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Figure 1. (a) Current human motion prediction task: a one-off “observe then predict” process within the isolated unit. (b) Consecutive
human motion prediction with deviation feedback: covering multiple “observe then predict” rounds, where the prediction deviation (i.e.,
mistake) in previous round could constrain the model to make better prediction in the following round.

Abstract

Let us rethink the real-world scenarios that require hu-
man motion prediction techniques, such as human-robot
collaboration. Current works simplify the task of predicting
human motions into a one-off process of forecasting a short
future sequence (usually no longer than 1 second) based
on a historical observed one. However, such simplification
may fail to meet practical needs due to the neglect of the fact
that motion prediction in real applications is not an isolated
“observe then predict” unit, but a consecutive process com-
posed of many rounds of such unit, semi-overlapped along
the entire sequence. As time goes on, the predicted part
of previous round has its corresponding ground truth ob-
servable in the new round, but their deviation in-between
is neither exploited nor able to be captured by existing iso-
lated learning fashion. In this paper, we propose DeFeeNet,
a simple yet effective network that can be added on exist-
ing one-off prediction models to realize deviation percep-
tion and feedback when applied to consecutive motion pre-
diction task. At each prediction round, the deviation gen-
erated by previous unit is first encoded by our DeFeeNet,
and then incorporated into the existing predictor to enable a
deviation-aware prediction manner, which, for the first time,

allows for information transmit across adjacent prediction
units. We design two versions of DeFeeNet as MLP-based
and GRU-based, respectively. On Human3.6M and more
complicated BABEL, experimental results indicate that our
proposed network improves consecutive human motion pre-
diction performance regardless of the basic model.

1. Introduction

In the age of intelligence, humans have to share a com-
mon space with robots, machines or autonomous systems
for a sustained period of time, such as in human-motion col-
laboration [33], motion tracking [10] and autonomous driv-
ing [38] scenarios. To satisfy human needs while keeping
their safety, deterministic human motion prediction, which
is aimed at forecasting future human pose sequence given
historical observations, has become a research hotspot and
already formed a relatively complete implement procedure.
As human poses may become less predictable over time,
current works abstract the practical needs into a simplified
task of learning to “observe a few frames and then predict
the following ones”, with the prediction length mostly set
to ≤ 1 second [4, 7–9, 16, 20, 21, 24, 27, 28, 34, 40].

Essentially, such simplified prediction task can be re-
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garded as a one-off acquired target limited within the short,
isolated “observe then predict” unit. Nevertheless, this unit
is actually not applicable in reality that requires consecu-
tive observation and prediction on humans during the long
period of human-robot/machine coexistence. Though, intu-
itively, sliding such unit round by round along the time may
roughly satisfy the need for consecutive prediction, one ne-
glected fact is that each round of prediction unit is arranged
in a semi-overlapped structure (see Figure 1). As time goes
on, what was predicted before has its corresponding ground
truth observable now, but their deviation in-between (i.e.,
mistake) remains unexplored.

Our key insight lies in that robots/machines should be
able to detect and learn from the mistakes they have made.
Due to the inherent continuity and consistency of human
motion data, such information would be very powerful to
improve future prediction accuracy. The semi-overlapped,
multi-round unit structure offers a natural way to transmit
deviation feedback across adjacent prediction units, which,
however, are unable to be realized by current one-off unit
prediction strategy.

Based on this situation, in this paper, we propose De-
FeeNet, a simple yet effective network which can be added
on existing one-off human motion prediction models to im-
plement Deviation perception and Feedback when applied
to consecutive prediction. By mining the element “devia-
tion” that neglected in previous works, we introduce induc-
tive bias, where DeFeeNet can learn to derive certain “pat-
terns” from past deviations and then constrain the model to
make better predictions. To be specific, our DeFeeNet is
constructed in two versions: MLP-based version containing
one temporal-mixing MLP and one spatial-mixing MLP;
GRU-based version containing one-layer GRU with fully-
connected layers only for dimension alignment. At each
prediction round, DeFeeNet serves as an additional branch
inserted into the existing predictor, which encodes the de-
viation of the previous unit into latent representation and
then transmits it into the main pipeline. In summary, our
contribution are as follows:

• We mine the element “deviation” that neglected in ex-
isting human motion prediction works, extending cur-
rent within-unit research horizon to cross-unit, which,
for the first time, allows for information transmit
across adjacent units.

• We propose DeFeeNet, a simple yet effective network
that can be added on existing motion prediction models
to enable consecutive prediction (i) with flexible round
number and (ii) in a deviation-aware manner. It can
learn to derive certain patterns from past mistakes and
constrain the model to make better predictions.

• Our DeFeeNet is agnostic to its basic models, and ca-
pable of yielding stably improved performance on Hu-

man3.6M [15], as well as a more recent and challeng-
ing dataset BABEL [32] that contains samples with
different actions and their transitions.

2. Related Work
2.1. Human Motion Prediction

Model Design Paradigm. Two mainstreams of model
design in human motion prediction are based on sequen-
tial networks [7, 9, 16, 28, 30] and feed-forward networks
[1, 5, 8, 20, 21, 27, 33, 34, 40]. For the former one, RNNs
[7, 16], LSTMs [9, 28] and GRUs [28, 30] are employed
to extract temporal features of motion sequences, while for
the latter, CNNs [20], GNNs [21], GCNs [8, 27, 33–35, 40]
and transformers [1,5] learn spatial dependencies or spatio-
temporal information to better depict human skeletal struc-
ture and joint spatio-temporal connections. All these cur-
rent designs simplify human motion prediction as a short,
isolated “observe then predict” unit, with predicted length
mostly ≤ 1 second, and with no consideration of its con-
text, which, therefore, could not satisfy practical needs like
human-robot collaboration scenario that requires consecu-
tive observation and prediction on human behaviors.
Sample Selection Protocol. Currently in this field, samples
are drawn in a uniform way of cutting small pieces from
long motion sequences with known action categories. Each
sample piece (i.e., the unit) is composed of the first several
frames as observation and the others as prediction target,
where poses in one piece all belong to the same action cate-
gory. Such short-length yet single-action sampling conven-
tion, therefore, determines that current trained predictors
are unable to handle real-world prediction task that covers
multiple categories of action and action-changing periods.

Motivated by the above, we reformulate human motion
prediction task from the consecutive perspective, and ar-
gue that previous prediction deviation should be detected
and learned by robots/machines to help the following pre-
diction. We accordingly present a resampling method by
drawing multiple yet flexible rounds of semi-overlapped
unit as one sample with a relatively long horizon (Section
3.4 for details), which enables (i) our deviation-aware con-
secutive prediction as well as (ii) the first attempt to con-
sider action-changing in deterministic human motion pre-
diction. Note that in this paper we only refer to determinis-
tic motion prediction that aims to predict only one future se-
quence. Stochastic prediction (predicting multiple possible
sequences) [2,25,26,37,39] or motion synthesis (generating
sequences without observations) [11, 31] are not within the
scope of our discussion.

2.2. Deviation-Aware Prediction

Other seemingly similar ideas on deviation-aware pre-
diction include Local-Behavior-Aware (LBA) framework in
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trajectory prediction [41] and Residual Correction frame-
work in node regression [17], node classification [14] and
traffic prediction [18, 22]. For the former, LBA [41] refers
to involving a collection of all historical trajectories at the
object’s current location to help narrow down the search
space of future trajectories. Though the “historical trajecto-
ries of other objects” notion somewhat resembles our “pre-
vious prediction round”, it is entirely unrelated to the use
of deviation. For the latter, residual is defined as the differ-
ence between GT and the prediction just like our deviation,
but all these works first generate an “original” prediction,
which is then directly added with the estimated residual, so
that the original prediction could be corrected to some ex-
tent (note that the estimated residual is calculated based on
residuals of training vertices [14, 17] or based on historical
residuals [18, 22]). In other words, their residual correction
serves as a post-processing step, and the residual expres-
sion is completely independent of the original pipeline. In
contrast, we adopt the “encoder-separated while decoder-
unified” strategy, which allows for separate coding on pre-
vious deviation while joint decoding on both information
of current observation and previous deviation. Therefore,
our prediction is naturally improved rather than corrected by
post-processing, and that is why we regard it as deviation-
aware prediction but not prediction correction. As human
motion data is more granular yet delicate that cannot be
corrected by simply adding a residual/deviation vector, our
joint decoding strategy could leverage the decoding power
of the original predictor, enabling deviation-aware predic-
tion only with a lightweight network branch inserted.

3. Proposed Method
In most cases, 3D human structure is represented by pure

pose parameters based on human joint coordinates or SMPL
model [23] which depicts 3D human mesh with both pose
and shape. According to task demand, we follow [26,31] to
discard the shape term and only predict the pose term. Cur-
rently, human motion prediction [4,27,34] aims to predict a
future sequence Ŷ = [ŷ1, ŷ2, · · · , ŷT ] with T frames based
on the observed N -frame X = [x1, x2, · · · , xN ] sequence,
where each frame (i.e., pose) is represented by ŷi ∈ RK

and xi ∈ RK , respectively. We define such process of pre-
dicting T frames with the N -frame observation as unit. Re-
search within this isolated unit, however, totally neglects
the importance of “prediction mistake” element to consec-
utive motion prediction, and is unable to realize deviation
perception and feedback to improve prediction accuracy.

3.1. Reformulation from Consecutive Perspective

We introduce our reformulated human motion prediction
task. Consecutive prediction involves multiple rounds of
unit with N + T frames semi-overlapped along the entire
sequence. Suppose a sequence S = [s1, s2, · · · , sL] with

length L long enough, we define the first round as R1 =
s1:N+T , and every following round is T frames further, i.e.,
the r-th round Rr = s1+(r−1)T :N+T+(r−1)T , where r > 1,
and in this paper we set N > T . Therefore, if we de-
fine all the motion rounds R = [R1,R2, · · · ,Rr, · · · ] and
rewrite Rr = [Xr,Yr] = [xr,1, · · · , xr,N , yr,1, · · · , yr,T ],
it can be deduced that xr,N−T :N = yr−1,1:T , and the de-
viation generated in round Rr−1 is expressed as Dr−1 =
fd(xr,N−T :N , ŷr−1,1:T ), to be used to improve the predic-
tion accuracy of round Rr. When r = 1, D0 is empty as no
deviation can be used. Basically, we regard the task of con-
secutive motion prediction as implement R round by round.

3.2. Deviation-Aware Prediction

To express deviation Dr−1 = fd(xr,N−T :N , ŷr−1,1:T )
mentioned in Section 3.1 in detail, we draw inspiration
from [4, 12] that design their prediction loss function based
on joint displacement of two adjacent poses (i.e., velocity)
rather than joint position. Instead of directly subtracting
between xr,N−T :N and ŷr−1,1:T , we first calculate their ve-
locities as v(xr,N−T :N ), v(ŷr−1,1:T ) ∈ RK×(T−1) and then
obtain:

Dr−1 = fd(xr,N−T :N , ŷr−1,1:T )

= v(xr,N−T :N )− v(ŷr−1,1:T ) ∈ RK×(T−1).
(1)

In this way, compared to existing works that focus on
learning a prediction function Y = ϕo(X) between the
observation X and the target Y in the isolated unit, our
deviation-aware consecutive prediction aims to find a func-
tion for every prediction round with deviation feedback in-
corporated:

Yr = ϕ(Xr,Dr−1), (2)

where ϕ : RK×N×RK×(T−1) 7→ RK×T . Note that D0 = 0
when r = 1.

In Figure 2, we provide an overview of how DeFeeNet
is embedded into the existing prediction framework and
helps implement deviation-aware motion prediction round
by round during a relatively long period. At round r, we
feed the current round of observation Xr = xr,1:N into
the main pipeline (i.e., the existing predictor). Meanwhile,
our DeFeeNet could detect the prediction deviation that just
happened as the prediction of round r − 1 (i.e., Ŷr−1 =
ŷr−1,1:T ) has its ground truth observable now. Therefore,
with this deviation Dr−1 coded and incorporated, the cur-
rent prediction Ŷr = ŷr,1:T could be naturally improved.

3.3. Network Architecture

We build two versions of DeFeeNet based on MLP and
GRU (see Figure 3), both of which are simple yet effective,
as we do not encourage DeFeeNet to increase the computa-
tion burden too much on original prediction models.
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Figure 3. Architectures of MLP-based and GRU-based DeFeeNet.

Inspired by the success of MLP-Mixer structure [36] in
computer vision and its variants in downstream human mo-
tion modeling tasks [4, 6, 12], we propose an MLP-based
version of our DeFeeNet, but is more lightweight yet ef-
fective enough. Compared to using multiple MLP-mixer
blocks in [4, 6, 12, 36], our design discards block stacking
and only contains one temporal-mixing MLP, one spatial-
mixing MLP, and skip-connections (see Figure 3 left). Both
MLP-mixer module are composed of two fully-connected
layers, GELU activation function [13], and layer normal-
ization operation [3].

For the GRU-based version, as is shown in Figure 3
right, we employ a one-layer GRU attached with one fully-
connected layer in temporal dimension and one in spatial
dimension for dimension alignment, to be inserted into the

original pipeline for following calculation.
To be specific, the original predictor is first fed with

the observed segment X1 = x1,1:N in R1, and obtain its
first round of prediction Ŷ1 = ŷ1,1:T at timestep T , with
DeFeeNet nonactivated and no deviation information in-
volved. However, during the following rounds where Xr

becomes observable, the deviation between v(ŷr−1,1:T ) and
v(xr,N−T :N ) appears, and is fed into our DeFeeNet to cap-
ture its temporal and spatial information to be added into the
main pipeline, enabling deviation feedback across adjacent
prediction units.

3.4. Two-Round Training & Multi-Round Testing

The goal of our DeFeeNet is to improve the original pre-
diction accuracy by consecutive perception and feedback on
prediction deviation, as well as maintaining this priority in a
sustained period of time. As the semi-overlapped structure
offers us a natural way to learn prediction deviation, we ac-
cordingly present our resampling method and loss function.
Resampling. Compared to existing prediction models that
regard the “observe then predict” unit as a sample, we draw
two rounds of unit as one training sample and multiple
rounds of unit as one testing sample, i.e., Rtrain = [R1,R2]
and Rtest = [R1,R2, · · · ,Rmax(r)]. For training phase, we
just let DeFeeNet learn to produce useful information ac-
cording to the previous adjacent deviation it percepts, so
only two rounds of prediction (containing one overlapped
region) are sufficient. While for testing phase, samples with
multiple yet flexible rounds of prediction unit are necessary,
as our ultimate goal is to evaluate whether DeFeeNet is able
to generate stable improvement on the consecutive observa-
tion and prediction with unknown duration in advance.
Loss Function. Following current works [4, 8, 12, 27, 34],
our loss is based on Mean Per Joint Position Error (MPJPE)
[15], but differently, we calculate the loss on both rounds of
prediction. In line with notation in Section 3.1, we express
the loss at round r (r = 1, 2) as:

Lr =
1

T

T∑
t=1

‖ŷr,t − yr,t‖2, (3)
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walking eating smoking discussion directions
frame num. 2 4 8 10 2 4 8 10 2 4 8 10 2 4 8 10 2 4 8 10

LTD-GCN [27] 12.3 23.0 39.8 46.1 8.4 16.9 33.2 40.7 8.0 16.2 31.9 38.9 12.5 27.4 58.5 71.7 9.0 19.9 43.4 53.7
LTD-DeFee(MLP)-r1 11.7 21.2 36.4 43.5 8.1 16.2 31.9 39.8 7.7 15.3 29.9 36.8 12.7 26.8 56.4 69.4 9.1 19.3 41.7 52.0
LTD-DeFee(MLP)-r2 10.2 19.9 35.5 42.5 6.7 14.8 30.7 38.3 6.5 14.0 28.8 35.6 10.0 23.8 54.5 68.1 6.9 16.7 39.6 50.2
LTD-DeFee(GRU)-r1 11.8 22.2 36.8 44.0 8.2 16.9 32.2 40.2 7.8 15.8 30.2 37.5 12.5 26.7 57.1 70.4 8.8 19.5 42.4 52.8
LTD-DeFee(GRU)-r2 10.4 20.0 34.7 42.2 7.0 15.2 31.4 38.4 6.8 14.5 29.0 35.8 11.1 25.4 55.8 68.2 7.0 17.0 40.0 50.9

greeting phoning posing purchases sitting
frame num. 2 4 8 10 2 4 8 10 2 4 8 10 2 4 8 10 2 4 8 10

STS-GCN [34] 18.7 34.9 71.6 86.4 13.7 22.4 43.6 53.8 16.4 30.4 67.6 84.7 19.1 35.8 70.2 83.1 15.2 25.1 49.8 60.8
STS-DeFee(MLP)-r1 18.4 34.2 71.2 85.4 13.5 21.9 42.1 52.5 16.6 30.4 66.2 83.2 19.5 35.5 69.4 82.3 15.0 24.8 49.6 59.8
STS-DeFee(MLP)-r2 16.4 32.8 68.8 82.5 11.4 19.8 40.8 49.7 14.8 28.3 64.8 80.5 16.6 32.5 67.6 80.6 14.0 23.3 47.5 58.7
STS-DeFee(GRU)-r1 18.5 34.5 71.4 85.8 13.5 22.1 42.5 53.0 16.2 30.2 66.7 83.5 18.9 35.2 69.4 82.4 15.1 24.9 49.5 59.6
STS-DeFee(GRU)-r2 16.8 33.0 68.5 83.2 11.6 19.9 41.0 50.1 14.7 28.3 65.0 81.1 16.8 32.7 67.9 80.3 14.2 23.6 47.7 58.7

sittingdown takingphoto waiting walkingdog walkingtogether
frame num. 2 4 8 10 2 4 8 10 2 4 8 10 2 4 8 10 2 4 8 10

MotionMixer [4] 12.0 31.4 64.4 74.5 9.0 18.9 41.0 51.6 10.2 21.1 45.2 56.4 20.5 42.8 75.6 87.8 10.5 20.6 38.7 43.5
MotMix-DeFee(MLP)-r1 12.0 30.6 63.7 72.6 9.1 18.2 39.7 50.4 10.4 20.5 44.1 55.6 19.5 42.4 74.4 86.9 10.2 19.8 37.8 42.7
MotMix-DeFee(MLP)-r2 9.8 29.1 61.8 70.2 7.8 16.9 37.1 47.7 9.3 19.5 42.0 53.4 17.3 40.9 72.8 84.4 8.3 19.1 35.9 41.5
MotMix-DeFee(GRU)-r1 11.7 30.8 63.6 73.7 8.8 18.5 40.2 50.8 10.1 20.8 44.5 55.4 19.5 42.1 74.4 87.1 10.4 19.8 38.0 43.1
MotMix-DeFee(GRU)-r2 10.1 29.4 62.0 70.8 7.8 16.9 38.3 47.9 9.6 19.8 42.3 53.6 17.6 41.1 72.7 84.9 8.8 19.0 36.1 41.8

Table 1. Top to bottom: Prediction errors produced by the original baselines (isolated), baselines with MLP-based DeFeeNet inserted
(round 1 and 2), and with GRU-based DeFeeNet inserted (round 1 and 2). Values in bold indicate lower errors and prove the deviation
feedback is valid. For each baseline, we present the performance on 5 actions out of 15 in Human3.6M. We present prediction errors at
frame 2, 4, 8, and 10.

where ŷr,t denotes the predicted pose at frame t at round r,
and yr,t as the corresponding ground truth. Note that, for
fair comparison, Eq. 3 will have some slight changes in the
specific details when our DeFeeNet is added on different
baseline models and evaluated on different datasets (may
refer to the supplemental material).

Then the total loss can be calculated as:

Ltotal = L1 + L2. (4)

In addition to supervising both rounds of prediction as accu-
rate as possible, L1 could further ensure that the inclusion
of DeFeeNet does not encumber the main pipeline too much
(as the model parameters have been trained to accommodate
the existence of DeFeeNet, but no deviation is involved in
round 1), while L2 could keep the deviation feedback valid.

4. Experiments
In this section, we evaluate our DeFeeNet on the task of

consecutive human motion prediction. Two datasets (Hu-
man3.6M [15] and the more recent and challenging BA-
BEL [32]) are preprocessed to meet the task requirements,
and we conduct experiments on three different motion pre-
diction baselines with DeFeeNet inserted. We additionally
provide ablation studies for further analysis.

4.1. Datasets

Human3.6M [15] is one of the most widely used datasets
for human motion modeling, which includes seven actors
performing actions under 15 categories, such as walking,

eating, smoking, and discussion, with downsampling rate
25 fps to generate the sequence data. Each human skele-
tal pose is represented by 32 joints, and we follow existing
works [4,8,12,27,34,40] that evaluate on 22 of these joints.
Currently, they aim to produce 10 or 25 frames (i.e., 400
ms short-term or 1000 ms long-term prediction) based on
10 frames of observation, within the isolated “unit”.

For consecutive prediction task, we use our resampling
method (Section 3.4) for further preprocessing. For fair
comparison, we also set each prediction round with 10
frames observed and the following 10 to be predicted.
Training samples are composed of two adjacent rounds,
wherein the second round is 10 frames further compared
to the first one. Testing samples are first arranged with 2
rounds to prove the deviation feedback between adjacent
units is valid, then we arrange 10 rounds to evaluate the sta-
bility of DeFeeNet along a relatively long horizon.

BABEL [32] is a recent proposed dataset with language
labels on actions. Different from other datasets for hu-
man motion prediction wherein actions contained in each
sequence are of the same category, BABEL allows for se-
quence with multiple kinds of actions. Currently, the most
suitable preprocessing method for our task is [26] that ex-
ports two dataset files: (a) single-action sequences under 20
action labels (such as stand, walk, step and stretch); (b) se-
quences with two categories of actions and their in-between
transitions that contain these 20 actions, both of which are
of 30 fps, with only pose parameters for evaluation, while
SMPL shape parameters discarded (may refer to the link
provided in [26]).
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LTD-GCN [27] LTD-GCN [27] STS-GCN [34] MotionMixer [4]
frame num. 2 4 8 10 avg avg avg

isolated 12.69 26.06 52.28 63.53 38.64 41.16 35.52

-DeFee(MLP) -D(MLP) -D(GRU) -D(MLP) -D(GRU) -D(MLP) -D(GRU)
r1 12.59 25.16 50.02 61.47 37.31 37.65 40.76 40.89 34.12 34.35
r2 10.30 22.60 48.17 59.79 35.21 35.80 38.15 38.77 32.38 32.69
r3 10.43 22.74 48.44 60.14 35.44 35.67 38.33 38.67 32.16 32.74
r4 10.39 22.69 48.31 59.95 35.33 35.66 38.46 38.72 32.05 32.75
r5 10.38 22.68 48.27 59.91 35.31 35.91 38.45 38.90 32.17 32.59
r6 10.38 22.67 48.25 59.87 35.30 36.10 38.37 39.05 32.34 32.69
r7 10.37 22.66 48.24 59.88 35.29 35.88 38.41 38.95 32.33 32.66
r8 10.39 22.68 48.27 59.89 35.31 35.66 38.45 38.89 32.47 32.77
r9 10.40 22.71 48.30 59.92 35.33 35.75 38.38 38.93 32.41 32.71

r10 10.41 22.72 48.33 59.96 35.35 35.70 38.49 38.78 32.44 32.75

Table 2. Consecutive 10 rounds of prediction errors on Hu-
man3.6M. Values in bold from round 2 to 10 indicate that
deviation-aware prediction stably yields improved performance.
Detailed errors of LTD-DeFee(MLP) at frame 2, 4, 8, 10 are on
the left. Average errors (avg) of these four testpoints produced by
other baselines with DeFeeNet (abbreviated as D) are on the right.

As no experiments of deterministic motion prediction
has been conducted on BABEL, we first cut isolated unit
samples from the above sequence files to train the three
baselines, with observed and predicted frames both set to
10. Then, similar to Human3.6M, we rearrange our training
samples with 2 rounds while testing samples with 2 rounds
for effectiveness validation and 5 rounds for stability vali-
dation. Moreover, we remove the actions with less than 200
sequence samples and leave samples with 11 action cate-
gories for evaluation.
Evaluation Metric. Following [4,8,12,24,34,40], we eval-
uate our network by Mean Per Joint Position Error (MPJPE)
on 3D human joint coordinates, which calculates the av-
erage L2-norm on discrepancy of different joints between
prediction and the corresponding ground truth.

4.2. Baselines

Our DeFeeNet is agnostic to its basic prediction models,
and can be added on many existing networks to realize con-
secutive human motion prediction. Here we introduce three
baselines for our experiments.
LTD-GCN [27] is a GCN-based model composed of 12
GCN blocks depicting the spatial correlations of different
joint dimensions with residual connections. Discrete Cosine
Transformation (DCT) is used to extract temporal features.
STS-GCN [34] designs the single-graph structure which al-
lows for space-time cross-talk, which factorizes the graph
into separable space and time matrices to fully learn the
joint-joint and time-time interactions.
MotionMixer [4] proposes efficient motion prediction
model that only adopts MLPs by sequentially mixing both
spatial and temporal dependencies, and with squeeze-and-
excitation blocks enhanced.

4.3. Implementation Details

We conduct our experiments under Pytorch [29] frame-
work with Adam optimizer [19] on a single NVIDIA RTX

w/o transi w/ transi
frame num. 3 6 8 10 3 6 8 10

LTD-GCN [27] 0.2111 0.3828 0.4751 0.5617 0.2179 0.3961 0.4940 0.5802
LTD-D(MLP)-r1 0.2032 0.3781 0.4689 0.5559 0.2054 0.3805 0.4811 0.5681
LTD-D(MLP)-r2 0.1971 0.3683 0.4566 0.5464 0.1988 0.3699 0.4614 0.5481
LTD-D(GRU)-r1 0.2009 0.3778 0.4762 0.5601 0.2022 0.3792 0.4799 0.5614
LTD-D(GRU)-r2 0.1921 0.3637 0.4583 0.5470 0.1945 0.3708 0.4607 0.5434
STS-GCN [34] 0.2404 0.4283 0.5330 0.6306 0.2394 0.4323 0.5536 0.6438

STS-D(MLP)-r1 0.2277 0.4063 0.5164 0.6063 0.2274 0.4064 0.5061 0.5960
STS-D(MLP)-r2 0.2101 0.3809 0.4933 0.5745 0.2147 0.3855 0.4839 0.5760
STS-D(GRU)-r1 0.2291 0.4138 0.5119 0.6140 0.2279 0.4126 0.5107 0.6028
STS-D(GRU)-r2 0.2143 0.3903 0.4917 0.5885 0.2163 0.3942 0.4927 0.5866
MotionMixer [4] 0.1975 0.3688 0.4401 0.5172 0.1968 0.3754 0.4591 0.5386

MotMix-D(MLP)-r1 0.1926 0.3615 0.4372 0.5119 0.1905 0.3644 0.4426 0.5178
MotMix-D(MLP)-r2 0.1763 0.3443 0.4140 0.4961 0.1791 0.3511 0.4268 0.4989
MotMix-D(GRU)-r1 0.1884 0.3617 0.4407 0.5136 0.1899 0.3685 0.4422 0.5151
MotMix-D(GRU)-r2 0.1743 0.3512 0.4223 0.4881 0.1768 0.3541 0.4248 0.4896

Table 3. Comparisons of prediction errors between the origi-
nal baselines (isolated) and baselines with MLP/GRU-based De-
FeeNet (round 1 and round 2). We conduct experiments on BA-
BEL with (a) only single-action samples (i.e., w/o transi) and (b)
two-action samples with transitions between different actions (i.e.,
w/ transi). Lower errors in round 2 (marked in bold) show that the
deviation produced previously is effective to improve the subse-
quent prediction accuracy. We abbreviate our DeFeeNet as D.

2080Ti. In MLP-based version, the hidden layer size of
temporal-mixing and spatial-mixing is set to the same as the
corresponding dimensions of the basic pipeline. In GRU-
based version, the hidden size is set to 256 regardless of the
basic model, while fully-connected layers are used for di-
mension alignment. Details are provided in the supplemen-
tal material. For LTD-GCN, STS-GCN, and MotionMixer,
we jointly train each baseline with our DeFeeNet with learn-
ing rate as 0.0005, 0.01 and 0.01, respectively. We train 50
epochs on Human3.6M and 100 on BABEL.

4.4. Results on Human3.6M

Table 1 presents the prediction errors of models with and
without DeFeeNet inserted on Human3.6M dataset. With-
out DeFeeNet, current baselines observe and predict human
motions within the isolated short unit (i.e., length of 10
frames is 400 ms). However, we jointly train two rounds of
prediction process, wherein the prediction deviation gener-
ated in round 1 (r1) is detected and learned by our inserted
DeFeeNet, in order to assist the original pipeline to pre-
dict with this previous deviation as feedback to improve the
performance of round 2 (highlighted in purple background
color). Values in bold indicate lower errors, which prove
that this deviation information between adjacent prediction
rounds is valid for prediction improvement.

To demonstrate the stability of DeFeeNet for consecu-
tive human motion prediction, we further show the results
of consecutive 10 rounds of prediction in Table 2. From
errors of round 2 to 10, we observe that, compared to base-
lines which treat motion prediction as a task within the iso-
lated unit, our deviation-aware prediction manner could sta-
bly produce improved results during a sustained period of
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w/o transi w/ transi
LTD-GCN [27] STS-GCN [34] MotionMixer [4] LTD-GCN [27] STS-GCN [34] MotionMixer [4] STS-GCN [34]

frame num. avg avg avg avg avg avg 3 6 8 10
isolated 0.4077 0.4581 0.3809 0.4221 0.4673 0.3925 0.2394 0.4323 0.5536 0.6438

-D(MLP) -D(GRU) -D(MLP) -D(GRU) -D(MLP) -D(GRU) -D(MLP) -D(GRU) -D(MLP) -D(GRU) -D(MLP) -D(GRU) -DeFee(MLP)
r1 0.4015 0.4038 0.4392 0.4421 0.3758 0.3761 0.4089 0.4055 0.4413 0.4385 0.3785 0.3766 0.2372 0.4112 0.5139 0.6029
r2 0.3842 0.3901 0.4185 0.4239 0.3590 0.3589 0.3982 0.3963 0.4270 0.4265 0.3547 0.3599 0.2342 0.3965 0.4949 0.5824
r3 0.3810 0.3890 0.4122 0.4203 0.3611 0.3566 0.3815 0.3802 0.4205 0.4189 0.3502 0.3582 0.2332 0.3920 0.4845 0.5723
r4 0.3808 0.3826 0.4132 0.4277 0.3582 0.3540 0.3877 0.3845 0.4223 0.4192 0.3610 0.3570 0.2316 0.3904 0.4897 0.5777
r5 0.3855 0.3865 0.4166 0.4359 0.3545 0.3578 0.3840 0.3866 0.4290 0.4133 0.3579 0.3613 0.2330 0.3933 0.4952 0.5946

Table 4. The consecutive 5 rounds of prediction errors on BABEL (w/o or w/ transi). The detailed errors of STS-DeFee(MLP) at frame 3,
6, 8, 10 are presented on the right. Average errors (avg) of these four testpoints produced by other baselines with DeFeeNet (abbreviated
as D) are also provided. From round 2 to 5, our method could stably yield lower prediction errors than isolated baselines (marked in bold).

r10r6 r7 r8 r9

ꞏꞏꞏ

ꞏꞏꞏ

ꞏꞏꞏ

walking together

ꞏꞏꞏ

ꞏꞏꞏ

ꞏꞏꞏ

0 sec. 2.0 sec. 2.4 sec. 2.8 sec. 3.2 sec. 3.6 sec.

observation

w/o
deviation

w/
deviation

Figure 4. Visualized comparisons of consecutive motion prediction w/o or w/ deviation feedback on a sample walking together from
Human3.6M. Due to the limited space, we only provide 3 prediction rounds (r6, r7, r8) out of 10, with each round marked by a unique
color (details are provided in Section 4.4). Here the original predictor is LTD-GCN [27], and we add our MLP-based DeFeeNet on it.
From top to bottom: observation/GT (covering a relatively long horizon of motions for consecutive prediction), w/o deviation (directly
employing the existing predictor round by round to roughly implement consecutive prediction), w/ deviation (deviation-aware consecutive
prediction with DeFeeNet). Poses drawn in dashed lines indicate GT, and our DeFeeNet helps to yield improved prediction.

time. Figure 4 shows visualized comparisons of consecu-
tive motion prediction w/o or w/ deviation feedback on a
sample of action walking together. We provide r6, r7 and
r8 out of the total 10 rounds that marked with different col-
ors. For example, in r8, the existing predictor only takes as
input the poses in the yellow box from line GT as observa-
tion, and then predict the poses in the yellow box from line
w/o deviation, to roughly implement one round of predic-
tion. However, our DeFeeNet is able to detect the deviation
between current observation and previous prediction of r7
(poses in the mint green from line w/ deviation), and there-
fore use this deviation feedback to predict more accurately
(see poses in the yellow box from line w/deviation). Mean-
while, these predicted poses could also help the next round
of prediction (r9) in the same manner as above. Note that
we only draw 4 poses in each observed/predicted box for
space saving, and the actual pose number is 10.

Additionally, in both Table 1 and 2, we find that round
1 is also improved although there is no deviation involved.
This is reasonable as the total loss for each sample is calcu-
lated by adding the prediction loss of round 1 and 2, which

means that the second loss would also have an effect on the
first prediction. To remove such effect, ablation study is
given in supplemental material, containing comparison be-
tween deviation feedback enabled/disabled, to further show
the effectiveness of DeFeeNet on accuracy improvement.

4.5. Results on BABEL

We provide the prediction errors of models with and
without DeFeeNet inserted on BABEL in Table 3. We con-
duct experiments on (a) BABEL w/o transi (only single-
motion samples of 11 action categories) and (b) BABEL
w/ transi (involving two-action samples and the in-between
action transitions within the 11 categories). From the table,
our DeFeeNet is effective for error reduction whether action
changing is involved or not. Similar to Human3.6M, the
deviation produced by round 1 is learned by DeFeeNet and
therefore can be used to improve the next round of predic-
tion, which lays the foundation for consecutive motion pre-
diction that requires deviation feedbacks round by round.

We also present the stability validation results in Table
4, which shows the errors of consecutive 5-round predic-
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 r1  r2  r3  r4  r5

stand transition throw

observation

w/o
deviation

w/
deviation

0 sec. 0.33 sec. 0.67 sec. 1.00 sec. 1.33 sec. 1.67 sec. 2.00 sec.

Figure 5. Visualized comparisons of consecutive motion prediction w/o or w/ deviation feedback on a sample stand-transition-throw from
BABEL. Each round is marked with a unique color. Here the original predictor is STS-GCN [34] to roughly implement consecutive
prediction. We add our GRU-based DeFeeNet on it, and obtain the improved prediction results with more accurate and elegant motions.

tion. Although slightly fluctuating, our DeFeeNet is still
able to constantly get lower errors than isolated baselines.
We provide the visualized comparisons on a sample named
stand-transition-throw in Figure 5. As shown in the figure,
our deviation-aware consecutive prediction could yield ac-
curate prediction results even when faced with challenging
action-changing samples. This is reasonable, as DeFeeNet
is more sensitive to local information, i.e., the prediction de-
viation that just happened, which is a potential factor of ac-
tion state changes. In our experiments, 5 rounds of predic-
tion with observation part included accounts for 60 frames
(i.e., 2 seconds). We do not select a longer horizon (like
Human3.6M) due to that many motion sequences in [26]
are shorter than 50 frames and cannot be processed as test
samples for our multi-round prediction.

4.6. Ablation Study

To further validate our pipeline-inserted design is effec-
tive yet tailored to human motion prediction, and prove its
essential difference against the “residual correction” spirit
(mentioned in Section 2.2), we modify our DeFeeNet as
DeFee-corr: a post-processing step of existing human mo-
tion predictors that aims to correct the already-produced
prediction. The main architecture is retained but moved to
the end of existing predictors, which detects previous pre-
diction deviation, and then maps it into an estimated de-
viation embedding to be directly added on current round
of prediction as “correction”. From Table 5, DeFee-corr
fails to yield the improvement like ours, as baselines in-
serted with DeFeeNet allows for joint decoding on both cur-
rent observation and previous deviation information, which
leverages the decoding power of the existing predictors and
therefore predict naturally improved motions, while sim-
ply adding the deviation vector produced by the simple yet
small DeFee-corr for prediction correction is not suitable
for delicate human motion data.

LTD-GCN [27] STS-GCN [34] MotionMixer [4]
isolated 0.4221 0.4673 0.3925

MLP GRU MLP GRU MLP GRU
DeFee-r2 0.3945 0.3923 0.4150 0.4224 0.3640 0.3613

DeFee-corr-r2 0.4187 0.4122 0.4472 0.4603 0.3838 0.3892

Table 5. Comparisons of round 2 prediction errors (average on
frame 3, 6, 8, 10) between DeFeeNet and DeFee-corr on BABEL
w/ transi. Values in bold indicate lower errors.

5. Conclusion

We reformulate current human motion prediction task
from the consecutive perspective which covers multiple
rounds of “observe then predict”, and argue that each round
of prediction accuracy can be improved if the prediction
deviation generated in previous round is well detected and
learned by robots/machines for practical use. In this paper,
we propose DeFeeNet with MLP-based version and GRU-
based version, both of which are simple yet effective, and
can be inserted to existing human motion prediction mod-
els to realize deviation perception and feedback across ad-
jacent prediction units. Our DeFeeNet is able to produce
stably improved prediction during a relatively long horizon
on Human3.6M as well as the more recent and challenging
BABEL that contains samples with different actions and the
in-between transitions.

Limitations. In real world, observations obtained by de-
vices may contain noises and occlusions, which harm the
deviation perception process, whose failure would further
harm prediction quality. To utilize prediction deviation un-
der imperfect condition still requires follow-up research.
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