MISC210K: A Large-Scale Dataset for Multi-Instance Semantic Correspondence

Yixuan Sun1,*, Yiwen Huang2,*, Haijing Guo2, Yuzhou Zhao2, Runmin Wu3, Yizhou Yu3, Weifeng Ge2,†, Wenqiang Zhang1,2,†

1Academy of Engineering & Technology, Fudan University, Shanghai, China
2School of Computer Science, Fudan University, Shanghai, China
3The University of Hong Kong, Hong Kong, China

\{wfge, wqzhang\}@fudan.edu.cn

Abstract

Semantic correspondence have built up a new way for object recognition. However current single-object matching schema can be hard for discovering commonalities for a category and far from the real-world recognition tasks. To fill this gap, we design the multi-instance semantic correspondence task which aims at constructing the correspondence between multiple objects in an image pair. To support this task, we build a multi-instance semantic correspondence (MISC) dataset from COCO Detection 2017 task called MISC210K. We construct our dataset as three steps: (1) category selection and data cleaning; (2) keypoint design based on 3D models and object description rules; (3) human-machine collaborative annotation. Following these steps, we select 34 classes of objects with 4,812 challenging images annotated via a well designed semi-automatic workflow, and finally acquire 218,179 image pairs with instance masks and instance-level keypoint pairs annotated. We design a dual-path collaborative learning pipeline to train instance-level co-segmentation task and fine-grained level correspondence task together. Benchmark evaluation and further ablation results with detailed analysis are provided with three future directions proposed. Our project is available on https://github.com/YXSUNMADMAX/MISC210K.

1. Introduction

Building dense visual correspondences is a sub-task of image matching, which aims at finding semantic associations of salient parts and feature points of objects or scenes [4,6,34,49]. This task has established a new way for understanding commonalities among objects in a more fine-grained manner and has been widely used for various computer vision tasks, including few shot learning [11,21,48], multi-object tracking [24], and image editing [10,15,32]. To learn general semantic correspondence, several popular datasets, such as Caltech-101 [14], FG3DCar [37], PF-WILLOW [8], PF-PASCAL [8], and SPair-71k [27], have been proposed by researchers to train machine learning models. These datasets were designed to capture large intra-class variations in color, scale, orientation, illumination and non-rigid deformation. However, although these datasets provide rich annotations, they are still far from real-world applications because each object category is only allowed to have at most one instance in each image. Moreover, for most object recognition tasks and applications, multiple objects of the same category often appear at the same time. Existing datasets only focus on one-to-one matching without considering multi-instance scenes, and thus cannot be used as simulations of real-world applications.

In this paper, we aim to reduce the gap between one-to-one matching and many-to-many matching by building a new multi-instance semantic correspondence dataset. Following PF-PASCAL [8] and SPair-71k [27], we label keypoints on objects to construct the dataset. There are several key challenges during data labeling. First, how to choose the collection of raw images that contain multiple objects in natural scenes? Second, how to choose candi-

*: Contribution Equally
\†: Corresponding Authors
date object categories that have rich keypoints with discriminative semantics? Third, how to ensure label quality while maintaining high annotation efficiency? Last, how to design an evaluation protocol for multi-instance semantic correspondence? While addressing the above issues, we construct a new multi-instance semantic correspondence dataset, called MISC210K, which collects 34 different object classes from COCO 2017 detection challenge [20] and contains 218,179 image pairs with large variations in viewpoint, scale, occlusion, and truncation. Compared with popular PF-PASCAL [8] and SPair-71k [27], MISC210K has much more annotated instances, covers a broader range of object categories and presents a large number of many-to-many matching cases. Besides, we also design a new protocol to evaluate many-to-many semantic matching algorithms. All these characteristics make MISC210K appealing to the relevant research community.

We summarize main characteristics of MISC210K as follows. First, MISC210K provides annotations for many-to-many matching. Unlike previous datasets [8, 27] which only exploit one-to-one matching, we find out all semantic correspondences among multiple objects (up to 4) across image pairs as shown in Figure 1. Second, MISC210K has more complicated annotations. The number of keypoints in SPair-71k varies from 3 to 30 across categories. In contrast, we design more keypoints to highlight object contours, skeletal joints, and other distinctive feature points that can characterize objects in detail. Third, MISC210K has a larger scale in comparison to existing datasets. It contains 218,179 image pairs across 34 object categories, which is three times larger than the previous largest dataset, SPair-71k. Fourth, intra-class variations in MISC210K are more challenging. In addition to variations considered in SPair-71k [26], we also introduce more challenging variations, such as mutual occlusion of multiple objects and perspective distortions in complex scenes.

To investigate whether MISC210K can help learn general correspondences across multiple object instances, we evaluate previous state-of-the-art methods, MMNet [49], CATs [4] on MISC210K. We also propose a dual-path multi-task learning pipeline to solve the complicated multi-instance semantic correspondence problem. For both tasks of correspondence and instance co-segmentation, we designed multi-instance PCK (mPCK) and mIOU (instance) from works [8, 25, 49]. According to the results, we identify new challenges in this task: (1) extracting discriminative features plays a precursory role to find out commonalities across multiple objects; (2) the uncertainty in the number of matching keypoints makes the matching process more difficult; (3) multiple object instances bring occlusion, interlacing, and other challenging issues. These observations indicate that multi-instance semantic correspondence is a challenging problem deserving further investigation.

This paper is organized as follows. We first describe the MISC210K dataset, its collection process, and statistics. Then we introduce a generic framework for multi-instance semantic correspondence, which enables neural networks to associate salient feature points of object instances across different images. The proposed dual-path collaborative learning (DPCL) pipeline outperforms the transfer of previous one-to-one semantic correspondence algorithms. We further analyze the characteristics of MISC210K and discuss key issues in multi-instance semantic correspondence.

2. Related Work

2.1. Semantic Correspondence Dataset

Caltech-101 [14] provides binary mask annotations of objects of interest for 1515 pairs of images to conduct rough matching. PF-WILLOW [8] and PF-PASCAL [8] provide keypoint annotations for semantic points for evaluating semantic correspondence algorithms. But these two datasets only contain 900 and 1,300 image pairs respectively, which are insufficient for training large semantic correspondence models. Later, Min et al. [27] proposed a large-scale semantic correspondence dataset, SPair-71k, which contains 70,958 image pairs with diverse intra-class variations. This dataset soon becomes popular in the research community and leads to breakthrough algorithms, including HPF [26], CATs [4], and MMNet [49]. Considering real-world applications, understanding complex scenes with multiple instances has become an important part of object recognition tasks. Work [17] firstly transferred PASCAL 3D+ dataset for semantic correspondence among multiple instances. Nevertheless, its original design for 3D pose estimation task results in lack of non-rigid object classes and skeleton-centric annotations, which is far from the request for real-world multi-instance semantic correspondence task. To fill this gap, we proposed MISC210K dataset targeting this task. As shown in Table 1, MISC210K contains 34 well chosen categories and over 210K well annotated samples for multiple instances in each image pair.

2.2. Semantic Correspondence Models

Methods for semantic correspondence can be roughly categorized into several groups: handcrafted feature based methods [2, 5, 23, 35, 38], learnable feature based methods [18, 19, 28, 39], graph matching and optimization based methods [22, 41, 46, 47], methods focusing on geometry displacement [3, 8, 9, 13, 40], and etc. Hand crafted features, such as SIFT [23], HOG [37] and DAISY [38], design robust feature descriptors with low level statistics. In NC-Net [33], DualRC-Net [19] and GOCor [39], high level semantic features of CNNs are used to build dense correspondences. SCOT [22] and DeepEMD [47] formulate the semantic correspondence as an optimal transport prob-
Table 1. Comparison of previous semantic correspondence datasets and our proposed MISC210K. The result shows our MISC210K a large-scale dataset with careful annotation on different granularities designed for the multi-instance semantic correspondence task.

<table>
<thead>
<tr>
<th>Dataset (Year)</th>
<th>Samples (classes)</th>
<th>Source Dataset</th>
<th>Annotations</th>
<th>Match Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUB [42] (2010)</td>
<td>~120,000 (200)</td>
<td>Original</td>
<td>Part Locations (15), Binary-Attributes (312), Bounding Box</td>
<td>Single</td>
</tr>
<tr>
<td>Animal-parts [30] (2016)</td>
<td>~7,000 (100)</td>
<td>ImageNet</td>
<td>Key-point (1~6)</td>
<td>Single</td>
</tr>
<tr>
<td>PF-PASCAL [8] (2017)</td>
<td>1,300 (20)</td>
<td>PASCAL VOC</td>
<td>Key-point (4~17), Bounding Box</td>
<td>Single</td>
</tr>
<tr>
<td>SPair-71k [26] (2019)</td>
<td>70,958 (18)</td>
<td>PASCAL3D+, PASCAL VOC</td>
<td>Key-point (3~30), Bounding Box, Instance Mask</td>
<td>Single</td>
</tr>
<tr>
<td>DISCOBOX [17] (2021)</td>
<td>36,292 (12)</td>
<td>PASCAL 3D+</td>
<td>Key-point (1~12)</td>
<td>Multiple</td>
</tr>
<tr>
<td>MISC210K (2022, ours)</td>
<td>218,179 (34)</td>
<td>MS COCO</td>
<td>Key-point (5~52), Bounding Box, Instance Mask, Text Description</td>
<td>Multiple</td>
</tr>
</tbody>
</table>

3. The MISC210K Dataset

To advance research on semantic correspondence towards more challenging instance-level correspondence, we build the MISC210K dataset based on the procedures shown in Figure 2. The MISC210K provides instance-level masks along with dense keypoint annotation for each instance.

3.1. Task Definition and Design Protocols

Our MISC210K dataset is composed of image pairs. In each image pair, images are named as the source and target images. Each image pair is designated an object category of interest and exists one or more object instances in that category for each image. We define the task of multi-instance semantic correspondence as follows. Suppose the mask and dense keypoint locations of every instance in the category of interest in the source image of an image pair are given.

Dense keypoint Distribution. In the previous literature, the number of keypoints to match is often smaller than ten for an image pair, and only those most significant ones are chosen. This setting suits the common understanding of ‘semantic points’, however, a limited number of keypoints hinder the process of truly understanding every part of an object, which is the ultimate goal of semantic correspondence. Hereby, MISC210K aims to provide dense keypoint annotation for every object to make it possible to explore and learn dense semantic correspondences.

Figure 2. An overview of dataset construction pipeline contains raw data collection, annotation and post processing.

The goal is to obtain, for all the keypoints of each instance in the source image, their corresponding keypoints on every instance in the category of interest in the target image. Note that this definition does not preclude the existence of object instances in categories other than the designated one in the image pairs. This task involves more complicated scenarios than usual and should be tackled more carefully by observing the following design protocols.
3D Models as Category Prototypes. Dense keypoint annotation demands a more visually comprehensive and consistent way to define keypoints for all instances of a category. The previous semantic matching literature does not need to tackle this issue because the number of keypoints is small so that their information can be easily communicated without ambiguity. To this end, we employ one 3D model per category as the 3D category prototype. We define a uniform set of keypoints for each category over its 3D prototype to clearly and unambiguously convey their spatial layout and semantics. And this set of keypoints is applied to all instances of the same category.

Multiple Relatively Integral Instances. In everyday life, images of multiple instances in the same category are quite common. Establishing keypoint correspondences among multiple instances simultaneously is key to understanding the layout of image content. However, as a keypoint matching task, each instance in an image must reveal a sufficient number of important parts. Images with too many instances are unsuited for this task as the average space for each instance is severely limited thus making keypoints occluded or indistinguishable. In MISC210K, the number of instances in the same category in each image is at most 4 to reduce the chances of ambiguous keypoints.

3.2. Dataset Construction

Raw Image Collection: Images in MISC210K are collected from the large-scale object detection dataset, Microsoft COCO [20]. COCO gathers images of everyday scenes containing objects in their natural context, thus it includes many images that contain multiple instances in the same category, which suits our instance-level semantic matching task. To ensure that images have the above multi-instance property and are of good quality for instance and dense keypoint annotation, we conduct category filtering and image selection. Certain categories in COCO are removed because they do not have a well-defined 3D prototype (e.g. no shared model for pizza and beef instance for ‘food’). After this step, we keep 34 categories as in Figure 3(a). Among images in these categories, we manually remove those with poor-quality or incorrect instance masks. Images with overly small or incomplete instances are also removed because they are unsuited for annotation. We finally choose over 300 images for each category while maintaining a balanced distribution of per-image object counts within each category. The overall distributions of numbers of object classes and instances per image are globally balanced via statistical selection as shown in Figure 3(b).

Matching Pair Annotation: For data annotation, two steps are designed namely category keypoint system definition
and human-machine collaborative annotation. Two steps are introduced as follows:

1) Category keypoint system definition: One standard 3D model is chosen as the prototype for each category so that keypoints marked on the model can clearly and visually convey their associated semantics. For keypoint selection, we use three keypoint generation schemes that focus on the skeleton, contour, and appearance, respectively. The skeleton scheme generates candidate keypoints that are skeletal joints on the 3D model (e.g., knee joints in animal-like categories). The contour scheme generates candidate keypoints lying on one of the model contours (e.g., head top point) corresponding to a set of viewpoints. The appearance scheme finds points with unique local appearance and semantics as candidate keypoints (e.g., eyes and nose).

To compare the quality of candidate keypoints generated by different schemes, we evaluate them using six distinct perspective views of the 3D model (i.e., upper, below, left, right, front, and back). As shown in Figure 3(c), we follow a voting procedure where three scores between 0 to 1 are used to evaluate the viability of candidate keypoints. The three scores are salience, completeness, and uniformity. Salience evaluates how easily a set of points can be located. Completeness reflects how thoroughly a set of points depict the model shape in a specific view. And uniformity describes how evenly a set of points are spatially distributed within a specific view. Five annotators are asked to grade three sets of candidate keypoints respectively generated by the three schemes within each of the aforementioned six perspective views, and the three resulting scores for each set of candidate keypoints are averaged. The three scores have different weights during averaging, 0.5 for salience, 0.3 for completeness, and 0.2 for uniformity. For each view, the sets of candidate keypoints receiving an average score higher than 0.5 are chosen. Keypoints chosen for all six views are merged to form the set of final keypoints for their corresponding category.

2) Human-machine collaborative annotation: Inspired by the work [43], we introduce an automatic annotation tool and construct a human-machine collaborative semi-automatic annotation pipeline. First, we ask the annotators to manually label 40% randomly chosen images in our dataset and use these annotated images to fine-tune an automatic labeling module (ALM). The trained ALM is utilized to label 30% of the remaining images. With the usage of the platform in Figure 3(d), reviewers are asked to accept, discard or slightly drag each automatically annotated keypoint to the desired location. Such human feedback is then used to retrain the ALM. The retrained model is used to annotate the remaining data followed by human review. In this way, human annotation has switched to reviewing, which greatly reduces human workload.

Dataset Statistics: Our final dataset includes 34 categories and a total of 4,812 images with 1 to 4 instances within each image. In each category, 30,000 initial image pairs are generated. We filter these image pairs to assure that at least 30% of keypoints are shared between the source and target images within each pair. This leads to 218,179 image pairs in our dataset. In addition to keypoint locations, textual descriptions of keypoint semantics are also provided. Furthermore, we associate each object instance with its mask annotation in COCO [20]. Detailed image-level (top) and pair-level (bottom) statistics are shown in the histograms in Figure 4. The constructed MISC210K dataset contains over 210K pairs from 34 object categories and covers most possible real-world object matching scenarios, such as occlusion, overlap, and significant scale differences (examples are given in Figure 5). It greatly expands the application scenarios and supports training for complex deep neural networks. Devising a unified solution for these matching
4. Benchmark Performance

In this section, we propose a dual-path collaborative learning (DPCL) pipeline which performs co-training for instance co-segmentation and multi-instance semantic correspondence to achieve instance-level key-point matching. Our DPCL pipeline, evaluation protocol and performance are given below. We also conduct ablation experiments to illustrate some characteristics of our dataset.

4.1. Dual-Path Collaborative Learning

Pipeline overview. The pipeline is composed of a backbone for feature extraction, a transformer decoder, two prediction branches for multi-instance semantic correspondence and instance co-segmentation respectively, as shown in Figure 6. Specifically, we use iBOT [51] as the feature extraction backbone and 6 cascaded transformer blocks identical to those in [12] as the decoder. Each transformer block contains one self-attention layer, one cross-attention layer and one FFN block. Given an image pair \((I_s, I_t)\), the source \((I_s)\) and target \((I_t)\) images are fed into the backbone to extract feature maps \(F_s, F_t\). These feature maps are passed through their respective decoders and then used to calculate a matrix multiplication between them to produce a 4D cost volume, which contains the similarity scores for all possible pixel pairs across the two decoded images. The cost volume is directly used for key-point matching and also concatenated with \(F_t\) for the segmentation head in Mask R-CNN.

Design of two branches. For the task of multi-instance semantic correspondence, we follow previous work on crowd localization [1, 36] and bottom-up pose estimation [16], and cascade a Sigmoid function, non-maximum suppression [29] and static thresholding to obtain final predictions. However, precise key-point matching results alone cannot solve multi-instance semantic correspondence entirely because of the inability to confirm whether multiple matching key-points in the target image actually belong to the same instance. Therefore we use an instance segmentation branch to predict instance masks used for grouping same-instance matching key-points in the target image.

4.2. Experiment Setup

Evaluation protocol. Although DISCOBOX [17] has inherited mAP metric from multi-instance pose estimation for this task, the definition of positive and negative examples in units of instances cannot well reflect the matching effect of key points. Hence, we extend the previous \(PCK\) into \(mPCK@\alpha\) (multi-instance PCK as eq 1) for this task.

\[
mPCK(\alpha) = \frac{1}{N} \sum_{i=1}^{N} \frac{TP^i_\alpha}{TP^i_\alpha + FP^i_\alpha},
\]

in this metric, we consider the difference in the number of predicted key points and ground truth and matching effect between a pair of keypoints. For given \(N\) groups of predicted and ground-truth keypoints, we firstly use Kuhn-Munkres Algorithm KMA \((P_{gt}, P_{pred}, \alpha)\), to find out matches for ground-truth \(P_{gt}\) and predicted points \(P_{pred}\). When predicted results fall into the circle of radius \(\alpha \times d\) (\(d\) is the longer side of an image, thus \(\alpha\) stands for precision), we consider \((P_{gt}, P_{pred})\) as a correct match. We defined the amount of unmatched \(P_{gt}\) as \(FN_\alpha\), unmatched \(P_{pred}\) as \(FP_\alpha\) and number of matched pairs as \(TP_\alpha\). We use averaged IOU metric for each instance (mIOU in short) to evaluate performance on multi-instance co-segmentation task.

4.3. Implementation Details

We conduct all experiments on PyTorch-GPU [31] using NVidia RTX 3090 GPUs. All input images are resized to \(256 \times 256\) and the resolution of cost volumes are scaled to \(32 \times 32\) with cost volume upscale algorithm in [49].

Figure 6. Illustration of the overall structure. (a) demonstrates our collaborative training pipeline, containing multi-instance semantic correspondence branch as well as instance segmentation branch. (b) shows the implementation of the decoder. (c) illustrates the implementation of inference procedure with our DPCL.
training, after getting cost volume from different baseline methods, we follow work [49] to extract predicted similarity heatmap, generate ground-truth heatmap and optimize model’s parameters with binary cross entropy loss. Also, an SGD optimizer is used, where learning rate is set to 0.0005 with momentum of 0.9. For both training and evaluation, the batch-size is set to 16 for all experiments. To generate keypoints from predicted similarity heatmap, we set NMS threshold as 0.7 and threshold as 0.5 to select valid predictions.

4.4. Baseline Evaluation

We provide a comprehensive evaluation of our pipeline on both tasks. For multi-instance semantic correspondence task, we transfer our multi-instance matching head to MM-Net [49] and compare results with them. We provide evaluation results for 34 categories with different α metrics. We also provide instance-level evaluation (mIOU) for DPCL.

<table>
<thead>
<tr>
<th>Method</th>
<th>α</th>
<th>fork</th>
<th>giraffe</th>
<th>horse</th>
<th>laptop</th>
<th>motor</th>
<th>motorcycle</th>
<th>mouse</th>
<th>person</th>
<th>sheep</th>
<th>skateboard</th>
<th>skis</th>
<th>stop</th>
<th>tennis</th>
<th>racket</th>
<th>tie</th>
<th>toothbrush</th>
<th>tv</th>
<th>train</th>
<th>tv</th>
<th>air</th>
<th>base</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMNet</td>
<td>0.10</td>
<td>4.19</td>
<td>3.76</td>
<td>5.39</td>
<td>5.20</td>
<td>5.22</td>
<td>4.26</td>
<td>3.80</td>
<td>7.78</td>
<td>6.56</td>
<td>5.96</td>
<td>5.54</td>
<td>7.21</td>
<td>7.21</td>
<td>5.68</td>
<td>4.85</td>
<td>7.59</td>
<td>6.44</td>
<td>4.63</td>
<td>5.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>24.93</td>
<td>32.49</td>
<td>38.71</td>
<td>34.95</td>
<td>42.19</td>
<td>33.02</td>
<td>32.80</td>
<td>55.63</td>
<td>41.13</td>
<td>44.39</td>
<td>44.90</td>
<td>51.55</td>
<td>47.83</td>
<td>35.18</td>
<td>46.41</td>
<td>31.58</td>
<td>34.30</td>
<td>39.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CATs</td>
<td>0.10</td>
<td>1.00</td>
<td>99.71</td>
<td>99.82</td>
<td>99.97</td>
<td>99.87</td>
<td>98.34</td>
<td>99.78</td>
<td>99.99</td>
<td>99.73</td>
<td>99.81</td>
<td>99.89</td>
<td>99.94</td>
<td>99.91</td>
<td>100.00</td>
<td>99.86</td>
<td>99.77</td>
<td>99.96</td>
<td>99.72</td>
<td>99.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>5.34</td>
<td>15.85</td>
<td>14.82</td>
<td>5.34</td>
<td>11.43</td>
<td>8.19</td>
<td>13.22</td>
<td>17.82</td>
<td>7.22</td>
<td>11.47</td>
<td>18.19</td>
<td>8.56</td>
<td>15.73</td>
<td>4.94</td>
<td>11.66</td>
<td>10.42</td>
<td>14.93</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>3.13</td>
<td>111.11</td>
<td>11.96</td>
<td>14.82</td>
<td>5.34</td>
<td>11.43</td>
<td>8.19</td>
<td>13.22</td>
<td>17.82</td>
<td>7.22</td>
<td>11.47</td>
<td>18.19</td>
<td>8.56</td>
<td>15.73</td>
<td>4.94</td>
<td>11.66</td>
<td>10.42</td>
<td>14.93</td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>1.00</td>
<td>98.83</td>
<td>92.41</td>
<td>96.74</td>
<td>87.54</td>
<td>90.34</td>
<td>82.90</td>
<td>88.58</td>
<td>92.71</td>
<td>87.76</td>
<td>89.40</td>
<td>86.95</td>
<td>92.45</td>
<td>89.30</td>
<td>91.67</td>
<td>91.76</td>
<td>97.84</td>
<td>91.36</td>
<td>97.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Evaluation for MMNet [49], CATs [4] and our proposed dual-path collaborative learning pipeline (DPCL). We provide mPCK result on 34 classes in MISC210K with different α metrics. We also provide instance-level evaluation (mIOU) for DPCL.

Visualization evaluation: We also provide visualization results for our proposed pipeline and two baselines in Figure 7, where three main challenges are revealed. 1) In multi-instance semantic matching, the model will generally encounter the situation of redundant or missing prediction for key points. We believe this is due to the fact that the current feature representation and alignment scheme cannot guarantee consistency for the same semantic regions. 2) Even if the matching target is kept unchanged, the apparent difference of multiple source instances will obviously affect the matching result. We attribute this to the fact that the current model features can not well achieve fine-grained information consistency, and the extraction of common information between different instances with the same semantics in an image will be a new direction. 3) When the model deals with scale variation between instances, its effect
significantly reduced. This can be explained as the excessive downsampling for extracting deep semantics limits the resolution of the cost volume. As a result, achieving the matching at the same resolution as the original image will effectively improve the model performance.

Ablation study: Here we hold on two experiments to prove the effectiveness of our dual path learning mechanism and the design of MISC210K dataset. For dual path design, we do ablation on both matching header and co-segmentation header. For both tasks when removing the supervision of the other task, performance occurs an obvious decline (8.8% for multi-instance semantic matching and 2.6% for instance co-segmentation). We believe that the fine-grained commonality enables the model to focus on the matching task and the collaborative segmentation enables the model to focus on the global consistency of the objects that are commonly needed in both tasks. However, whether there is a better task for co-training with multi-instance semantic matching and the characteristics of these tasks are waiting to be discussed. Furthermore, we tried to investigate whether our dataset can help models to handle the semantic correspondence task better. Here we first pretrained CATs and MM-Net on MISC210K and then fine-tuned them on SPair-71K. The performance has improved by 1.3% and 2.2%. We attribute this to the designed more difficult samples and more complex tasks in our dataset.

5. Future Direction

Unseen Key-point Discovery. With the usage of fine-grained keypoint annotation in MISC210K, we can propose a series of subtasks so as to investigate the generalizability of models. For example, we propose a new task named key-point discovery, where annotations about certain keypoints are removed in training set, but during testing, the model is required to discover all keypoint including hidden ones.

Matching Closed-loop Constraint. In the multi-instance semantic correspondence task, more than one key-points representing the same semantic information in both source image and target image are available. Therefore, multi-instance semantic correspondence models can be trained with a closed-loop constraint among separated instances from an image pair. Specifically, we introduce the instances form our MISC210K as I_s, I_{s+1}, ..., etc. Given a certain point P_s in I_s, corresponding point P'_{s} in the same instance is calculated from a matching chain $I_s \rightarrow I_{s+1} \rightarrow \ldots \rightarrow I_s$. As a consequence, the offset between P_s and P'_{s} can be an effective constraint to evaluate performance of methods.

Correspondence based Recognition Tasks. Our dataset can also be used for few-shot segmentation [11, 25], object detection [7], medical image processing [50] and pose estimation [45] with the multi-grained annotation. Our dataset also provides a validation platform for the methods aiming at improving the performance of a specific task with joint use of multiple granularity labels. Besides, MISC210K can also be used for applied research such as multi-object tracking, where template matching is a major component [24].

6. Conclusion

In this paper, we proposed a new multi-instance semantic matching task with a large-scale dataset (MISC210K). Compared with existing semantic matching datasets, our MISC210K has many distinctive characteristics: 1) The first defined multi-instance semantic correspondence task; 2) Evidence-based fine-grained keypoint design; 3) Human-machine collaborative annotation with closed-loop constraint and quality control; 4) Object category diversity for the robustness of semantic matching methods. For handling the problem of building up instance-to-instance correspondence as well as co-segmentation masks, we proposed the dual-path collaborative learning pipeline which proved that this schema for learning two tasks synchronously is beneficial to both sides of correspondence and segmentation. These results present some important challenges and uncover critical messages for advancing the area of semantic matching and multi-object recognition in the future.

7. Acknowledgment

This work was supported by National Natural Science Foundation of China (No.62072112, No.62106051), National Key R&D Program of China (No.2020AAA0108301), Scientific and Technological Innovation Action Plan of Shanghai Science and Technology Committee (No.22511101502, 22511102202), the Shanghai Pujiang Program Nos.21PJ1400600.
References

[27] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho. Spair-71k: A large-scale benchmark for semantic correspondence. 2019. 1, 2

[30] David Novotny, Diane Larlus, and Andrea Vedaldi. I have seen enough: Transferring parts across categories. 2016. 3

[51] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot: Image bert pre-training with online tokenizer. ICLR, 2022. 6