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Abstract

Backdoor inversion, the process of finding a backdoor
“trigger” inserted into a machine learning model, has be-
come the pillar of many backdoor detection and defense
methods. Previous works on backdoor inversion often re-
cover the backdoor through an optimization process to flip
a support set of clean images into the target class. How-
ever, it is rarely studied and understood how large this
support set should be to recover a successful backdoor.
In this work, we show that one can reliably recover the
backdoor trigger with as few as a single image. Specifi-
cally, we propose the SmoothInv method, which first con-
structs a robust smoothed version of the backdoored clas-
sifier and then performs guided image synthesis towards
the target class to reveal the backdoor pattern. SmoothInv
requires neither an explicit modeling of the backdoor via
a mask variable, nor any complex regularization schemes,
which has become the standard practice in backdoor in-
version methods. We perform both quantitaive and qual-
itative study on backdoored classifiers from previous pub-
lished backdoor attacks. We demonstrate that compared to
existing methods, SmoothInv is able to recover successful
backdoors from single images, while maintaining high fi-
delity to the original backdoor. We also show how we iden-
tify the target backdoored class from the backdoored clas-
sifier. Last, we propose and analyze two countermeasures
to our approach and show that SmoothInv remains robust
in the face of an adaptive attacker. Our code is available at
https://github.com/locuslab/smoothinv .

1. Introduction
Backdoor attacks [3–5, 9, 11, 14, 29, 30, 45], the prac-

tice of injecting a covert backdoor into a machine learn-
ing model for inference time manipulation, have become
a popular threat model in machine learning security com-
munity. Given the pervasive threat of backdoor attacks,
e.g. on self-supervised learning [7, 35], language mod-
elling [28, 47] and 3d point cloud [46], there has been
growing research interest in reverse engineering the back-
door given a backdoored classifier. This reverse engineer-
ing process, often called backdoor inversion [39], is cru-

Figure 1. Single Image Backdoor Inversion: Given a back-
doored classifier (sampled randomly from TrojAI benchmark [1]),
SmoothInv takes a single clean image (left) as input and recovers
the hidden backdoor (right) with high visual similarity to the orig-
inal backdoor (middle).

cial in many backdoor defense [15, 32] and detection meth-
ods [12,17,18,20,21,24,31,38,43,44]. A successful back-
door inversion method should be able to recover a backdoor
satisfying certain requirements. On one hand, the reversed
backdoor should be successful, meaning that it should still
have a high attack success rate (ASR) on the backdoored
classifier. On the other hand, it should be faithful, where
the reversed backdoor should be close, e.g. in visual simi-
larity, to the true backdoor.

Given a backdoored classifier fb and a support set S of
clean images, a well-established framework for backdoor
inversion solves the following optimization problem:

min
m,p

Ex∈S
[
L(fb(ϕ(x)), yt)] +R(m,p) (1)

where ϕ(x) = (1−m)⊙ x+m⊙ p

where variables m and p represent a mask and pertur-
bation vectors respectively, yt denotes the target label, ⊙
is element-wise multiplication, L(·, ·) is the cross-entropy
function and R(·, ·) is a regularization term. Since it was
first proposed in [43], Equation 1 has been adopted and ex-
tended by many backdoor inversion methods. While most
of these works focus on designing new regularization term
R and backdoor modelling function ϕ, it is often assumed
by default that there is a set S of clean images available. In
practice, however, we may not have access to many clean
images beforehind. Thus we are motivated by the following
question:

Can we perform backdoor inversion with as few clean
images as possible?

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In this work, we show that one single image is enough
for backdoor inversion. On a high level, we view back-
door attacks as encoding backdoored images into the data
distribution of the target class during training. Then, we
hope to reconstruct these encoded backdoored images via a
class-conditional image synthesis process to generate exam-
ples from the target class. Though the idea of using image
synthesis is straight-forward, it is not immediately obvious
how to do this in practice given a backdoored classifier. For
instance, directly minimizing the classification loss of the
target class reduces to random adversarial noise, as shown
in previous adversarial attacks literature [40]. Additionally,
generative models such as GANs [13] are not practical in
this setting, since we would need to train a separate gen-
erative model for each backdoored classifier, and we don’t
usually have access to the training set for the task of back-
door inversion.

Our approach, which we call SmoothInv, synthesize
backdoor patterns by inducing salient gradients of back-
door features via a special robustification process, inserted
to convert a standard non-robust model to an adversarially
robust one. Specifically, SmoothInv first constructs a ro-
bust smoothed version of the backdoored classifier, which
is provably robust to adversarial perturbations. Once we
have the robust smoothed classifier, we perform guided im-
age synthesis to recover backdoored images that the robust
smoothed classifier perceive as the target class.

Compared to the existing inversion framework in Equa-
tion 1, our approach uses only a single image as the support
set. Single image backdoor inversion has not been shown
possible for previous backdoor inversion methods as they
usually require multiple clean instances for their optimiza-
tion methods to give reasonable results. Moreover, our ap-
proach has the added benefit of simplicity: we do not in-
troduce any custom-designed optimization constraints, e.g.
mask variables and regularization. Most importantly, the
backdoor found by our approach has remarkable visual
resemblance to the original backdoor, despite being con-
structed from a single image. In Figure 1, we demonstrate
such visual similarity for a backdoored classifier.

We evaluate our method on a collection of backdoored
classifiers from previously published studies, where we ei-
ther download their pretrained models or train a replicate
using the publicly released code. These collected back-
doored classifiers cover a diverse set of backdoor condi-
tions, e.g., patch shape, color, size and location. We evalu-
ate SmoothInv on these backdoored classifiers for single im-
age backdoor inversion and show that SmoothInv finds both
successful and faithful backdoors from single images. We
also show how we distinguish the target backdoored class
from normal classes, where our method (correctly) is un-
able to find an effective backdoor for the latter. Last, we
evaluate attempts to circumvent our approach and show that
SmoothInv is still robust under this setting.

Figure 2. Backdoors of the backdoored classifiers we consider
in this paper (listed in Table 1). The polygon trigger (leftmost)
is a representative backdoor used in the TrojAI benchmark. The
pixel pattern (9 pixels) and single pixel backdoors used in [3] are
overlaid on a background blue image for better visualization.

2. Background
2.1. Backdoor Attacks

In a typical backdoor attack [3, 4, 14], an attacker injects
malicious crafted samples into the training data. The result
of such manipulation is that models trained on such data are
able to be manipulated at inference time: the attacker can
control the behavior of the model with the injected back-
door. In this work, we consider backdoor attacks on image
classification problems, which has become a common eval-
uation setting for backdoor attacks [3, 14, 42]. Typically,
a backdoor attack generates a classifier which satisfies the
following two requirements:

• Its accuracy on clean images is barely affected.
• It will always predict a certain target class yt as long

as the backdoor is applied to the input image.
The first property is desired so that it is indistinguishable
from clean classifiers by solely comparing their clean accu-
racies. Some variations and extensions of the second prop-
erty have been explored. For example, the backdoor can be
only effective on images from certain classes [16]. It is also
possible to create multiple backdoors in a single backdoored
classifier where each backdoor corresponds to a different
target class [3].

Following [27], we formalize the backdoor as a transfor-
mation function on the image space B : X → X . Given
a clean image x, one can create a backdoored image B(x).
One common and widely studied type of backdoor is patch-
based backdoor [14]: overlaying a small patch pattern p
over input x, i.e. B(x) = x ⊕ p. For such backdoor, the
backdoored classifier will classify any image with the patch
pattern present as the desired target label. However, other
forms of image transformations have also been shown to
be effective backdoors: e.g., reflection [23], image wrap-
ping [27] and Instagram filters [1]. In this work, we con-
sider patch-based backdoor in particular.

2.2. Backdoor Inversion

Previous backdoor inversion methods mostly follow the
framework in Equation 1. The goal is to find a backdoor
that is able to simultaneously flip all images in the provided
set S of clean images to the target class while at the same
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Figure 3. We propose SmoothInv, a backdoor inversion method that takes in a single image and synthesize backdoor patterns. SmoothInv
consists of two steps: a robustification process and a synthesis process. At the first step, SmoothInv constructs a robust smoothed version
of the backdoored classifier, where noisy samples of the input are either denoised by a diffusion based denoiser first or passed directly into
the backdoored classifier. Next, we synthesize backdoor patterns guided by the robust smoothed classifier, where we minimize the standard
cross entropy loss with respect to the target class, without relying on any additional regularization term.

time constraining the optimization space of the reversed
backdoor. As pointed out by [3], this is essentially finding
the smallest universal adversarial patch [6]. Existing inver-
sion methods differ in how they formulate the regularization
term R and how to model the backdoor via ϕ(x). For in-
stance, [43] applies a ℓ1 penalty regularization on the mask
variable; [20] uses a diversity loss and a topological loss to
regularize the optimization process; [39] models the back-
door via individual pixel changes without using a mask.

One challenge of solving Equation 1 is that it intro-
duces an extra binary mask variable m, which could make
the optimization process unstable. In practice, this mask
variable is often relaxed to be continuous and converted
back to binary in the end. Another optimization obsta-
cle is that it is not clear how to properly set the balancing
term between the classification loss and the regularization
loss, without a strong domain expertise or a careful hyper-
parameter search.

2.3. Randomized Smoothing
Randomized Smoothing (RS) [10] is a certified defense

method against ℓ2-norm bounded adversarial perturbations.
Given any base classifier f : X → Y and input x, RS first
constructs a smoothed classifier g with isotropic Gaussian
noise δ ∼ N (0, σ2I):

g(x) := argmaxc Pr
δ∼N (0,σ2I)

(
f(x+ δ) = c

)
(2)

It is shown in [10] that the smoothed classifier g is certi-
fiably robust in a ℓ2-norm radius R, where the noise level σ
controls the accuracy/robustness tradeoff. In this work, we
are not interested in how this certified radius is computed
exactly. However, it is necessary to know that the more ac-
curate the smoothed classifier is at classifying noisy images
x+ δ, the larger the certified radius is (and as a result, more
robust). [10] trained base classifier f under standard gaus-
sian augmentations and demonstrated non-trivial certified
accuracy on ImageNet.

Following [10], [36] proposed Denoised Smoothing
(DS) to certify the prediction of any pre-trained classifier,

i.e., not trained with gaussian augmentation. The idea is to
prepend an image denoiser D before the base classifier.

g(x) := argmaxc Pr
δ∼N (0,σ2I)

(f ◦ D(x+ δ) = c) (3)

[36] showed that prepending a custom-trained denoiser at-
tains better certified robustness than simply using the plain
pre-trained classifier. Most recently, [8] proposed Diffusion
Denoised Smoothing (DDS), which used one diffusion step
of a diffusion model as the denoiser in Equation 3. DDS
obtained state-of-the-art certified robustness. The big per-
formance boost over [36] comes from the strong ability of
diffusion models [19] to denoise Gaussian noisy images.

3. Method
An overview of our approach is given in Figure 3. Given

a backdoored classifier fb : X → Y and a clean image x
(assuming the backdoor is effective for this image), our goal
is to find the backdoor hidden in this clean image.

3.1. Motivation

On a high level, we view backdoor inversion as the prob-
lem of recovering/constructing a special type of images, i.e.
backdoored images, from the target class. We note that
class-conditional image synthesis from generative model
literature share some similarity to our goal. However, stan-
dard conditional generative models [26] do not see back-
doored images during training, and it is not practical to train
a custom one with classifier guidance from the backdoored
classifier. Our approach is most inspired from another line
of work on class-conditional image generation: the work
of [37,49] on image synthesis with adversarially robust clas-
sifiers. They showed that there were able to perform various
image synthesis task without use of any generative models.
The foundation for the success of their approach is based
on a unique property of robust classifiers, i.e. perceptually-
aligned gradients [22, 41], where salient characteristics of
target class can be revealed via a projected gradient descent

8115



process [25]. Specifically, in this work, we are interested in
how this property can be used for backdoor inversion.

We revisit the denifition of backdoored classifiers in Sec-
tion 2.1: always predicting the target class as long as the
backdoor is present in the image. In other words, the back-
doored classifiers have successfully associate the injected
backdoor as a new feature for predicting the target class, in
addition to features from clean data of the target class. We
hypothesize that in the eyes of the backdoored classifers,
those backdoored images are encoded into the data distribu-
tion of the target class. Thus, we can tackle the problem of
backdoor inversion as synthesizing a specific salient char-
acteristics of the target class: the injected backdoor. Note
that [37] is not immediately applicable here as backdoored
classifiers are not adversarially robust by construction [14].
In the next section, we describe how we reliably extract
salient backdoor characteristics from single images.

3.2. SmoothInv
Our approach, which we refer to as SmoothInv, first con-

structs a robust version of the backdoored classifier and then
performs guided image synthesis towards a target class yt.
We use a simple yet effective objective to synthesize the
backdoor pattern, where we minimize the standard cross
entropy loss with the target class. Next we describe this
robustification process and our synthesis process in details.
Robustification of Backdoored Classifiers One necessary
condition for obtaining perceptually-aligned gradients is
that the classifier itself must be adversarially robust. As
backdoored classifiers are not robust by construction, we
thus propose to use a robustification process to robustify
backdoored classifiers. The goal we hope to achieve from
this robustification process is to induce meaningful and
salient gradient signal from the resulting robust classifier.

As illustrated in Figure 3, we construct such a robust
classifier with the Randomized Smoothing technique [10],
where we smooth the prediction of the backdoored classi-
fiers under Gaussian noisy samples. Different from empiri-
cal robustness, randomized smoothing provides certified ro-
bustness guarantee, so we can be confident that the result-
ing smoothed classifier is indeed robust. We experimented
with two ways of building robust smoothed classifiers. The
first one is based on the recent proposed Diffusion Denoised
Smoothing method [7]. Specifically, Gaussian noisy images
are first processed by a denoising transformation before be-
ing fed into the classifier. The denoising transformation is a
diffusion based denoiser D.

However, on a second thought, do we really need the re-
sulting smoothed classifier to be robust on the whole data
distribution? Recall that our motivation is to elicit the
salient gradients of backdoor features. We may only need
the smoothed classifier to be robust on the actual back-
doored images. To test this hypothesis, we remove the de-
noiser from the pipeline and construct the smoothed classi-
fier directly from the backdoored classifiers. To summarize,
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Figure 4. Clean accuracy and backdoor accuracy of the smoothed
classifier at various noise levels (we use the ImageNet Blind-P as
the base backdoored classifier).

we try to construct the following smoothed classifier:

g(x) := argmaxc Pr
δ∼N (0,σ2I)

(
f ◦ T (x+ δ) = c

)
(4)

and we initialize the transformation operation T with either
the diffusion model D as a denoiser (“w/ diffusion”) or the
identity function I (“w/o diffusion”).

The smoothed classifier defined in Equation 4 is hard to
evaluate in practice, as making a prediction would require
calculating a probaility measure over a Gaussian distribu-
tion. In the original RS paper [10], obtaining a certificate
for a single image would need evaluating over 10k Monte
Carlo noisy samples on ImageNet. In this work we do not
care about the exact certification bound but rather interested
in the robustness property of smoothed classifiers. Thus
we use a continuous approximation instead, where the soft
smoothed classifier Gb : X → P (Y) is defined by:

Gb(x) :=
1

N

N∑
i=1

Fb ◦ T (x+ δi), δi ∼ N
(
0, σ2I

)
(5)

where Fb is the soft version of the backdoored classifier fb
which outputs a probability distribution over classes (and
where we will later choose N = 40, leading to a tractable
approach). This approximation allows us to obtain gra-
dients from the smoothed classifier via back-propagation.
Thus from now on, we refer to Gb as the actual constructed
smoothed classifier.

Last, we perform a sanity check on whether the
smoothed classifier Gb remains a valid backdoored classi-
fier after the smoothing procedure. We experimented with
a backdoored classifier on ImageNet (Blind-P in Table 1).
In Figure 4, we show both the clean accuracy and backdoor
ASR for the smoothed classifier Gb (w/ and w/o diffusion),
for varying σ. We can see that the original backdoor re-
mains effective within a reasonable range of noise level for
both choices of T . A complete sanity check for all back-
doored classifiers considered in this paper is in Appendix F.
Guided Synthesis of Backdoor Patterns Starting from sin-
gle images, our synthesis procedure is guided by a robust
smoothed classifier, which minimizes a cross entropy of Gb:

min
p∈∆

− logGb(x+ p)yt
(6)
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Figure 5. Progression of synthesized images throughout the opti-
mization iterations.

where the perturbation set is defined by a pre-defined ∆ =
{p | ∥p∥2 ≤ ϵ}. We use a pertubation set to prevent finding
arbitrary large perturbations. After all, we want the synthe-
sized images x + p to recover the backdoored image B(x),
which is close to the input x. As there is a constraint on the
perturbation size, we use projected gradient descent (PGD)
to solve the optimization problem in Equation 6. The per-
turbation variable p is initialized to 0. At each step, we com-
pute the gradient with respect to p and take a gradient step
with ℓ2 normalized gradient. We repeat this process until
convergence, when the loss value becomes stable. Empir-
ically we find that 400 iterations are sufficient for conver-
gence. In Figure 5, we show how the backdoor patterns
appears gradually as the optimization process evolves.
Target Class Identification For each possible class, we
can synthesize a perturbation from Equation 6. Now we
describe how we identify the target class of the backdoor,
without manually inspecting the synthesized images and
checking if there is an abnormal pattern. Previous meth-
ods use the size of reversed trigger to determine if a class
is the target class, i.e., reversed triggers from the true tar-
get class should be much smaller than those from normal
classes. However, it is not a viable strategy in our case since
we are using a fixed perturbation budget ϵ in Equation 6.

Our identification process is based on an intriguing ob-
servation we make on the synthesized perturbation p. For
perturbations p synthesized from the target class, we use it
as an additive backdoor: x′ = x + p and find that it is a
highly effective backdoor evaluated on other clean images.
The same does not hold true for normal classes, where the
synthesized perturbations barely transfer to other clean im-
ages. We empirically show this in Section 4.2. Thus, during
backdoor inversion, SmoothInv identifies a class as a target
class in a backdoored classifier when the synthesized per-
turbation from this class also leads to a high ASR.

4. Empirical Study

4.1. Experimental Setup

Backdoored Classifiers We carefully select backdoored
classifiers from well-established backdoor attacks which
satisfies the following criteria: 1) it is either published in top
conferences/venues, or has become a well-known baseline
in backdoor attacks; 2) it is demonstrated to be effective on
standard vision recognition benchmarks (e.g. ImageNet) as
this is more practical than toy datasets; 3) the collection of
these backdoor attacks should cover a wide range of back-

TrojAI [1]
HTBA [34]

Blind Backdoor [3]
Round4-131 Blind-P Blind-S

Dataset TrojAI ImageNet ImageNet ImageNet
Input Size 2242 2242 2242 2242

Arch VGG-11 AlexNet ResNet-18 ResNet-18
#Classes 38 2 1000 1000

Clean Acc 100.00% 95.00% 69.26% 68.06%
Backdoor Statistics

Patch Polygon Square Pixel Pattern Single Pixel
Location Foreground Random Upper Left Upper Left
#Pixels 1126 900 9 1
ℓ2-avg 47.51 25.09 3.08 1.04
ASR 100.00% 54.00% 99.29% 79.73%

Table 1. Statistics of backdoored classifiers we obtain from previ-
ous backdoor attack methods, including relevant model informa-
tion and detailed backdoor conditions. ℓ2-avg refers to the aver-
age ℓ2 distance between clean and backdoored images with pixel
range [0, 1]. For TrojAI, we randomly sample a backdoored clas-
sifier (round 4 with model id 131) for analysis.

door conditions, e.g., universal or label-specific, backdoor
shape, size and location. Next, we describe the four back-
doored classifiers we consider in this work, and we list the
relevant statistics of these backdoored classifiers in Table 1
and show the corresponding original backdoors in Figure 2.
1. TrojAI Benchmark [16] consists of multiple rounds of
released datasets. For each round, it consists of a mixed set
of backdoored and clean classifiers. A set of clean images
from test set is provided along with each classifier. The
backdoor is placed on foreground objects during training.
A sample backdoored image can be seen in Figure 1 mid-
dle. For our study, we randomly sample a classifier with
polygon backdoor (round 4, id-00000131) and use TrojAI
to reference this model, for comparison purposes with other
backdoored classifiers. In our case, the polygon backdoor
turns out to be label-specific, meaning that it only cause tar-
geted classification of samples from certain classes.
2. Hidden Trigger Backdoor Attacks (HTBA) [34] is a
backdoor attack method which has been shown effective
on ImageNet. It uses a square patch (size 30 × 30) as the
backdoor, which is the most common choice of backdoor in
existing backdoor attack literature [7, 14, 42]. They obtain
such square trigger by first drawing a random 4 × 4 ma-
trix of colors and resizing it to the desired patch size. The
patch backdoor is placed randomly over clean inputs. We
use their public released code to train a binary backdoored
classifier replicating their ImageNet result. We find that we
are able to match the ASR reported in [34].
3. Blind Backdoors [3] show that it is possible to backdoor
a standard ImageNet classifier with small patch backdoors.
It trains two backdoored classifiers: Blind-P with a pixel
pattern backdoor, and Blind-S with a single pixel backdoor.
The backdoor is placed on a fixed location in the top left re-
gion of clean inputs. Both the pixel pattern and single pixel
backdoors are drastically smaller than the backdoors used in
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TrojAI challenge and HTBA. It is also shown in [3] that they
can circumvent many previous backdoor defense methods,
e.g. Neural Cleanse [43]. We use its public released code to
train these two backdoored classifiers Blind-P and Blind-S.
Our Blind-P matches the reported ASR in [3]. The obtained
ASR of Blind-S model falls short of the reported number of
99% but is still fairly high (79.73%).
Evaluation Protocols and Baselines We first perform a
quantitative evaluation by comparing with the following ex-
isting backdoor inversion approaches: NC [43], TopoTrig-
ger [20] and PixelInv [39]. We also compare with a baseline
PlainAdv where we replace the smoothed classifier Gb in
Equation 6 with the base backdoored classifier instead. For
a fair comparison, we evaluate both SmoothInv and baseline
approaches under the same setting of single image backdoor
inversion. Note that existing backdoor inversion methods
can be easily adapted in this setting by using the single im-
age as the support set S in Equation 1. For each method, we
generate reversed backdoor from single clean images and
report the average ASR over 10 random starting images.
We also perform a qualitative evaluation of SmoothInv by
visualizing the synthesized images.

For the diffusion model in SmoothInv w/ diffusion, we
use the pretrained class unconditional 256 × 256 diffusion
model from [2]. While this diffusion model is trained on
ImageNet, we find that it is still a good denoiser for images
from the TrojAI benchmark. The number of noise samples
N is chosen to be 40 (later we find that 10 is enough in most
cases). We use projected gradient descent to optimize our
objective in Equation 6 with a total of 400 steps and step
size is chosen to be 0.5 × ϵ/10. Since we assume we do
not know the exact backdoor (e.g. size information) before-
hand, we use two values of perturbation size ϵ ∈ {5, 10}
with the pixel range within [0, 1]. For each backdoored clas-
sifier, we construct smoothed classifiers with four values of
noise levels {0.12, 0.25, 0.50, 1.00} with a total of 8 opti-
mization configurations. For each starting clean image, we
report the synthesized backdoor with the highest ASR. We
refer readers to Appendix C for resource considerations.

4.2. Quantitative Evaluation
We first perform a quantitative evaluation by measuring

the average ASR of the reversed backdoors over random
starting images. For SmoothInv, we use the synthesized per-
turbation p as an additive backdoor. The results on single
image backdoor inversion are shown in Table 2. We com-
pare the effectiveness of the reversed backdoor assuming
the target class is known. We can see that previous backdoor
inversion methods (NC, TopoPrior and PixelInv) all fail to
produce effective backdoors in this setting. Both SmoothInv
w/ diffusion and w/o diffusion find a highly effective back-
door for all cases. SmoothInv also outperforms a simplified
baseline PlainAdv, suggesting that the robustification pro-
cess of constructing a robust smoothed classifier is the key
to the success of our approach.

TrojAI HTBA Blind-P Blind-S
True Backdoor 100.00% 54.00% 99.29% 79.73%
PlainAdv 36.00% 54.00% 84.08% 84.89%
NC [43] 12.20% 16.00% 0.00% 0.00%
TopoPrior [20] 28.40% 22.00% 0.00% 4.39%
PixelInv [39] 10.80% 24.00% 30.75% 43.17%
SmoothInv
w/ diffusion 72.00% 83.20% 92.05% 93.90%
w/o diffusion 88.00% 88.20% 99.50% 99.53%

Table 2. Quantitative results of Single Image Backdoor Inversion
on four backdoored classifiers. We report the average ASR of the
reversed backdoor on the original backdoored classifier.
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Figure 6. ASR of the SmoothInv synthesized perturbations guided
by target class (blue) and normal class(red).

We find that SmoothInv w/o diffusion outperforms w/ dif-
fusion. We attribute this to an observation from Figure 4,
where the original backdoor are more effective for Smooth-
Inv w/o diffusion than w/ diffusion. Thus the higher the
backdoor ASR is for the smoothed classifier, the more likely
it is to reconstruct a more effective backdoor with Smooth-
Inv. This verifies our hypothesis earlier, where we do not
necessarily need high clean accuracies for the smoothed
classifier, but what is essential is that the backdoor remains
effective after the smoothing procedure.

In Figure 6, we show the ASRs of synthesized perturba-
tions from the target class (blue) versus normal non-targeted
class (red). We can see that within a reasonble range of per-
turbation size, the synthesized perturbation are a valid back-
door only when it is guided from the true backdoored class
(Equation 6). Using this property, we find that we can suc-
cessfully identify the target class for the four backdoored
classifiers we investigated, where the synthesized patterns
only have high ASRs for the correct target class. This sug-
gests the possibility of our approach to the task of backdoor
detection, which we leave as a promising future work.

4.3. Qualitative Evaluation

For each image, we show the synthesized patterns with
the highest ASRs between SmoothInv w/ and w/o diffusion.
TrojAI and HTBA. We first show results for models with
relatively large backdoors. In Figure 7, we show both
pairs of clean/synthesized images for the TrojAI and HTBA
backdoored classifiers. For TrojAI, synthesized images all
contain a concentrated region of green pixels , matching the
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(a) TrojAI-R4-131 (b) HTBA

Figure 7. SmoothInv on TrojAI and HTBA backdoored classifiers (ϵ = 10), where we show pairs of clean images and synthesized
backdoored images (best viewed when zoomed in).

(a) Blind-P (b) Blind-S

Figure 8. Visualization results on Blind-P and Blind-S models (ϵ = 5). From left to right: clean images, synthesized backdoored images
by SmoothInv, zoomed in version (a 50× 50 region in the top left) of synthesized images.

original polygon trigger in Figure 2. What’s more, Smooth-
Inv synthesizes all backdoor patterns in the foreground ob-
ject, which is exactly the place where the backdoor is placed
during training. For HTBA, SmoothInv synthesizes patterns
in the forms of small isolated color patches, e.g. red, green
and blue, while these colors are all present in the original
square backdoor in Figure 2. The locations of these pat-
terns vary across images, which could be due to the random
placement of the original backdoor during training.
Blind Backdoor The results for the Blind-P and Blind-S
models from blind backdoor attacks can be found in Fig-
ure 8. The synthesized images are shown in the middle. We
can see that SmoothInv automatically identify the region
to synthesize the backdoored patterns (in this case the top
left corner), which turns out to be the exact place where the
original backdoor is placed. For better comparison with the
original pixel pattern and single pixel backdoors in Figure 2,
we also show the zoomed in version of the 50 × 50 top left
region. Though SmoothInv does not recover the exact orig-
inal backdoor, the synthesized backdoor patterns have simi-
lar visual properties to the original one, e.g., a stark contrast
of white pixels and neighboring pixels. Moreover, we take
the perturbations from synthesized images directly as ad-
ditive backdoors and find that they achieve high ASRs of
99.87% and 98.35% on the Blind-P/S models respectively.
Diverse Initial Conditions One reason for the good syn-
thesis results in Figure 8 could be that the clean image al-
ready has a smooth background in the region of interest,

Figure 9. Synthesized images (ϵ = 5) of Blind-P with diverse con-
ditions of starting images. Clean images in the first row have non-
uniform background in the top left corner, as compared to the clean
image in Figure 8. The second row uses artificial inputs: images
with pure white/black pixels. ASR of the four synthesized back-
door perturbations on Blind-P are 82.46/75.09/100.00/100.00%.

i.e., top left corner, which could make the synthesis process
easier. We investigate how SmoothInv is affected by the ini-
tialization of starting images. Note that for TrojAI result in
Figure 7, we already show one example with rainy effects
and darker background where SmoothInv still synthesizes
faithful backdoor patterns. Here we analyze the Blind-P
model. We select two images from ImageNet testset with
non-uniform color regions (high variance in pixel values)
in the top-left corner as starting images. We also use two
artificial inputs: images with pure white/black pixels. We
show the results of SmoothInv on these images in Figure 9.
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Figure 10. Results of SmoothInv w/o diffusion on the backdoored
classifier Blind-G with a gaussian backdoor (leftmost). We show
two pairs of clean and synthesized backdoored images (ϵ = 10).

We can see that with various initial conditions, SmoothInv
consistently synthesizes backdoor patterns in the top left re-
gion, while the synthesized perturbations itself achieve high
ASRs as well. Additional visualization results are provided
in Appendix D, where we also include a comparison be-
tween SmoothInv w/ and w/o diffusion in Figure 13.

4.4. Mitigation of Adaptive Attacks

So far our experiments have focused on backdoor in-
version on backdoored classifiers obtained from previous
backdoor attacks. However, given our proposed method,
someone could design new backdoor attacks to bypass our
method, i.e. making it hard to extract effective backdoors
with SmoothInv. The core step of SmoothInv is convert-
ing a standard backdoored classifier to a robust smoothed
classifier, from which we can obtain perceptually-aligned
gradients to reveal backdoor patterns. An adaptive at-
tacker would try to circumvent SmoothInv by targeting the
smoothing procedure: making the original backdoor inef-
fective for the smoothed classifier. Here we propose two
adaptive attack attempts and show that SmoothInv is still
robust in those challenging settings.
Gaussian Backdoor One can target the SmoothInv proce-
dure by designing a backdoor which is hardly effective on
the backdoored classifier after going through the smooth-
ing process, i.e., T (B(x) + δ). One immediate choice is to
use a backdoor with pure Gaussian noise: a gaussian back-
door Bg . With such backdoor, the backdoor information can
be obfuscated after the process T (Bg(x) + δ) as δ is also
gaussian noise. We construct a gaussian backdoor of size
10×10, sampled from N (0, I) (see Figure 10 left). We use
blind backdoor [3] to obtain a backdoored ImageNet clas-
sifier with this gaussian backdoor, which we call Blind-G.
We are able to achieve an ASR of 100.00%.

On first inspection, we find that this simple gaussian
backdoor does invade the smoothing procedure of Smooth-
Inv w/ diffusion: the gaussian backdoor has an ASR of zero
even for smoothed classifier constructed with noise level
σ = 0.12. We attribute this to the use of diffusion de-
noiser D, where the Blind-G model becomes insensitive to
the diffusion denoised backdoored images D(Bg(x) + δ).
However, we find that the gaussian backdoor still remains
highly effective for smoothed classifiers (SmoothInv w/ dif-
fusion) constructed purely from the Blind-G model (Equa-
tion 2), despite a high drop of clean accuracy. We then apply
SmoothInv w/o diffusion to the Blind-G model and achieve
an average ASR of 64.84%/91.24% (ϵ = 10/20) for re-

Base Classifier Smoothed (σ = 0.25)
Clean Acc Backdoor ASR Backdoor ASR

Blind-P 69.26% 99.29% 94.90%
Blind-P* 67.60% 92.60% 59.60%
Blind-S 68.06% 79.73% 59.20%
Blind-S* 66.60% 45.80% 31.40%

Table 3. Effect of training-time intervention on backdoor attacks.

versed backdoors from single images. We visualize some
synthesized backdoor patterns in Figure 10, where a dense
colorful pattern emerges in the top left region.
Training-Time Intervention One could make the back-
door ineffective for the smoothed classifier by modifying
the training procedure. For SmoothInv, the backdoored
classifier sees the processed images T (x + δ) instead of
the original image x. An adaptive attacker can intention-
ally make the backdoored classifier misclassify backdoored
images B(x) while classifying T (B(x) + δ) correctly. To
investigate if this is possible, we design a new training ob-
jective below: (we consider SmoothInv w/o diffusion due to
resource limitations.)

α0L(x, y) + α1L(B(x), yt) + α2L(T (B(x) + δ), y) (7)

We use the pixel pattern and single pixel backdoors in Fig-
ure 2 and train classifiers with the new objective: Blind-
P*/S* (α0, α1, α2 are automatically adjusted following [3]).
We summarize the clean and backdoor accuracy of these
models in Table 3. We can see that the base classifiers
Blind-P*/S* have lower backdoor ASR compared to Blind-
P/S, suggesting that correctly classifying T (B(x) + δ) af-
fects the effectiveness of backdoor attacks in a negative way.
We also study how training-time intervention affects the ef-
fectiveness of SmoothInv on Blind-P* (attack considered
successful). We find that we are still able to synthesize
effective backdoor perturbations with an average ASR of
88.81% over 10 random starting images.

5. Conclusion
In this paper, we have presented a method for backdoor

inversion using a single clean image from the underlying
data distribution. Unlike previous optimization-based ap-
proaches, our method exploits recent advances in adversar-
ial robustness to create a smoothed version of a classifier,
and then modify the image to extract the backdoor via this
robust smoothed classifier. We show that SmoothInv is able
to recover backdoor perturbations that are both highly suc-
cessful and extremely visually similar to the true underly-
ing backdoor. Going forward, the work suggests that many
current approaches to producing backdoored classifiers can
easily be “reverse engineered” to recover the underlying
backdoor, which can provide a powerful mechanism to an-
alyze the security of existing classifiers.
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