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Abstract

The dilemma between plasticity and stability arises as a
common challenge for incremental learning. In contrast, the
human memory system is able to remedy this dilemma owing
to its multi-level memory structure, which motivates us to pro-
pose a Bilevel Memory system with Knowledge Projection
(BMKP) for incremental learning. BMKP decouples the
functions of learning and remembering via a bilevel-memory
design: a working memory responsible for adaptively model
learning, to ensure plasticity; a long-term memory in charge
of enduringly storing the knowledge incorporated within the
learned model, to guarantee stability. However, an emerging
issue is how to extract the learned knowledge from the work-
ing memory and assimilate it into the long-term memory. To
approach this issue, we reveal that the parameters learned
by the working memory are actually residing in a redundant
high-dimensional space, and the knowledge incorporated in
the model can have a quite compact representation under
a group of pattern basis shared by all incremental learning
tasks. Therefore, we propose a knowledge projection pro-
cess to adaptively maintain the shared basis, with which the
loosely organized model knowledge of working memory is
projected into the compact representation to be remembered
in the long-term memory. We evaluate BMKP on CIFAR-10,
CIFAR-100, and Tiny-ImageNet. The experimental results
show that BMKP achieves state-of-the-art performance with
lower memory usage1.

1. Introduction
In an ever-changing environment, intelligent systems are

expected to learn new knowledge incrementally without for-
getting, which is referred to as incremental learning (IL)

*Corresponding author: Yangli-ao Geng (gengyla@bjtu.edu.cn).
1The code is available at https://github.com/SunWenJu123/BMKP

[8,18]. Based on different design principles, many incremen-
tal learning methods have been proposed [16,19,24]. Among
them, memory-based models are leading the way in perfor-
mance and have attracted enormous attention [3, 17, 26, 33].

The core idea of memory-based methods is to utilize
partial old-task information to guide the model to learn with-
out forgetting [20]. As illustrated in Figure 1 (a), memory-
based methods typically maintain a memory to store the old-
task information. According to the type of stored informa-
tion, memory-based methods further fall into two categories:
rehearsal-based and gradient-memory-based. Rehearsal-
based methods [3, 17, 28, 29, 39] keep an exemplar memory
(or generative model) to save (or generate) old-task samples
or features, and replay them to recall old-task knowledge
when learning new tasks. However, the parameter fitting of
new tasks has the potential to overwrite the old-task knowl-
edge, especially when the stored samples are unable to ac-
curately simulate old-task data distributions, leading to low
stability. Gradient-memory-based methods [26, 33] maintain
a memory to store the gradient directions that may interfere
with the performance of old tasks, and only update the learn-
ing model with the gradients that are orthogonal to the stored
ones. Although the gradient directions restriction guarantees
stability, this restriction may prevent the model from being
optimized toward the right direction for a new task, which
would result in low plasticity. Therefore, both of these two
types of methods suffer the low plasticity or stability. The
reason is that their model is in charge of both learning new
task knowledge and maintaining old task knowledge. The
limited model capacity will inevitably lead to a plasticity-
stability trade-off in the face of a steady stream of knowledge,
i.e., plasticity-stability dilemma [21].

In contrast, human brains are known for both high plas-
ticity and stability for incremental learning, owing to its
multi-level memory system [7]. Figure 1 (b) illustrates how
a human brain works in the classic Aktinson-Shiffrin human
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Figure 1. Diagram of memory-based incremental learning method (a), Atkinson-Shiffrin human memory model [30] (b), and the architecture
of the proposed BMKP (c).

memory model [30]. Inspired by the mechanism of human
memory, this paper proposes a Bilevel Memory model with
Knowledge Projection (BMKP) for incremental learning. As
illustrated in Figure 1 (c), BMKP adopts a bilevel-memory
design, including a working memory (corresponds to the
short-term memory of the human brain) and a long-term
memory. The working memory is implemented as a neural
network responsible for adaptively learning new knowledge
and inference. The long-term memory is in charge of steadily
storing all the learned knowledge. Similar to the human
memory, this bilevel-memory structure endows BMKP with
both high plasticity and stability by decoupling the functions
of learning and remembering.

An emerging issue for this bilevel memory framework
is how to extract the learned knowledge from the working
memory and assimilate it into the long-term memory. In the
working memory, the knowledge is represented as the trained
parameters in a high-dimensional space, which we call Pa-
rameter Knowledge Space (PKS). However, this space is
usually overparameterized [6], implying that the knowledge
representation in PKS is loosely organized. Therefore, in-
stead of directly storing the learned parameters, we propose
to recognize the underlying common patterns, and further
utilize these patterns as the basis to represent the parameters.
Specifically, we define the space spanned by these pattern
basis as the Core Knowledge Space (CKS), in which the
knowledge can be organized in a quite compact form with-
out loss of performance. Based on these two knowledge
spaces, we propose a knowledge projection process to adap-
tively maintain a group of CKS pattern basis shared by all
incremental learning tasks, with which the loosely organized
model knowledge in PKS can be projected into CKS to ob-
tain the compact knowledge representation. The compact
representation, instead of the raw model knowledge, is trans-

ferred to the long-term memory for storing.
The contributions of this work are summarized as follows:

• Inspired by the multi-level human memory system, we
propose a bilevel-memory framework for incremental
learning, which benefits from both high plasticity and
stability.

• We propose a knowledge projection process to project
knowledge from PKS into compact representation in
CKS, which not only improves memory utilization effi-
ciency but also enables forward knowledge transfer for
incremental learning.

• A representation compaction regularizer (Eq. (4)) is
designed to encourage the working memory to reuse
previously learned knowledge, which enhances both
the memory efficiency and the performance of BMKP.

• We evaluate BMKP on CIFAR-10, CIFAR-100, and
Tiny-ImageNet. The experimental results show that
BMKP outperforms most of state-of-the-art baselines
with lower memory usage.

2. Related Work
Incremental learning requires models to learn new knowl-

edge incrementally without forgetting [18]. Specifically, this
work focuses on task incremental learning, which is known
as a conventional setting in IL research [32]. The task la-
bel of a query sample is available in many scenarios, such
as cross-camera recognition and multi-lingual translation
tasks. Moreover, the Task-IL setting allows us to simplify
the problem scenario and devote more effort to the targeted
challenge, the plasticity-stability dilemma.

According to the mechanism for preventing forgetting,
incremental learning methods can be categorized into three

20187



classes: regularization-based methods, expansion-based
methods, and memory-based methods. Regularization-based
methods alleviate forgetting with regularization terms. Some
methods apply knowledge distillation to regularize the activa-
tions of neural networks [10,16,39]. Other methods measure
the importance of network parameters and then limit their
changes when learning new tasks [1, 14, 38]. Expansion-
based methods dynamically expand the network capacity
during incremental learning. Progressive neural networks
(PGN) [25] creates a specific network for each task and
transfers knowledge among different networks through hor-
izontal connections. However, the memory usage will in-
crease linearly with the number of learned tasks. To miti-
gate the memory usage, Dynamically Expandable Networks
(DEN) [37], Reinforced Continual Learning (RCL) [34],
and Additive Parameter Decomposition (APD) [36] only
expand the width of networks when capacity is insufficient.
Memory-based methods keep an extra memory to store old-
task sample information, including rehearsal-based meth-
ods and gradient-memory-based methods. Rehearsal-based
methods [3,4,29,35] keep an exemplar memory or generative
model and replay old-task (pseudo) samples or features when
learning new tasks to prevent forgetting. Gradient-memory-
based methods [5, 17, 26, 33] calculate or keep the gradient
directions that can interfere with the model performance for
old tasks, and constrain the gradient descent direction to be
orthogonal to them. Like gradient-memory-based methods,
BMKP also stores the model information for the old tasks,
but BMKP chooses to store the projected knowledge instead
of the gradient information in light of the human memory
mechanism.

3. Preliminary

3.1. Human Memory Mechanism

Human beings are skilled in learning new knowledge
incrementally owing to their delicate brain structure and ef-
fective memory mechanism [7, 30]. As shown in Figure 1
(b), the classic Atkinson-Shiffrin human memory model [30]
deems that human memory consists of three separate compo-
nents: sensory memory, short-term memory, and long-term
memory. The sensory memory is responsible for caching
signals caused by environmental stimuli. Compared with
the sensory memory, the short-term memory has a larger
capacity and a longer storage duration, which allows it to
process the cached signals into information to facilitate hu-
man decision-making and behavior. After that, the brain
performs a rehearsal step to re-organize important informa-
tion into compact knowledge, which is then transferred to the
long-term memory for storing. The long-term memory has
the largest capacity and the longest storage duration among
the three components, where the stored knowledge can be re-
trieved back to the working memory as the brain need. This

multi-level memory structure endows the human brain with
three advantages: (i) plasticity to learn new knowledge, (ii)
stability to maintain old knowledge, (iii) efficient memory
utilization to store tremendous knowledge with compact
representations. These advantages ensure the incremental
learning ability of human beings.

3.2. Problem Definition

This work focuses on the task incremental learning setting
(Task-IL) [32], where a model is required to learn knowl-
edge from a stream of datasets of T tasks: D1, D2, . . . ,
DT . Specifically, during training the task t, only the dataset
Dt = (Xt, Yt) is available, where Xt and Yt denote the
feature set and the label set, respectively. The knowledge
for dealing with different tasks is generally distinctive. In
the supervised classification context, the classes to be recog-
nized in different tasks are disjoint, i.e., Yt1 ∩ Yt2 = ∅ for
t1 ̸= t2. During testing, the model is evaluated on all the
learned tasks, where the task identification, along with each
test sample, is provided to the model.

4. Bilevel Memory Framework
4.1. Overview

Motivated by the human memory mechanism, we pro-
pose a bilevel memory framework for incremental learning,
including the following two memory units.

Working memory is responsible for adaptively learning
new knowledge and inference. This component is imple-
mented as a L-layer neural network, it receives an input
sample x and outputs a prediction ŷ for x:

ŷ = f(x;W ), (1)

where W = {W 1, ...,WL} denotes the network parameters
of all the L layers. To be more specific, for the l-th layer
with parameter W l ∈ Rpl+1×pl , where pl denotes the input
dimension of the l-th layer, features are extracted based on
the output from the last layer:

Zl = W lX l X l+1 = σ(Zl), (2)

where X l ∈ Rpl×n is the feature extracted by l-th layer, n
denotes the number of training samples, and σ is a parameter-
free non-linear unit such as the ReLU activation. Noting that
any convolution layer can be efficiently transformed into a
fully connected layer2, we assume W l to be the parameter
matrix of a fully connected layer in this paper without loss
of generality.

Long-term memory is in charge of storing all learned
knowledge. Also, the knowledge can be reloaded into the
working memory for inference. A trivial idea is storing
parameters learned by working memory directly, known as

2See Figure 1 in Appendix for an illustration.
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Figure 2. Diagram of training (left) and testing (right) processes of BMKP.

single-task learning [26]. However, as the number of tasks
increases, the storage overhead of this simple idea becomes
prohibitive. Our solution is seeking a core low-dimensional
subspace of the original model parameter space, such that
the projection of knowledge (i.e., model parameters) into
that subspace incorporates valuable information as much as
possible but with much more compact representations. We
elaborate on our idea in the following.

4.2. Knowledge Spaces

Given a neural network model, the knowledge contained
in the model can be thought of as the ability to transfer a
given input to the expected output, which can be further
explicitly represented by the network parameters W in PKS.
However, this trivial representation is quite loose since neural
networks are usually overparameterized [6], implying that
a lot of redundant dimensions may exist in W . Besides, as
a common assumption for incremental learning [13], the
knowledge from different tasks can be expected to share
common underlying patterns. The above facts motivate us
to identify more compact knowledge representations for the
bilevel memory framework.

Observing Eq. (2), Zl are generated by the linear combi-
nation of the columns of W l. We can infer that only the part
of W l which falls into the column space of Zl contributes
the knowledge for extracting Zl. To be more specific, let
Bl be a group of basis of the space spanned by Zl, the first

equation in Eq. (2) leads to

Zl = BlBl⊤Zl = BlBl⊤W lX l

= Ŵ lX l

= BlAlX l,

(3)

where Ŵ l = BlBl⊤W l denotes the projection of W l into
the column space of Zl and Al = Bl⊤W l is the coefficient
matrix of Ŵ l under the basis of Bl.

Equation (3) indicates that Ŵ l contains all the knowledge
which processes given input X l to the expected output Zl,
and the coefficient matrix Al can be viewed as a compact
knowledge representation of W l. Therefore, we call the
space Ŵ l resides in (i.e., the space spanned by Zl) as the
Core Knowledge Space (CKS), and the basis of CKS Bl as
the pattern basis.

5. Bilevel Memory with Knowledge Projection
Based on the bilevel memory framework described in Sec-

tion 4, a knowledge projection process is introduced as the
bridge between the two memories, which together constitute
the proposed BMKP. For ease of the ensuing presentation,
let us recall some key notations introduced in Section 4.2.
In the entire training process of BMKP, a group of pattern
basis of CKS B = {B1, ..., BL} is adaptively maintained
and will be extended as needed, where Bl denoted the basis
of the l-th network layer. With the basis B, the knowledge
(i.e. parameters of a well-trained model) learned for the t-th
task can be represented by At = {A1

t , ..., A
L
t }.

As illustrated in the left part of Figure 2, the BMKP
training process for a task t consists of three steps: work-
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ing memory learning, knowledge projection, and long-term
memory updating, which will be elaborated on in the follow-
ing subsections.

5.1. Working Memory Learning

Following the principle of minimum energy consump-
tion, brains always try to represent new knowledge by pre-
viously built patterns. Motivated by this principle, BMKP
encourages the working memory to learn new knowledge
with respect to the pattern basis B. Specifically, we expect
that the learned parameters W can be represented by B as
well as possible, which leads us to propose the following
representation compaction regularizer:

Lreg(W ) =

L∑
l=1

Trace
(
(W l − W̃ l)

⊤
(W l − W̃ l)

)
∥∥∥(W l − W̃ l)

⊤
(W l − W̃ l)

∥∥∥
1

, (4)

where W̃ l = BlBl⊤W l denotes the orthogonal projection
of W l into CKS. Intuitively, the numerator of Eq.(4) mini-
mizes the Frobenius norm of the residual W l − W̃ l, which
actually encourages W l to fall into CKS spanned by Bl so
that the knowledge of old tasks can be transferred for the
current task learning; On the other hand, the denominator
maximizes the second moment of the residual, which essen-
tially regularizes W l−W̃ l to be approximately low-rank (i.e.,
the rows of W l−W̃ l approximately lie in a low-dimensional
subspace). We empirically find that this regularizer (With a
proper weight) can not only reduce memory overhead but
also enhance the performance of BMKP, as shown in Table
3.

Consequently, the working memory learning process for
the task t can be formulated as

Wt ←− argmin
W

Ltask(W,Dt) + λLreg(W ), (5)

where Ltask denotes the loss function for task t learning
(e.g., cross-entropy loss for classification), and λ is a hyper-
parameter weighting the regularizer.

5.2. Knowledge Projection

Next, BMKP pursues a compact representation in CKS
for the learned knowledge Wt in PKS. However, directly
projecting Wt into CKS may incur erratic knowledge loss
and further downgrade the model performance. To overcome
this drawback, we first properly extend the CKS basis B so
that CKS can accommodate Wt well. Recall that in Eq.(3),
we derive that the effective part of Ŵ l

t falls into the column
space of Zl

t . This fact motivates us to build new pattern basis
from the column space of Zl

t. Specifically, we design the
following basis updating process:

U l
tΣ

l
tV

l
t

⊤ ←− SVD
(
Zl
t −BlBl⊤Zl

t

)
,

Bl ←−
[
Bl U l

t
⊤
]
,

(6)

Algorithm 1: BMKP for Task Incremental Learning
Input: Datasets {D1, . . . , DT }
Output: Knowledge representations

A = {A1, . . . , AT }; Pattern basis B
1 Initialize B;
2 A←− ∅;
3 for t = 1, . . . , T do
4 Wt ←−Working_Memory_Learning(Dt, B)
5 // Refer to Eq. (5)
6 At, B ←− Knowledge_Proj.(Wt, Xt, B)
7 // Refer to Eq. (6) and (7)
8 At ←− Long-term_Memory_Updating(At, B)
9 // Refer to Eq. (8)

10 A←− A ∪ {At};

where SVD(·) denotes the singular value decomposition op-
erator. To keep the basis compact, we introduce the retained
singular-value ratio3 to make basis selection. Only the basis
corresponding to the retained singular values is added. No-
tably, all the pattern basis in Bl are orthonormal due to the
definition of singular vectors. Furthermore, the updating of
Bl will not break this property since the new basis in U l is
guaranteed to be orthogonal to the existing one.

With the updated basis Bl, we can project W l
t into CKS

with little knowledge loss:

Bl⊤W l
t = Al

t. (7)

By applying knowledge projection to all the layers of Wt, we
acquire the knowledge representation At = {A1

t , . . . , A
L
t }

and the updated pattern basis B = {B1, . . . , BL}. It is clear
that At provides a compact representation for Wt under the
pattern basis B. Notably, the expansion of B may incur a
dimension mismatching problem between B and the knowl-
edge representations Aj for the previous task j (j < t).
Fortunately, as the expansion of B is strictly incremental,
when we need to compose Wj from Aj and B, the dimension
mismatching problem can be addressed by simply clipping
the superfluous basis4 (which are never used by Aj) from B.

5.3. Long-term Memory Updating

Through the knowledge projection, Wt is re-expressed
by At with the pattern basis B. However, this re-expression
may not be perfect since some minor basis are dropped
through threshold selection, which may incur a performance
degradation. We introduce a recall mechanism to handle this
issue: re-training the task t with the At in CKS. This step

3It is defined as the ratio of the sum of retained singular values to the
sum of total singular values.

4We provide more details in Section 3.2 in Appendix.
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Table 1. Comparison results on several datasets. We report the average accuracy (%) over five runs with random seeds, and the higher is
the better. (*) indicates the upper-bound model that is jointly trained with all tasks. (-) means that the result was unavailable, due to the
intractable training time by our implementation or missing in the original paper. (†) implies its results are quoted from the original paper for
those using the same dataset split with us. Remarkably, the difference in the result of CIFAR-100 between GPM and GPM† can be due to the
different backbone choice: GPM adopts ResNet18 by our unified setting, while GPM† uses the 5-layer AlexNet in its original paper.

Methods Venue CIFAR-10 CIFAR-100 Tiny-ImageNet Average

Joint* - 98.07 91.18 82.01 90.42

LwF [16] TPAMI2017 91.91±0.7 63.78±4.3 58.61±1.8 71.43
SI [38] ICML2017 76.15±2.6 62.21±2.6 60.91±1.3 66.42
DGR [29] NIPS2017 91.06±7.4 44.53±2.5 - -
GEM [17] NIPS2017 85.14±2.1 62.80±2.7 44.66±1.7 64.20
oEWC [27] ICML2018 64.17±4.8 38.40±1.9 31.91±0.9 44.83
LwM [9] CVPR2019 78.01±0.8 68.88±0.9 45.57±0.2 64.15
DI [35] CVPR2020 94.46±0.6 68.43±2.1 66.12±0.9 76.34
DER [3] NIPS2020 93.13±0.3 73.26±1.3 51.22±1.5 72.54
DER++ [3] NIPS2020 93.71±0.4 74.86±1.1 53.00±0.4 73.86
DER++† [3] NIPS2020 93.88±0.5 - 51.91±0.7 -
HAL [4] AAAI2021 82.34±1.5 43.91±3.6 - -
PASS [39] CVPR2021 86.07±0.2 77.30±0.4 62.87±0.4 75.41
GPM [26] ICLR2021 86.58±0.9 70.93±0.9 59.84±0.2 72.45
GPM† [26] ICLR2021 - 72.48 - -
Adam-NSCL [33] CVPR2021 87.23±0.4 65.69±0.2 59.98±0.7 70.97
CLS-ER [2] ICLR2022 93.53±0.3 72.11±0.5 57.36±0.7 74.33
WSN [12] ICML2022 92.99±0.4 81.10±0.7 67.50±0.7 80.53
CF-IL† [23] ICLR2022 93.12 - 67.42 -
FAS [22] ICLR2022 90.89±1.3 70.89±0.6 60.10±0.2 73.96

BMKP (ours) - 94.49±0.2 79.62±0.8 70.36±0.2 81.49

can be formulated as

At ←− argmin
At

Ltask(BAt, Dt). (8)

After retraining, we store At and B in long-term memory,
and finish the learning process for the task t. Algorithm 1
summarizes the learning process of BMKP.

During testing, as illustrated in the right part of Figure 2,
BMKP first retrieves the knowledge representation At ac-
cording to the task label of the query sample, and re-compose
Wt based on At and B. Then, BMKP loads Wt into working
memory and conducts inference.

6. Experiments
6.1. Settings

Datasets: We evaluate BMKP on three image classifi-
cation datasets, including 5-split CIFAR-10 [15], 10-split
CIFAR-100 [15], 10-split Tiny-ImageNet [31]. 5-split
CIFAR-10 is constructed by splitting 10 classes of CIFAR-
10 into 5 tasks with 2 classes per task. Similarly, 10-split
CIFAR-100 is constructed by splitting 100 classes of CIFAR-
100 into 10 tasks where each task has 10 classes, and 10-split

Tiny-ImageNet is obtained by dividing Tiny-ImageNet into
10 tasks with 20 classes per task.

Baselines: We compare our method with various lat-
est and classic incremental learning methods, including
Learning without Forgetting (LwF) [16], Synaptic Intelli-
gence (SI) [38], Deep Generative Replay (DGR) [29], Gra-
dient Episodic Memory (GEM) [17], online Elastic Weight
Consolidation (oEWC) [27], Learning without Memorizing
(LwM) [9], DeepInversion (DI) [35], Dark Experience Re-
play (DER and DER++) [3], Prototype Augmentation and
Self-Supervision (PASS) [39], Gradient Projection Memory
(GPM) [26], Adam-NSCL [33], Hindsight Anchor Learning
(HAL) [4], Complementary Learning System (CLS-ER) [2],
Winning SubNetworks (WSN) [12], CF-IL [23], and Filter
Atom Swapping (FAS) [22]. Besides, we also report the
performance of a base model (Joint), which is trained by all
task data jointly. Clearly, Joint does not follow the Task-IL
setting, and its performance can be regarded as the upper
bound of incremental learning methods. Notably, some base-
lines are designed for the Class-IL setting, for which the
multi-head versions are applied for a fair comparison.

Performance metrics: Following [3, 17], we use the
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Table 2. Ablation study of basis updating and retraining.

Methods Split CIFAR-10 Split CIFAR-100 Split Tiny-ImageNet

BMKP w/o basis updating 79.44±2.7 43.00±1.9 28.27±1.1
BMKP w/o retraining 94.07±0.3 78.73±0.6 68.12±0.8
BMKP 94.49±0.2 79.62±0.8 70.36±0.2

classification accuracy (ACC) to evaluate the performance
of all methods. To alleviate the influence of randomness in
neural network training, we run all experiments five times
with random seeds and report the average performance. Be-
sides, we also report memory usage in megabyte (MB) of all
baselines, including network parameters and extra storage
(e.g., long-term memory for BMKP, exemplars for DER, and
gradients for GPM and Adam-NSCL).

Implementation details: Considering the fairness of
comparison, we compare the performance of all methods
with similar memory utilization. As the size of extra mem-
ory for GPM, Adam-NSCL, and BMKP is related to the
network width. Following [26], we apply a smaller version
of ResNet18 [11] for these three methods. In contrast, all
the other baselines employ the standard ResNet18 as the
network backbone. Besides, rehearsal-based methods need
additional memory to maintain exemplars. We provide them
with a buffer that can keep up to 500 samples. The network
parameters are optimized by the stochastic gradient descent
(SGD) optimizer and iteratively updated 50, 100, and 100
epochs on CIFAR-10, CIFAR-100, and Tiny-ImageNet, re-
spectively. Other hyperparameters are searched through a
validation set obtained by sampling ten percent samples
from the training set. For BMKP, the batch size is set to
128, and the learning rate is set to 0.05, 0.05, and 0.03 for
three datasets, respectively. The balance weight λ is tuned
from the range [0, 1, 10, 100, 1000] and set to 10, 1, and 10
for CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets,
respectively. We tune the retained singular-value ratio (Cf.
Eq. (6)) in [95%, 96%, 97%, 98%, 99%], and finally set it
to 96%, 96% and 97% for the CIFAR10, CIFAR100, and
Tiny-ImageNet, respectively. More details can be found in
our supplementary code.

6.2. Comparison Result

We first evaluate BMKP on the 5-split CIFAR-10 task. As
shown in the third column of Table 1, our method achieves
the best performance with an average accuracy of 94.49%.
Compared to the second-best DI, BMKP is 0.03% more ac-
curate on CIFAR-10 and shows greater performance on the
other two datasets, i.e., CIFAR-100 and Tiny-ImageNet. The
results on the 10-split CIFAR-100 are reported in the fourth
column of Table 1, which demonstrate that BMKP achieves
the second-best performance and comparable accuracy with
WSN. For the 10-split Tiny-ImageNet task, BMKP outper-

Table 3. Incremental learning results of BMKP with different λ
(the regularizer weight, see Eq.(5)) on 10-split-Tiny-ImageNet.

λ 0 1 10 100 1000

ACC (%) 57.41 69.18 70.36 67.41 47.97
Memory (MB) 32.15 26.81 25.05 24.98 24.78

forms all comparison baselines and achieves 70.36% aver-
age accuracy, which is 2.86% higher than the second-best
method WSN. In the last column of Table 1, we calculated
the average performance on three datasets for all methods,
and our BMKP shows the highest 81.49%, which is 0.96%
higher than the second-best method. In conclusion, with
the bilevel memory framework, BMKP ensures high plastic-
ity and stability for incremental learning, and thus achieves
state-of-the-art performance on all three benchmarks.

6.3. Ablation Study

We conduct an ablation study to investigate the effective-
ness of basis updating and retraining. As shown in Table 2,
both basis updating and retraining improve the performance
of BMKP. Furthermore, the basis updating is more important
than the retraining. It is reasonable since the basis updating
extends the representation range of model parameters which
highly affects the learning capacity for new tasks, while the
retraining is a fine-tuning process that only refines the model
performance.

6.4. Effectiveness of Representation Compaction
Regularizer

To investigate the effectiveness of the representation com-
paction regularizer, we conduct experiments by setting dif-
ferent values of λ (0, 1, 10, 100, 1000), and the results are
shown in Table 3. As can be seen, when λ = 0, i.e., the rep-
resentation compaction regularizer takes no effect, the model
has the worst performance and the highest memory usage.
As λ rises, the classification accuracy increases and reaches
the peak (70.36%) when λ = 10. However, when λ becomes
larger, the performance of the model gradually drops. This
phenomenon reveals that the representation compaction reg-
ularizer can enhance the performance of BMKP by transfer-
ring more learned knowledge. Moreover, the memory usage
of BMKP drops monotonously as λ increases, showing that
the representation compaction regularizer can improve the
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Figure 3. Diagram of ACC (%) over different memory usage (MB).

Table 4. Incremental learning results with different SVD ratio.

Dataset Metrics 0.95 0.96 0.97 0.98

CIFAR-100 ACC(%) 78.48 79.62 80.14 81.50
Mem(MB) 25.67 26.71 27.67 29.87

Tiny- ACC(%) 69.90 70.10 70.36 70.12
ImageNet Men(MB) 25.64 25.95 26.03 26.38

memory efficiency of BMKP since it encourages the model
to represent new knowledge with previous-built patterns.5

6.5. Memory Efficiency Analysis

To study the memory efficiency of BMKP, we evaluate
the performance of models with different memory usage.
However, directly controlling the memory usage of different
methods is impractical. As a comprise, we choose to adjust
the number of stored samples for the rehearsal-based method
(DER++) and scale the width of the network backbone for the
other methods (GPM, Adam-NSCL, and BMKP). Figure 3
illustrates the results of methods on the three datasets. We
notice that the performance of DER++ is greatly affected by
memory size. Because the large memory size allows DER++
to keep more samples to prevent forgetting. However, when
the available samples are limited, the performance of DER++
drops sharply as the few samples can not simulate the true
distribution of data. Besides, as for BMKP, the larger mem-
ory ensures its better performance. More importantly, with
the same memory usage, BMKP can perform the best accu-
racy on all three datasets. All of these experimental results
prove that BMKP has high memory efficiency.

6.6. Influence of SVD ratio

We provide experimental results to show the effect of the
SVD ratio (referred to as γ). As shown in Table 4, both ac-
curacy and memory usage basically increase monotonically
with γ, which is in line with our intuition that a larger γ

5We also found that the regularizer have different effects on various
layers, and carefully tuning the weights may lead to better performance.
See Section 5.8 in Appendix for a detailed analysis.

retains more basis, and thus the model can be better recon-
structed. We empirically choose γ = 0.96 for CIFAR100
and γ = 0.97 for Tiny-ImageNet to trade off accuracy and
memory usage.

7. Conclusion

Inspired by the mechanism of human memory, we pro-
pose a bilevel memory model with knowledge projection
(BMKP). BMKP applies a bilevel-memory framework, in-
cluding a working memory responsible for adaptively learn-
ing new knowledge and inference, and a long-term memory
charging for storing all learned knowledge. This structure de-
couples the functions of learning and maintaining knowledge,
which guarantees high plasticity and stability. Moreover,
motivated by the organization of human memory, BMKP in-
troduces a knowledge projection step that serves as a bridge
for the communication between these two memories, which
re-organizes high-dimensional working memory parameters
into compact task-specific knowledge representations and
task-shared pattern basis. Nonetheless, there are some limi-
tations of our model, such as missing backward knowledge
transfer, relying on task labels, and growing memory usage
with the number of learned tasks. We will address these
limitations in our future work.
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