations are listed to our method.
Firstly, our method is not versatile enough to make easy
shifts to other mainstream backbones (ResNet, etc.), since
too many tokens and feature channels are not affordable
for fully attention blocks. Besides, the impacts of back-
bone pre-training strategies deserves thorough investigation
in the future. Moreover, the extension of ACTR to multi-
instance correspondence task requires further researches.
This work does not have obvious negative societal impacts.
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