
Stimulus Verification is a Universal and Effective Sampler in Multi-modal
Human Trajectory Prediction

Jianhua Sun*, Yuxuan Li*, Liang Chai, Cewu Lu§

Shanghai Jiao Tong University, China
{gothic,yuxuan li,chailiang1234,lucewu}@sjtu.edu.cn

Abstract

To comprehensively cover the uncertainty of the future,
the common practice of multi-modal human trajectory pre-
diction is to first generate a set/distribution of candidate fu-
ture trajectories and then sample required numbers of tra-
jectories from them as final predictions. Even though a
large number of previous researches develop various strong
models to predict candidate trajectories, how to effectively
sample the final ones has not received much attention yet.
In this paper, we propose stimulus verification, serving as
a universal and effective sampling process to improve the
multi-modal prediction capability, where stimulus refers to
the factor in the observation that may affect the future
movements such as social interaction and scene context.
Stimulus verification introduces a probabilistic model, de-
noted as stimulus verifier, to verify the coherence between a
predicted future trajectory and its corresponding stimulus.
By highlighting prediction samples with better stimulus-
coherence, stimulus verification ensures sampled trajecto-
ries plausible from the stimulus’ point of view and there-
fore aids in better multi-modal prediction performance. We
implement stimulus verification on five representative pre-
diction frameworks and conduct exhaustive experiments on
three widely-used benchmarks. Superior results demon-
strate the effectiveness of our approach.

1. Introduction

Human trajectory prediction [3, 8, 9, 17, 35, 38, 39, 43]
is a vital task towards autonomous driving systems and
social robots, bridging the perception and decision mod-
ules [4, 26, 27, 42]. Due to the fact that there is no single
correct future, one of the most important aspects of trajec-
tory prediction lies in multi-modal prediction, studying to

*contributed equally
§Cewu Lu is the corresponding author, the member of Qing Yuan Re-

search Institute and MoE Key Lab of Artificial Intelligence, AI Institute,
Shanghai Jiao Tong University, China and Shanghai Qi Zhi institute.

ℳ 𝛩

(a)

(b)

Possible Prediction Impossible PredictionObserved Trajectory

Sampled Trajectory

Distribution

Set

Figure 1. (a) Multi-modal trajectory prediction pipeline, including
two major components: base prediction model M and sampler Θ.
(b) Examples of stimulus(context)-inconsistent trajectories sam-
pled from a stimulus(context)-aware base prediction model, So-
phie [33]. Predictions in red leads to impossible regions.

cover multiple distinct future possibilities with finite pre-
dictions. Specifically, for an observation, a set/distribution
of candidate trajectories is first generated by a base predic-
tion model, after which final ones of required number are
sampled from the candidates, seeing Fig. 1-a.

To guarantee the performance of multi-modal trajectory
prediction, countless efforts have been put into the design
of prediction models in prior works using either gener-
ative or classification frameworks. For generative ones,
some popular architectures such as GAN [7], VAE [14]
and Normalizing Flow [29] have been applied and im-
proved in plenty of studies on multi-modal trajectory pre-
diction [8, 23, 33, 34, 40]. In the meantime, impressive re-
sults are also achieved with classification models such as
MultiPath [3] and PCCSNet [39]. Yet it is often neglected
that an effective sampling strategy, which selects the ap-
propriate trajectories from the collection of candidates, also
has a great impact on the prediction performance. Typically,
random or Monte-Carlo sampling is adopted as the default
one. Only a handful of works [2, 22, 46] have studied on

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

22014

sampling strategy, while they all seek to solve this prob-
lem by searching better latent vectors for generative frame-
works. Although they have achieved remarkable outcomes,
the applications of such approaches are strongly limited as
they are confined to generative frameworks only, ignoring
the other mainstream frameworks, i.e. classification ones.

Besides, there are some factors in the observation that
may influence the future movements. These factors, such
as social interaction and scene context, are referred as stim-
uli [32] and their significance of guiding accurate predic-
tions has been proven in numerous researches [15, 25, 33,
34]. Although base frameworks can learn from stimu-
lus information to generate candidate predictions, if such
information is missing in the sampling process, out-of-
distribution predictions are still highly probable to be sam-
pled and harm the overall accuracy, as illustrated in Fig. 1-b.

To raise a universal sampler taking stimulus into con-
sideration, in this paper, we propose an explicit sampling
process called stimulus verification. It first verifies the co-
herence between a candidate trajectory and its correspond-
ing stimulus, and then samples highly stimulus-coherent
ones as final results. Since the verification is an external
process beyond the base prediction model, it can be uni-
versally applied to any multi-modal prediction frameworks.
And meanwhile, stimulus information is successfully intro-
duced, ensuring that the selected samples comply with the
constrains of the involved stimuli.

Stimulus verification is built on a conditionally parame-
terized probabilistic model optimized by Maximum Likeli-
hood Estimation, namely stimulus verifier. By feeding the
candidate trajectory along with its stimulus into the veri-
fier, corresponding output likelihood reveals the trajectory-
stimulus coherence, where a higher likelihood indicates bet-
ter coherence. To this end, we can map the likelihood to a
coherence score, which further serves as the basis to sample
more stimulus-coherent predictions from a large group of
trajectory candidates.

Our method is simple to implement for any base
prediction framework in a plug-and-play manner. We
implement our approach on five representative frame-
works [8, 29, 33, 39, 43] and conduct exhaustive experi-
ments on three widely-used trajectory prediction bench-
marks, i.e. ETH [28]/UCY [16] Dataset, Grand Central Sta-
tion Dataset [47] and NBA SportVU Dataset [20], to vali-
date our approach. Superior results confirm the effective-
ness of stimulus verification.

2. Related Work

2.1. Stimulus in Trajectory Prediction

The trajectory prediction task [1, 8, 9, 11, 17, 30, 31, 48]
is proposed to forecast a series of possible future move-
ments of dynamic agents according to their past states. It

has many important applications such as autonomous ve-
hicles and service robots [9, 32]. Apart from the observed
past trajectory, the future movement of an agent is gener-
ally made by taking into account the influences of multiple
types of stimulus [32] such as scene context and social in-
teraction. Researchers have developed many different ways
to better model and learn stimulus information in trajec-
tory prediction frameworks. For example, Social GAN [8],
Social-STGCNN [25] and many other works [25, 34, 44]
introduce pooling modules or GNNs to learn the social in-
teractions among neighboring agents to generate socially
plausible trajectories and avoid collisions. And as for con-
text information, Sophie [33] and NEXT [19] design CNNs
to process images of the scene so that the model can be
aware of the physical restrictions when making predictions.
Besides, some approaches use CNNs to learn human skele-
tons or appearances [19, 21], which turn out to be helpful
as well. In this paper, we introduce commonly used social
interaction and context information as examples of stimulus
to demonstrate the effectiveness of stimulus verification.

2.2. Sampling in Trajectory Prediction

Despite the efforts put in designing stronger multi-modal
trajectory prediction frameworks, not many researchers
have paid their attention on better sampling appropriate
trajectories from the candidates output by the prediction
model. Existing ones mainly focus on increasing the di-
versity of final samples and solve this problem by searching
better latent vector for generative frameworks. For example,
DSF [46] maps forecasting context features to a set of latent
codes which can be decoded into a set of diverse trajectory
samples, and a diversity loss based on a determinantal point
process (DPP) is introduced for optimization. LDS [22]
leverages the likelihood under the pre-trained generative
model and a robust diversity loss to learn a sampling distri-
bution that induces diverse and plausible trajectory predic-
tions. Inspired by Quasi-Monte Carlo, NPSN [2] achieves
remarkable performance and remains light-weighted at the
same time. A great difference between ours and prior works
is that these approaches are only applicable for genera-
tive models such as GANs, VAEs or Normalizing Flows,
whereas ours can be adopted to any prediction model that is
capable of generating multi-modal results.

2.3. Conditional Parameterization.

When modeling a conditional probability relationship,
instead of directly learning a conditional distribution [24,
37], conditional parameterization learns a set of parameters
that are dynamically generated according to the input con-
ditions. Such formulation has previously been utilized on
vision-related researches [12, 41]. In this work, we borrow
such technique in our stimulus verifier as it can increase
the capacity of the conditional distribution and enable exact

22015

density estimation for an explicit distribution.

3. Stimulus Verification
3.1. Overview

In a typical multi-modal trajectory prediction process as
Fig. 1, a prediction framework M first receives an obser-
vation O regarding an agent over a time period of τ , and
generates a set of candidate future trajectories

Ŷ = M(O)

=
{
Ŷi = {ŷ1, ŷ2, · · · , ŷT }|i = 1, 2, · · ·

} (1)

where ŷt = (xt, yt) denotes the 2-dimensional position of
the agent at time t, and T is the prediction horizon. After-
wards, a sampling process Θ is applied to the candidates to
get the final predictions Y∗, written as

Y∗ = Θ
(
Ŷ
)

(2)

Under this paradigm, stimulus verification performs the
process described in Eq. 2. First, trajectories in Ŷ along
with the stimuli information S ∈ O are fed to the stimulus
verifier V , which evaluates the likelihood L of each trajec-
tory given its corresponding stimulus

L = V (Ŷ , S) (3)

where Ŷ ∈ Ŷ denotes a predicted trajectory candidate.
These likelihoods are then mapped to coherence scores c,

c = f (L) (4)

where f(·) is the mapping function. With the guidance of
these coherence scores, candidates highly compatible with
the stimuli can be selected as the final predictions.

In Sec. 3.2, we introduce the structure of the stimulus
verifier using two types of stimulus as examples, and we
also talk about the training of the stimulus verifier. Then in
Sec 3.3, we discuss the detailed step taken to sample trajec-
tories according to the coherence. In Sec. 3.4, we further
present the details of our implementation of the stimulus
verifier.

Discussion. Most previous sampling approaches [2, 22,
46] follow the same idea, inserting an additional module
into the generative network to sample the latent vectors
from the prior distribution. These approaches perform sam-
pling in an implicit manner which is only applicable to
generative models, and thus their applications are naturally
narrowed. In a very different way, our stimulus verifica-
tion is an explicit sampling process that directly performs
sampling on the prediction candidates, output of a multi-
modal predictor. Therefore, stimulus verification is model-
agnostic, meaning that it is applicable to any base prediction
model.

3.2. Stimulus Verifier

According to Eq. 3, stimulus verifier V evaluates the
likelihood L of a T -step trajectory X = {x1,x2, · · · ,xT }
given its corresponding stimulus S, where xt = (xt, yt) de-
notes the position. Therefore, it is implemented as a proba-
bilistic model to learn a conditional probability distribution
p

L = V (X, S) = p (X|S) (5)

To increase the capacity of the conditional distribution, we
design its architecture as a conditionally parameterized dis-
tribution [12,41], where the parameters θ of the distribution
p are dynamically generated conditioned on the given stim-
ulus information S by a stimulus feature extractor F and
a parameter generator G. Specifically, the stimulus infor-
mation S is first encoded by the feature extractor F into
stimulus representations, and then the representations are
fed to the distribution generator G to dynamically generate
the parameters θ for the base trajectory distribution p. In
this manner, the likelihood can be calculated as

L = V (X, S) = p (X; θ) = p (X;G(F (S))) (6)

Under this formulation, the stimulus verifier V consists
of three major components, a stimulus feature extractor F ,
a parameter generator G and a base distribution p. In our
implementation, p is defined as the product of all step-wise
positional distributions,

p (X; θ) =

T∏
t=1

pt (xt; θt) (7)

where each step-wise distribution pt, parameterized by θt ∈
θ, denotes the positional distribution at timestep t. We adopt
2-dim Gaussian Mixture Models (GMMs) as the step-wise
distributions pt over all timesteps considering the superior-
ity of mixture models in approximating complex distribu-
tions. Besides, another key benefit of using GMMs is that
they are in the analytic form which enables explicit and ex-
act density estimation. The parameter generator G is imple-
mented with an MLP for all types of stimulus. In contrast,
the architecture of the feature extractor F differs for differ-
ent types of stimulus S. In Sec. 3.2.1 and Sec. 3.2.2, we use
two types of the most widely used stimuli, namely scene
context and social interaction, as examples to introduce the
design of feature extractors and how the stimulus verifier
works as a whole in detail. Fig. 2 demonstrates that the dis-
tributions learned by our verifiers have high correspondence
to human cognition.

3.2.1 Scene Context as Stimulus

The scene context stimulus Sc is often represented with a
semantic map of the scene [19, 23, 33]. It highlights areas

22016

𝒕 = 𝟒 𝒕 = 𝟏𝟎𝒕 = 𝟖𝒕 = 𝟔 𝒕 = 𝟏𝟐𝒕 = 𝟐

𝒕 = 𝟒 𝒕 = 𝟏𝟎𝒕 = 𝟖𝒕 = 𝟔𝒕 = 𝟐𝒕 = 𝟎

Figure 2. Illustration of distributions learned by the verifiers. The first row is an example of context stimulus and the second row is an
example of social stimulus, where the prediction target is marked in blue and the other colors represent social agents. The ground truth
position of the agent at time t is marked with a red star, and the yellow star in the first row indicates the center of the cropped context map
m.

of different types such as obstacles and guiding lines in the
scene. These features can give strong guidance to agents’
movements such as areas to avoid and routes to follow. We
follow this setting and use the semantic map as the context
stimulus in our implementation.

For a certain trajectory X, the context stimulus can in-
tuitively be acquired by cropping a piece of semantic map
from the whole scene covering the full journey of X. How-
ever, this results in a potential problem. Since the total dis-
placement of a trajectory varies a lot, the size of the cropped
semantic map should either be fixed to a very large value in
order to cover all the samples, or change dynamically ac-
cording to the current sample. Both of these settings may
cause the trajectory-context pairs to be scale-inconsistent.
On one hand, a semantic map that is too large for a trajec-
tory may contain considerable amounts of unrelated infor-
mation and therefore jeopardize the learning. And on the
other hand, semantic maps with dynamic scales could add
unnecessary difficulties of fitting the model.

We tackle this issue by referring to the idea of sliding
window algorithm. Specifically, the whole trajectory is
first split into a series of position-displacement pairs, writ-
ten as Xsw = {x̃t = (xt,∆xt)|t = 0, 1, 2, · · · , T − 1},
where ∆xt = xt+1−xt denotes the displacement over one
timestep, and x0 is the position of the agent one step be-
fore x1. Then, for each pair of data x̃t, we crop a fixed-size
square area mt centered at xt from the scene as the seman-
tic map for the trajectory at timestep t. This process can
be interpreted as a square window sliding along the whole
trajectory. In this manner, the context stimulus can be for-
mulated as

Sc = {mt|t = 0, 1, 2, · · · , T − 1} (8)

Following previous works [23,33], we adopt a deep CNN
as the context feature extractor Fc as it can effectively cap-
ture local patterns in the semantic map. For each timestep
t, the context semantic map is first encoded by the extractor
Fc, then the feature is fed to the generator G, which pro-
duces the parameters of the step-wise distribution at the next
timestep t+ 1. Finally, the likelihood of the corresponding
displacement can be calculated according to the parameter-
ized distribution. The likelihood of the whole trajectory,
which indicates its context coherence, can be acquired by
multiplying all the displacements’ likelihoods together. The
whole process can be written as

Vc(Xsw, Sc) =

T−1∏
t=0

pt (∆xt;G (Fc (mt))) (9)

3.2.2 Social Interaction as Stimulus

Similar as prior work [1, 8], we treat the social stimulus in-
formation as the states of all neighboring agents along with
the target in a τ -step interval before the first timestep of X,
i.e. t = 1. We do not include the neighbors’ states within
the horizon of X due to the fact that neighboring agents’
states are unknown during the prediction horizon in com-
mon trajectory prediction settings.

For each neighboring agent, we represent its state at one
timestep by a 4-dim vector u = (xrel, yrel, vx, vy), where
xrel, yrel are the agent’s relative coordinates to the pre-
dicted target, vx, vy denote its velocity in x, y axis. For
each timestep, the states of all n neighboring agents can be
collected as Ut = {ut

i|i = 1, 2, · · ·n}, where ut
i is the state

vector of the i-th neighboring agent at timestep t. And the

22017

social stimulus can be formulated as

Ss = {Ut|t = −τ + 1, · · · , 0} ∈ Rτ×n×4 (10)

To extract features from social stimulus Ss, we first en-
code the information at each timestep and then aggregate
the features in all τ steps together. We formulate the social
states at each timestep as a fully-connected graph G, whose
vertices are the state vectors of all social agents and edges
indicate interactions between a pair of agents. Then we
adopt a Graph Convolutional Network (GCN) [5] to encode
G considering its effectiveness in propagating the social ef-
fects of neighbors. After encoding the information at each
timestep, we use an LSTM [10] to aggregate the features in
the time dimension. In summary, the social representation
can be extracted by

Fs(Ss) = LSTM({GCN(Gt)

| t = −τ + 1, · · · , 0})
(11)

With the social representation, the generator G can gen-
erate the parameters for all the step-wise distributions to-
gether, and the likelihood of each step in the trajectory
can be calculated using the corresponding parameters θt =
G (Fs (Ss))t. In this manner, the likelihood of the whole
trajectory can be calculated by

Vs(Xnorm, Ss) =

T∏
t=1

p ((xt − x0) ;G (Fs (Ss))t) (12)

where Xnorm = {(xt − x0)|t = 1, 2, · · · , T} is the nor-
malized version of the original trajectory X.

3.2.3 Training

As is previously mentioned, the goal of the stimulus veri-
fier V is to learn a conditional probability distribution p of
trajectories. To achieve this goal, we refer to the Maximum
Likelihood Estimation (MLE) algorithm and train the veri-
fier by maximizing the joint likelihood of all the available
trajectories in the training set. For computational conve-
nience, we equivalently maximize the logarithm of the joint
likelihood and the loss function can be formulated by

L = − 1

|X |
∑

(X,S)∈X

log V (X, S) (13)

Since both the parameter generator G and feature extrac-
tor F are differentiable with respect to the parameters of p,
gradients can be back-propagated throughout the network.

3.3. Sampling with Stimulus Coherence

In this section, we introduce how to sample final predic-
tions with stimulus coherence. According to Eq. 1, the base

prediction model generates an excessive amount of N pre-
diction candidates Ŷ. The likelihood L of each candidate Ŷi

given the corresponding stimulus S can be calculated with
the learned verifier and further used to reveal the coherence
ci between them by a mapping function f(·). In practice,
we use logarithmic operations as the mapping function for
computational convenience. And in the case of multiple
types of stimulus being available, we consider the final co-
herence score ci as the weighted sum over the coherence
scores regarding each type of stimulus. After acquiring the
coherence scores for all candidates, we then select the top
k stimulus-coherent trajectories as the final results. In this
manner, the overall stimulus coherence of the model’s fi-
nal output is significantly increased, which is identical to
the goal of using stimulus for prediction, and therefore im-
proves the prediction accuracy.

When more than one trajectory is required as the final
predictions, there is one more step that is essential to the
overall output quality. According to the definition of stim-
ulus coherence, it is natural for similar trajectory-stimulus
pairs to have similar coherence scores. Such property will
lead to a tendency of selecting similar trajectories within a
large group of samples, which could gravely impair the di-
versity of final prediction outputs.

We borrow the idea of Non-Maximum Suppression
(NMS) [6] from the FDE perspective to tackle this issue.
After sorting the N trajectories according to the coherence
scores, we start a sequential selection process where a tra-
jectory Ŷi can only be selected as part of the final result if

min
(
{FDE(Ŷi, Ŷ

′)|Ŷ ′ ∈ Y′}
)
> γ (14)

where Y′ is the set of selected trajectories within the first
i− 1 samples, and γ is the threshold.

3.4. Implementation Details

In our implementation of the stimulus verifier, the GMM
for each step-wise distribution has 12 components for both
context and social stimulus. For context stimulus, we adopt
a 4-layer convolutional neural network with average pool-
ing and ReLU activation as feature extractor, whose output
size is 256. The cropped semantic maps are fixed as 50x50
pixel2 for all datasets. For social stimulus, the GCN has
three hidden layers, and uses maxpooling as the aggregation
function. We collect the neighboring agents whose distance
to the target at t = 0 is less than a threshold d, where d is 30
pixels for the Grand Central Station Dataset, 100 ft for the
NBA Dataset and 2.5 meters for ETH/UCY Dataset. The
number of timesteps used for social stimulus feature extrac-
tion is identical to the length of observation in each dataset.
The output size of the social feature extractor is 128. The
parameter generator is a 2-layer MLP with ReLU activation
for both types of stimulus. γ is picked by cross-validation.

22018

All models are trained on one RTX 2080Ti GPU for 100
epochs. As for our experiments, we set the number of can-
didate trajectories N to 200 unless specified otherwise.

4. Experiments
4.1. Benchmarks, Metrics & Base Models

Benchmarks We conduct experiments on three widely-
used benchmarks. ETH [28]/UCY [16]: It is one of the
most commonly used benchmarks in the field of trajectory
prediction and is composed of 5 sub-datasets. We follow
previous work [1] on the leave-one-out evaluation. Grand
Central Station Dataset (GCS) [47]: It contains a large
amount of trajectories recorded from the Grand Central Sta-
tion, which is a complex and crowded scene suitable for
evaluation from both context and social perspective. As for
train-test split settings, we took the first 80% (about 24 min-
utes) of the video as train set, and the rest 20% (about 6
minutes) as test set. NBA Sports VU Dataset (NBA) [20]:
The NBA Sports VU Dataset contains the trajectory infor-
mation of all ten players in real NBA games. The motion of
agents in this scenario is strongly influenced by other play-
ers and the court. We randomly select 50k samples in total
from the 2015-2016 season with a split of 65%, 10%, 25%
as training, validation and testing data following [18]. For
ETH/UCY and GCS, We take 8 steps (3.2 seconds) for ob-
servation and predict the upcoming 12 steps (4.8 seconds)
following [8]. For NBA, we follow the traditional setting of
taking 5 steps (2.0 seconds) for observation and predicting
the upcoming 10 steps (4.0 seconds).

Average & Final Displacement Error (ADE & FDE)
The ADE and FDE are two of the most commonly used
evaluation metrics for trajectory prediction. ADE refers to
the average L2 distance between the predicted trajectory
and the ground truth over all timesteps, and FDE is the
L2 distance at the last timestep. Under a best-of-k predic-
tion setting, the performance is measured by the minimum
ADE/FDE. Following the common setting [8], we adopt
k = 20 in the experiments.

Base Models We introduce five representative base pre-
diction models to comprehensively evaluate the effective-
ness of stimulus verification, covering three typical gener-
ative models (i.e. GAN, VAE, Normalizing Flow) and the
classification framework. Autoregressive Flow [13]: A gen-
erative model that is capable of learning a bijective trans-
formation from the data space to a latent distribution. It
is also adopted in LDS [22] as the base model. Social
GAN [8]: A GAN-based framework that learns social in-
teractions with a global pooling operation. Sophie [33]: A
GAN-based framework that takes into account both the so-
cial interaction and scene context information by attention

mechanisms. PCCSNet [39]: A prediction framework to
solve the trajectory prediction in a classification and regres-
sion manner. GroupNet [43]: A recently proposed encod-
ing framework that specializes at comprehensively model-
ing interactions using multi-scale hypergraphs. In our ex-
periments, GroupNet is combined with CVAE to get the fi-
nal predictions.

4.2. Main Results

In this section, we evaluate and discuss the effectiveness
of proposed stimulus verification quantitatively. Results in
Tab. 1 clearly shows that significant improvements can be
achieved with stimulus verification for all prediction mod-
els on all benchmarks. By verifying from both context and
social aspects, the performance can be further elevated to a
higher level. Particularly, it is worth noting that even on pre-
diction models that already have impressive results such as
PCCSNet and GroupNet, our proposed stimulus verification
can still offer at least 4.8% and up to 15.9% accuracy boost
on ETH/UCY dataset. Moreover, although some of the base
models have already introduced social and context informa-
tion, stimulus verification still brings great improvements.
This indicates that introducing stimulus information in sam-
pling process is essential and helpful to ensure that selected
samples comply with the constrains of involved stimuli.

Further, Fig. 3 shows the detailed improvements for dif-
ferent ks after verification. As the value of k decreases,
the improvement grows larger, which shows that our ap-
proach exhibits higher superiority on more stringent crite-
ria. For instance, with both stimulus, we are able to achieve
a 17.8%/19.4% boost for top-1 performance on the GCS
dataset with PCCSNet [39]. These results demonstrate the
effectiveness of stimulus coherence on finding the more ac-
curate predictions, since trajectories with higher coherence
scores are sampled with higher priority according to our de-
sign, resulting in greater lifts with smaller ks.

4.3. Analysis

Visualization of Stimulus Coherence Visualizations in
Fig. 4 illustrate that candidate predictions which fit better
with the corresponding stimulus, as well as the ground truth,
are assigned with high coherence scores. For example, in
Fig. 4-b and c, trajectories following social rules that avoid
collision with other agents are with better coherence. On
the other hand, those impossible trajectories intersecting un-
walkable regions, e.g. the darkest blue ones in Fig. 4-a, tend
to have much lower coherence scores. Such phenomenon
demonstrates that our approach successfully learns the cor-
relation between a kind of stimulus and a certain trajectory,
and is capable of distinguishing eligible trajectories in terms
of the stimulus. By sampling candidates with high coher-
ence scores, we can get accurate final predictions.

22019

Dataset Method Original + Context + Social + Both Impr.

ETH/UCY

Autoregressive Flow [13] 0.28 / 0.41 0.27 / 0.36 0.25 / 0.36 0.24 / 0.34 14.3% / 17.1%
Social GAN [8] 0.61 / 1.21 0.51 / 0.96 0.50 / 0.95 0.49 / 0.94 19.7% / 22.3%

Sophie [33] 0.39 / 0.65 0.35 / 0.54 0.33 / 0.53 0.33 / 0.50 15.4% / 23.1%
PCCSNet [39] 0.21 / 0.42 0.20 / 0.40 0.20 / 0.39 0.20 / 0.39 4.8% / 7.1%
GroupNet [43] 0.25 / 0.44 0.24 / 0.39 0.23 / 0.38 0.23 / 0.37 8.0% / 15.9%

GCS

Autoregressive Flow [13] 5.24 / 6.66 5.07 / 6.21 4.88 / 5.98 4.73 / 5.54 9.7% / 16.8%
Social GAN [8] 6.06 / 8.98 5.81 / 8.04 5.34 / 7.11 5.29 / 6.95 12.7% / 22.6%

Sophie [33] 5.53 / 9.48 5.22 / 8.72 5.15 / 8.51 5.11 / 8.39 7.6% / 11.5%
PCCSNet [39] 4.17 / 6.02 4.10 / 5.74 4.03 / 5.43 3.98 / 5.29 4.6% / 12.1%
GroupNet [43] 3.76 / 5.20 3.62 / 4.83 3.54 / 4.66 3.50 / 4.58 6.9% / 11.9%

NBA

Autoregressive Flow [13] 1.91 / 2.32 1.77 / 1.91 1.56 / 1.67 1.57 / 1.64 17.8% / 29.3%
Social GAN [8] 1.78 / 2.48 1.61 / 1.97 1.60 / 1.95 1.59 / 1.94 10.7% / 21.8%

Sophie [33] 1.55 / 2.14 1.45 / 1.84 1.44 / 1.84 1.44 / 1.83 7.1% / 14.5%
PCCSNet [39] 1.47 / 1.70 1.42 / 1.49 1.42 / 1.44 1.40 / 1.42 4.8% / 16.5%
GroupNet [43] 1.13 / 1.26 1.08 / 1.13 1.08 / 1.14 1.08 / 1.12 4.4% / 11.1%

Table 1. Performance (ADE/FDE) of base prediction models before and after stimulus verification on three widely-used benchmarks. For
ETH/UCY, the values are reported by the average of all 5 sub-datasets. Since the official implementation of Sophie [33] is not publicly
available, we report the results of our own implementation. The result of GroupNet [43] on NBA dataset is evaluated by the official pre-
trained model at [36].

Sophie PCCSNet

GCS

NBA

𝑘 𝑘 𝑘 𝑘

𝑘 𝑘𝑘 𝑘

Figure 3. Improvements on ADE/FDE for different ks with stimulus verification. A smaller k refers to a more stringent criteria.

Contribution of Stimulus Coherence In Tab. 2, we
demonstrate the contribution of stimulus coherence by com-
paring against vanilla NMS, which directly samples candi-
dates according to Eq. 14 without first sorting them by the
coherence scores. The results clearly show that the coher-
ence scores will guide to select more accurate predictions
with higher priority and thereby significant performance
improvement can be achieved.

Number of Candidates Since the stimulus verification
samples final trajectories from several candidates, we study
how the number of candidates will influence the perfor-
mance. The results are shown in Tab. 3. When N is in
a small level, the performance of stimulus verification el-

evates fast as the number grows. After N grows large
enough, the speed of performance improvement gradually
reduces.

Comparisons with Prior Works We compare the per-
formance of stimulus verification against three previous
sampling approaches, namely DLow [45], LDS [22], and
NPSN [2]. Following their settings of base model, we com-
pare DLow and LDS on Autoregressive Flow, and NPSN on
Social GAN. The results in Tab. 4 demonstrate that our ap-
proach achieves better results with a clear advantage. Apart
from boosting the accuracy, our stimulus verification enjoys
the advantage of a much wider range of application as it can
be easily adopted to any prediction model that is capable of

22020

(a) Context

(b) Social (c) Context & Social

HighLow
Coherence

Figure 4. Illustration of predicted trajectories along with their corresponding coherence scores indicated with color. Solid lines refer to the
observation and ground truth future trajectory, and dashed lines refer to different predictions. Colored dots in (b,c) refer to the trajectories
of social agents, where the direction is from smaller ones to larger ones.

Method ADE FDE
GroupNet [43] 0.25 0.44

+Vanilla NMS 0.24 0.41
+Stimulus Verification 0.23 0.37

Table 2. Comparison of stimulus verification against vanilla NMS
on ETH/UCY benchmark.

N 20 50 100 200
ADE 0.25 0.24 0.23 0.23
FDE 0.44 0.39 0.38 0.37

Table 3. Comparison between different number of candidates N
with GroupNet on the ETH/UCY benchmark.

generating multi-modal predictions, rather than being con-
fined to generative models only.

5. Conclusion

In this paper, we propose stimulus verification as a uni-
versal sampling process regarding the trajectory prediction
problem. It uses a conditionally parameterized probabilis-
tic model to find the coherence between a trajectory and
a certain stimulus. The coherence is further treated as the
guidance for stimulus-coherent trajectories, ensuring the se-
lected ones to comply with the constrains of the involved

Method ADE FDE
Autoregressive Flow [13] 0.28 0.41

+DLow [46] 0.24 0.39
+LDS [22] 0.24 0.36
+Stimulus Verification 0.24 0.34

Social GAN [8] 0.61 1.21
+NPSN [2] 0.50 0.96
+Stimulus Verification 0.49 0.94

Table 4. Comparison between the stimulus verification and previ-
ous sampling approaches on ETH/UCY benchmark.

sitimuli. As an external module beyond the base prediction
framework, stimulus verification can be easily adopted to
any multi-modal approach in a plug-and-play manner. Ex-
tensive experiments confirm that significant improvements
can be achieved with our approach across various base pre-
diction models and benchmarks.

Acknowledgment This work was supported by the Na-
tional Key Research and Development Project of China
(No. 2021ZD0110704), Shanghai Municipal Science and
Technology Major Project (2021SHZDZX0102), Shanghai
Qi Zhi Institute, and Shanghai Science and Technology
Commission (21511101200).

22021

References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,

Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-
cial lstm: Human trajectory prediction in crowded spaces. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 961–971, 2016. 2, 4, 6

[2] Inhwan Bae, Jin-Hwi Park, and Hae-Gon Jeon. Non-
probability sampling network for stochastic human trajec-
tory prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6477–
6487, 2022. 1, 2, 3, 7, 8

[3] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir
Anguelov. Multipath: Multiple probabilistic anchor tra-
jectory hypotheses for behavior prediction. arXiv preprint
arXiv:1910.05449, 2019. 1

[4] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre
Alahi. Crowd-robot interaction: Crowd-aware robot navi-
gation with attention-based deep reinforcement learning. In
2019 international conference on robotics and automation
(ICRA), pages 6015–6022. IEEE, 2019. 1

[5] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre,
Rafael Bombarell, Timothy Hirzel, Alan Aspuru-Guzik, and
Ryan P Adams. Convolutional networks on graphs for learn-
ing molecular fingerprints. In Advances in Neural Informa-
tion Processing Systems, volume 28. Curran Associates, Inc.,
2015. 5

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 5

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 1

[8] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social gan: Socially acceptable tra-
jectories with generative adversarial networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2255–2264, 2018. 1, 2, 4, 6, 7, 8

[9] Tsubasa Hirakawa, Takayoshi Yamashita, Toru Tamaki, and
Hironobu Fujiyoshi. Survey on vision-based path predic-
tion. In International Conference on Distributed, Ambient,
and Pervasive Interactions, pages 48–64. Springer, 2018. 1,
2

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 5

[11] Boris Ivanovic and Marco Pavone. The trajectron: Proba-
bilistic multi-agent trajectory modeling with dynamic spa-
tiotemporal graphs. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 2375–2384,
2019. 2

[12] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V
Gool. Dynamic filter networks. Advances in neural informa-
tion processing systems, 29, 2016. 2, 3

[13] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen,
Ilya Sutskever, and Max Welling. Improved variational in-

ference with inverse autoregressive flow. Advances in neural
information processing systems, 29, 2016. 6, 7, 8

[14] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 1

[15] Vineet Kosaraju, Amir Sadeghian, Roberto Martı́n-Martı́n,
Ian Reid, Hamid Rezatofighi, and Silvio Savarese. Social-
bigat: Multimodal trajectory forecasting using bicycle-gan
and graph attention networks. Advances in Neural Informa-
tion Processing Systems, 32:137–146, 2019. 2

[16] Laura Leal-Taixé, Michele Fenzi, Alina Kuznetsova, Bodo
Rosenhahn, and Silvio Savarese. Learning an image-based
motion context for multiple people tracking. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3542–3549, 2014. 2, 6

[17] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B.
Choy, Philip H. S. Torr, and Manmohan Chandraker. Desire:
Distant future prediction in dynamic scenes with interacting
agents. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017. 1, 2

[18] Jiachen Li, Fan Yang, Masayoshi Tomizuka, and Chiho
Choi. Evolvegraph: Multi-agent trajectory prediction with
dynamic relational reasoning. Advances in neural informa-
tion processing systems, 33:19783–19794, 2020. 6

[19] Junwei Liang, Lu Jiang, Juan Carlos Niebles, Alexander G
Hauptmann, and Li Fei-Fei. Peeking into the future: Predict-
ing future person activities and locations in videos. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5725–5734, 2019. 2, 3

[20] linouk23. Nba player movements. https://github.
com/linouk23/NBA-Player-Movements, 2016. 2,
6

[21] Wei-Chiu Ma, De-An Huang, Namhoon Lee, and Kris M.
Kitani. Forecasting interactive dynamics of pedestrians with
fictitious play. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017. 2

[22] Yecheng Jason Ma, Jeevana Priya Inala, Dinesh Jayaraman,
and Osbert Bastani. Likelihood-based diverse sampling for
trajectory forecasting. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 13279–
13288, 2021. 1, 2, 3, 6, 7, 8

[23] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal,
Kuan-Hui Lee, Ehsan Adeli, Jitendra Malik, and Adrien
Gaidon. It is not the journey but the destination: Endpoint
conditioned trajectory prediction. In European Conference
on Computer Vision, pages 759–776. Springer, 2020. 1, 3, 4

[24] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 2

[25] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and
Christian Claudel. Social-stgcnn: A social spatio-temporal
graph convolutional neural network for human trajectory
prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14424–
14432, 2020. 2

[26] Bo Pang, Yizhuo Li, Yifan Zhang, Muchen Li, and Cewu Lu.
Tubetk: Adopting tubes to track multi-object in a one-step
training model. In CVPR, pages 6308–6318, 2020. 1

[27] Bo Pang, Kaiwen Zha, Hanwen Cao, Jiajun Tang, Minghui
Yu, and Cewu Lu. Complex sequential understanding

22022

through the awareness of spatial and temporal concepts. Na-
ture Machine Intelligence, 2(5):245–253, 2020. 1

[28] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc
Van Gool. You’ll never walk alone: Modeling social be-
havior for multi-target tracking. In 2009 IEEE 12th Inter-
national Conference on Computer Vision, pages 261–268.
IEEE, 2009. 2, 6

[29] Danilo Rezende and Shakir Mohamed. Variational inference
with normalizing flows. In International conference on ma-
chine learning, pages 1530–1538. PMLR, 2015. 1, 2

[30] Nicholas Rhinehart, Kris M Kitani, and Paul Vernaza. R2p2:
A reparameterized pushforward policy for diverse, precise
generative path forecasting. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 772–788,
2018. 2

[31] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi,
and Silvio Savarese. Learning social etiquette: Human tra-
jectory understanding in crowded scenes. In European con-
ference on computer vision, pages 549–565. Springer, 2016.
2

[32] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M.
Kitani, Dariu M. Gavrila, and Kai O. Arras. Human motion
trajectory prediction: A survey. 2019. 2

[33] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki
Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie:
An attentive gan for predicting paths compliant to social and
physical constraints. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1349–
1358, 2019. 1, 2, 3, 4, 6, 7

[34] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and
Marco Pavone. Trajectron++: Dynamically-feasible trajec-
tory forecasting with heterogeneous data. In European Con-
ference on Computer Vision, pages 683–700. Springer, 2020.
1, 2

[35] Liushuai Shi, Le Wang, Chengjiang Long, Sanping Zhou,
Mo Zhou, Zhenxing Niu, and Gang Hua. Sgcn: Sparse graph
convolution network for pedestrian trajectory prediction. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8994–9003, 2021. 1

[36] sjtuxcx. Groupnet. https : / / github . com /
MediaBrain - SJTU / GroupNet / blob / main /
saved_models/nba/pretrain.p, 2022. 7

[37] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning
structured output representation using deep conditional gen-
erative models. Advances in neural information processing
systems, 28, 2015. 2

[38] Jianhua Sun, Yuxuan Li, Liang Chai, Hao-Shu Fang, Yong-
Lu Li, and Cewu Lu. Human trajectory prediction with mo-
mentary observation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6467–6476, 2022. 1

[39] Jianhua Sun, Yuxuan Li, Hao-Shu Fang, and Cewu Lu. Three
steps to multimodal trajectory prediction: Modality clus-
tering, classification and synthesis. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 13250–13259, 2021. 1, 2, 6, 7

[40] Jianhua Sun, Zehao Wang, Jiefeng Li, and Cewu Lu. Unified
and fast human trajectory prediction via conditionally pa-
rameterized normalizing flow. IEEE Robotics and Automa-
tion Letters, 7(2):842–849, 2021. 1

[41] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional convo-
lutions for instance segmentation. In European Conference
on Computer Vision, pages 282–298. Springer, 2020. 2, 3

[42] Allan Wang, Christoforos Mavrogiannis, and Aaron Ste-
infeld. Group-based motion prediction for navigation in
crowded environments. In Conference on Robot Learning,
pages 871–882. PMLR, 2022. 1

[43] Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Si-
heng Chen. Groupnet: Multiscale hypergraph neural net-
works for trajectory prediction with relational reasoning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6498–6507, 2022. 1, 2,
6, 7, 8

[44] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi.
Spatio-temporal graph transformer networks for pedestrian
trajectory prediction. In European Conference on Computer
Vision, pages 507–523. Springer, 2020. 2

[45] Ye Yuan and Kris Kitani. Dlow: Diversifying latent flows for
diverse human motion prediction. In European Conference
on Computer Vision, pages 346–364. Springer, 2020. 7

[46] Ye Yuan and Kris M Kitani. Diverse trajectory forecasting
with determinantal point processes. In ICLR, 2020. 1, 2, 3,
8

[47] Bolei Zhou, Xiaogang Wang, and Xiaoou Tang. Understand-
ing collective crowd behaviors: Learning a mixture model
of dynamic pedestrian-agents. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages 2871–
2878. IEEE, 2012. 2, 6

[48] Deyao Zhu, Mohamed Zahran, Li Erran Li, and Mohamed
Elhoseiny. Motion forecasting with unlikelihood training in
continuous space. In Conference on Robot Learning, pages
1003–1012. PMLR, 2022. 2

22023

