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Abstract

VQA Natural Language Explanation (VQA-NLE) task
aims to explain the decision-making process of VQA mod-
els in natural language. Unlike traditional attention or gra-
dient analysis, free-text rationales can be easier to under-
stand and gain users’ trust. Existing methods mostly use
post-hoc or self-rationalization models to obtain a plau-
sible explanation. However, these frameworks are bottle-
necked by the following challenges: 1) the reasoning pro-
cess cannot be faithfully responded to and suffer from the
problem of logical inconsistency. 2) Human-annotated ex-
planations are expensive and time-consuming to collect. In
this paper, we propose a new Semi-Supervised VQA-NLE
via Self-Critical Learning (S3C), which evaluates the can-
didate explanations by answering rewards to improve the
logical consistency between answers and rationales. With
a semi-supervised learning framework, the S3C can ben-
efit from a tremendous amount of samples without human-
annotated explanations. A large number of automatic mea-
sures and human evaluations all show the effectiveness of
our method. Meanwhile, the framework achieves a new
state-of-the-art performance on the two VQA-NLE datasets.

1. Introduction
Deep neural networks have enabled significant break-

throughs in a variety of vision-language (VL) tasks such
as image captioning [10, 47] and visual question answer-
ing (VQA) [2, 39]. Unfortunately, most of them are black
box systems, which makes it challenging to gain users’
trust [20]. Explaining the decision-making process of
deep VL models is a long-standing and essential problem.
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Figure 1. Paradigm comparison of different VQA-NLE meth-
ods. (a) Post-hoc explanation method adopts two independent
models to predict answers and explanations respectively. (b) Self-
rationalization method uses a united VL model to simultaneously
generate answers and explanations. (c) Our self-critical strategy
utilizes answer scores as rewards and obtains more reliable ratio-
nales with semi-supervised learning.

Some approaches depend on attention mechanisms [2, 30]
or gradient-based localization [50] to acquire visual expla-
nations, which can highlight some contributing image re-
gions for the predicted answers. However, simple visualiza-
tion cannot explain how these areas support the answers and
they are also hard to comprehend [20,48]. Conversely, Nat-
ural Language Explanation (NLE) task [6, 38] can explain
the decision-making process of a model by generating a nat-
ural language sentence. The language-based explanations
are more accessible for users to understand, and they can
also help researchers optimize the structure of models [34].

Recently, some models of NLE in the VL commu-
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nity have achieved pretty-well results, especially for VQA-
NLE [20,34,41,48,58]. They can guide models to generate
natural language sentences and interpret how the models get
answers. Specifically, the first research line usually treats
VQA-NLE as a predict-then-explain task [20, 34, 41, 58],
namely post-hoc explanations method. As shown in Fig. 1
(a), these methods first depend on pre-trained VL models
(such as UNITER [8] or Oscar [25]) to gain answers. Then
the fused multi-modal features and the predicted answers
are fed into a separated language model (e.g., LSTM [16]
or Transformer [54]) to generate corresponding explana-
tions. As shown in Fig. 1 (b), the other line [48] relies on a
united VL model while generating both answers and expla-
nations, which is known as the self-rationalization method.
This framework can simultaneously predict an answer and
generate a rationale by formulating the answer as a text-
generation task along with the explanation.

Though significant progress has been made, the two
paradigms are still restricted by the following challenges:
1) For the first paradigm, since the decision-making model
and interpretation part are two separate modules, it would
inevitably lead to unfaithful responses to the reasoning pro-
cess of the decision models. 2) Due to the lack of explic-
itly logical relationship modeling, previous work [19] has
proved that the straightforward self-rationalization frame-
works suffer from the problem of logical inconsistency.
3) The above strategies all require an amount of human-
annotated explanations, which are expensive and time-
consuming to collect [62].

To solve the above challenges, inspired by [5, 51], we
argue that a reasonable rationale can assist the model in ob-
taining a correct answer, and vice versa, the answer can be
converted as an evaluation criterion for possible explana-
tions. In this paper, we propose a new Semi-Supervised
VQA-NLE method with Self-Critical learning, which is
called S3C for short. As shown in Fig.1 (c), given im-
ages and related questions, we first leverage a prompting
mechanism to construct answer and explanation templates,
which can guide the pre-trained VL model to generate an-
swers and multiple candidate explanations based on se-
quence sampling [2]. Then we design a new self-critical
method that converts the answer scores as rewards and en-
courages the model to generate the explanations which con-
tribute to improving the answer scores. In particular, to
reduce the dependency on expensive human annotations,
we further extend our method to the semi-supervised ver-
sion, which utilizes the unlabelled samples 1 (i.e., conven-
tional VQA data [4, 36]) to significantly enhance the self-
interpretability of the model. With the self-critical strategy
and the semi-supervised learning, our method effectively
models the logical relationships and promotes the logical

1In this paper, we use “unlabelled samples” and “labelled samples” to
indicate the question-answer (QA) pairs without/with human explanations.

consistency between answer-explanation pairs. According
to automatic measures and human evaluations, the S3C
outperforms the state-of-the-art models for the VQA-NLE
task on the widely used two datasets and provides a new
paradigm for our community. In summary, we make the
following contributions:

1) We propose a new self-critical VQA-NLE method
that can model the logical relationships between answer-
explanation pairs and evaluate the generated rationales by
answering rewards. This strategy effectively improves the
logical consistency and the reliability of the interpretations.

2) We develop an advanced semi-supervised learning
framework for VQA-NLE, which utilizes amounts of sam-
ples without human-annotated explanations to boost the
self-interpretability of the model further. To the best of
our knowledge, we are the first to explore semi-supervised
learning on the VQA Natural Language Explanation.

3) The proposed S3C achieves new state-of-the-art per-
formance on VQA-X [13] and A-OKVQA [49] benchmark
datasets. Meanwhile, automatic measures and human eval-
uations all show the effectiveness of our method.

2. Related work

2.1. Explainability in Visual Question Answering

The visual question answering (VQA) is firstly proposed
by [33] that requires an intelligent agent to generate an an-
swer by giving an image and a question. Many approaches
have been introduced such as joint embedding [13, 61], at-
tention mechanisms [3, 31], memory networks [32, 59] and
graph neural networks [23,56]. Although the VQA task has
been well studied, the reasoning process of the models is al-
ways agnostic. Some methods apply visualization technolo-
gies to achieve visual explanation, such as Grad-CAM [50]
and U-CAM [42]. However, because image visualization
cannot support the answer based on the attended areas [57],
in this paper, we focus on improving free-text explanations
that are more convenient and easier for users to understand.
In this topic, the early work is proposed by [41]. The pa-
per conducts the VQA-X dataset and utilizes human anno-
tations to inspire the decision-making process of VQA mod-
els. [20] designs a new model that combines a pre-trained
language model and a VL model to generate free-text ex-
planations. [60] combines stronger pre-trained VL model
(i.e. Oscar [25]) and generation model (i.e. GPT-2 [46]) to
obtain better results. Recently, [48] proposes a unified
model which can simultaneously predict answers and ex-
planations based on a pre-trained caption model. Unlike
previous methods, we introduce a new self-critical strategy
to model the logical relationships between answers and ra-
tionales. It can encourage the model to enhance logical con-
sistency and generate more reasonable explanations.
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2.2. Pre-trained models and Prompt learning

Pre-trained models have been applied in many fields,
such as various NLP tasks [12,46] and VL tasks [29,52,65].
Most of these pre-trained models utilize a stack of Trans-
former structures as the backbone. To generalize the pre-
trained models to other downstream tasks, previous works
mostly fine-tune whole models on each downstream VL
task. However, the ability of pre-trained models would be
limited due to the mismatch between pre-trained tasks and
downstream tasks. Hence, prompt learning [9, 18, 45, 64]
is proposed, and it can keep the optimization consistency.
[45] designs the templates to transfer the knowledge to
downstream tasks. [9] uses a textual generation frame-
work for uniform optimization. In this paper, we use the
pre-trained model based on the image caption task as our
backbone. It has been proved that these additional pre-train
tasks (e.g., image feature regression or mask language to-
kens) cannot significantly improve the performance for ex-
planations [48]. Meanwhile, we apply different language
prompt templates to motivate the model to generate corre-
sponding answers and rationales.

2.3. Semi-supervised learning

The development of deep learning depends on a large
number of labelled data, while there are many cases in that
only a small amount of data can be obtained [44]. To solve
this challenge, Semi-supervised learning is proposed [44],
which aims to train models using a small number of la-
belled data and amounts of unlabelled data. For exam-
ple, [22] proposes a generatively semi-supervised frame-
work based on variational autoencoders, and it can jointly
optimize the model and variational parameters. Recently,
[63] simultaneously leverages self-supervised and semi-
supervised learning to address image classification tasks. To
our knowledge, our work is the first semi-supervised learn-
ing framework for the VQA-NLE task, which effectively
alleviates the reliance on expensive human annotations and
further boost the self-interpretability of the model.

3. Method
In this section, we introduce our Semi-Supervised VQA-

NLE method with the Self-Critical learning (S3C) frame-
work. Our aim is to strengthen the logical consistency be-
tween answer-explanation pairs and improve the reliability
of the rationales. As shown in Fig. 2, the S3C comprises an
“Answer-Explanation Prompt” module and a “Self-Critical
Reinforcement” module. Unlike previous approaches, our
method first uses a prompting mechanism to generate an-
swers and candidate explanations. Then, we design a new
self-critical module that converts the answer scores as re-
wards to evaluate these reasons. Furthermore, this strategy
can conveniently apply the unlabelled QA pairs to enrich

training data and enhance the self-interpretability. Next, we
describe the components of our model in detail.

3.1. Pre-trained Vision-Language Backbone

Given an image I ∈ RW×H×3 and a natural language
question Q = {qt}Tt=1, where qt represents the t-th word,
T is the length of the question and W × H × 3 denotes
the size of the image. Our goal is to predict the answer
and generate a corresponding free-text rationale. Follow-
ing previous works [48, 49], we adopt the CLIP vision en-
coder [45] and a pre-trained image caption model (i.e., Clip-
Cap [37]) as our basic backbone. During pre-training, the
VL model uses image embeddings from the CLIP as pre-
fixes and fine-tunes a language model (i.e., GPT-2 [46]) to
generate image captions. We refer readers to [37] for more
information about the pre-trained model. In this paper, we
consider the image I and question Q as the prefixes of the
answer-explanation sequences. Specifically, we first apply
ViT-B [14] and “classification token” from the CLIP to ob-
tain the image features. Then, a group of light and simple
Multi-Layer Perceptron (MLP) is utilized for transforming
the image features to the V = {vs}Ss=1, vs ∈ Rc, where
the dimension size c = 768 and the image sequence length
S = 10. The above computations can be formulated as fol-
lows:

v1, v2, · · · , vS = MLP(CLIP(I)). (1)

Note that we only update the mapping network (i.e., MLP)
during training, while the original visual encoder parame-
ters from the CLIP would remain frozen. For question Q,
each word qt would be mapped to the corresponding word
embedding et ∈ Rc by the pre-trained caption model. Fi-
nally, we obtain the image and question sequences Z:

Z = [

image
embedding︷ ︸︸ ︷

v1, v2, · · · , vS , e1, e2, · · · , eT︸ ︷︷ ︸
question

embedding

], (2)

where Z is the concatenated multi-modal prefixes.

3.2. Answer-Explanation Prompt Module

It has been proved that the prompting mechanism can
maintain the same optimization objectives between pre-
trained and downstream tasks [18, 28]. Considering the
convenience and explainability, we leverage hand-crafted
prompts as templates to enable the model to generate an-
swers or explanations. As shown in Fig. 2, the S3C includes
two different kinds of templates, which are introduced re-
spectively as follows.

Base Answer Template. The core idea of our S3C is
to use the answer scores as evaluation criteria. Hence, we
first establish a basic answer template to acquire base an-
swer scores. Different from previous works [20, 41], our
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Figure 2. Overview of our Semi-Supervised VQA-NLE method via Self-Critical learning (S3C) framework. Given images and corre-
sponding questions for labelled and unlabelled samples, we first use Answer-Explanation Prompt module to obtain the base answer scores
and candidate explanations with a pre-trained VL model. Then these reasons are reorganized and fed back into the model to capture the
explanatory answer score. Further, our Self-Critical Reinforcement module evaluates the generated explanations and returns the rewards
to improve the self-interpretability of the model.

method treats the visual question answering task as a gen-
eration task so that the model can produce answers with-
out a predefined answer space. Specifically, for a given im-
age and question sequence Z, we use natural language to-
kens “the answer is” to inspire the model to generate proper
answers. By concatenating the language prompt, the base
answer template Za = [Z; ⟨answer⟩] can be obtained,
where [; ] and ⟨answer⟩ indicate concatenation operation
and the specific language prompts, respectively. During
training, the base answer template and ground-true answer
label A = {an}Nn=1 are fed into the VL model, where an is
the n-th answer token and N denotes the length of the an-
swer label. Next, we compute the answer loss conditioned
on the Za in an autoregressive fashion:

La = − 1

N

N∑
n=1

logP (an|Za, a1, a2, · · · , an−1; θ), (3)

where θ denotes the parameters of the VL model. More-
over, based on the indexes of ground-true answers, we can
acquire average probability pbθ(A) as our base answer score.

Explanation Generation Template. To produce a rea-
sonable rationale, we leverage the language prompt “the
reason is” to motivate the model to generate free-text expla-
nations. Like the base answer template, an explanation gen-
eration template Ze = [Z; ⟨reason⟩] is constructed, where
⟨reason⟩ is the natural language tokens. For labelled sam-
ples, we follow Eq. 3 in the autoregressive fashion and the
cross-entropy loss to compute explanation loss Le. Because
there are no human-annotated explanations available, we

would not compute any loss for unlabelled QA samples.

3.3. Self-Critical Reinforcement Module

To gain logically consistent rationales, in this module,
we expand the searching space by introducing sequence
sampling algorithm [2] and generate a set of candidate ex-
planations. Besides, the answer scores are treated as re-
wards to encourage the model to output more detailed inter-
pretations. It’s worth noting that the above operations would
be implemented on both labelled and unlabelled samples.

Candidate Explanation Generation. Benefiting from
the language-based prompting strategy and the pre-trained
VL model, our explanation generation template can eas-
ily guide the model to produce human-readable sentences.
Hence, for unlabelled QA samples, we directly apply the
explanation generation template Ze to generate the can-
didate rationales. To be more specific, we utilize beam
search [2] to sample the top-K words from the VL model
probability distribution at each time step and maintain these
sequences with the highest probability. Then, these gen-
erated sentences are integrated into candidate explanations
Rs = {rsk}Kk=1 for each QA pair without human-annotated
explanations, where rsk and K indicate k-th rationale and
the size of beam search, respectively. Moreover, for la-
belled samples, a similar mechanism is used to build the
corresponding explanation set Rf = {rfk}Kk=1. The above
operations are implemented in all samples for the follow-
ing reasons: 1) Larger search space. As shown in Fig. 2,
“frying food is unhealthy” and “it includes many calories”
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can both be rational explanations for the answer “no”. The
expanded search space provides more possibilities for gen-
erating reliable rationales. 2) Avoid overfitting. For labelled
samples, although we can depend on human explanations to
train the model, these labels are still one-sided and subjec-
tive. Using the sequence sampling strategy can prevent the
model from overfitting these specific annotations [2,47]. In
the end, because the labelled and unlabelled samples would
be integrated into a mini-batch during training, we simplify
Rf and Rs into R = {rk}Kk=1 to indicate the candidate ex-
planations for each sample.

Self-Critical Reward. Inspired by [5, 51], an ideal ra-
tionale can help the model to infer the answer better. Based
on this insight, we argue that the answer scores can be con-
verted as self-critical rewards to evaluate these candidate
explanations. Considering that this is a non-differentiable
operation, we adopt reinforcement learning method [47] to
achieve end-to-end training. In particular, given a sample
and corresponding candidate explanations R, we design a
new input template:

Zk
r = [Z; ⟨reason⟩; rk; ⟨answer⟩], (4)

where Zk
r denotes the template of adding possible rationale

rk. Then, this template is fed back into the model and ob-
tains average probability prθ(A) about the answer, namely
explanatory answer scores, where A is the ground-truth an-
swer for the sample. Meanwhile, we use the average prob-
ability pbθ(A) from the output of the base answer template
as the base scores. By applying reinforcement learning, the
gradient is calculated by:

∇θLr(θ) = − 1

K

K∑
k=1

(prθ(A)− pbθ(A))∇θlogpθ(rk), (5)

where pθ(rk) is the probability of k-th explanations. Based
on the above computation, this gradient would tend to in-
crease the probability of k-th rationales when the answer
score prθ(A) higher than the scores pbθ(A) from the base an-
swer template. Finally, for labelled samples, we append the
human-annotated rationales to the candidate explanation R
and predict the answers by cross-entropy loss, namely Lea.

3.4. Loss

During the process of training, the overall loss function
can be represented as follows:

L = La + Le + Lea + λLr, (6)

where λ is used for balancing these two different types of
losses (i.e., cross-entropy loss and reinforcement loss). At
inference time, our model would first generate the rationales
about QA pairs, then we use the explanatory template (i.e.,
Eq. 4) to obtain the corresponding answers.

4. Experiment
4.1. Experimental setting

Datasets. Following previous methods [48, 49], we
mainly carry out the experiments on the two different VQA-
NLE datasets: VQA-X [41] and A-OKVQA [49]. Mean-
while, since explain annotations are expensive and time-
consuming, we also utilize large-scale VQA v2.0 [15] and
OK-VQA [36] datasets to build the semi-supervised learn-
ing paradigm. Next, we will introduce the four datasets.

VQA-X. It is a vision-language dataset that provides ex-
planations for justifying the answers. VQA-X is collected
from the Visual Question Answering (VQA) dataset [4]
where the images are obtained from the MSCOCO [27].
It consists of 28K images and 33K QA pairs, split into
29K/1.4K/1.9K for training, validation and testing. Mean-
while, VQA-X constructs complementary pairs which pro-
vide a question and two semantically similar images with
different answers.

A-OKVQA. Compared to the VQA-X, the questions
of A-OKVQA generally are required commonsense rea-
soning about the scene described in the images. It in-
cludes 24,903 Question/Answer/Rationale triplets, split into
17.1K/1.1K/6.7K for training, validation and testing. It col-
lects images from the COCO 2017 [7] dataset, and is further
filtered to obtain 23.7K unique images. Compared with pre-
vious datasets, the A-OKVQA has richer questions and re-
quires broader areas of knowledge for reasoning.

VQA & OK-VQA. We use VQA v2.0 and OK-VQA to
provide large-scale unlabelled datasets for semi-supervised
learning. The VQA v2.0 dataset is widely used for many
previous works [2, 52]. It consists of 443k questions and
195k images. To select explainable questions instead of
some obvious cases (e.g., How many...?, What color...?),
we filter out these questions from VQA v2.0 and obtain the
∼90k additional questions based on the rules [41]. On the
other hand, we also use knowledge-based OK-VQA [36]
dataset to provide unlabelled knowledge-based QA pairs. It
contains a total of 14k questions on 14k images.

Implementation Details. Following [37], each image is
first pre-processed (such as including image resize, center
crop, and normalize) by CLIP [45]. Meanwhile, we fix the
ViT-B weights from the CLIP visual encoder to accelerate
the training speed. For the mapping network, the image
sequence length S = 10 and the embedding size is 768.
The AdamW [21] is used as our optimizer with the weight
decay 1e-5, and the batch size and beam size K are set to
4 and 2. The weight coefficient λ is set to 10. We train
all models on the four 1080Ti GPUs for 30 epochs with a
learning rate of 1e-5.

4.2. Evaluation Measures

Automatic Metering. Following [48, 60], we use the auto-

2650



Table 1. Comparison with the state-of-the-art methods on the
VQA-X. Note that these results are unfiltered scores. S3C∗

denotes the model without unlabelled samples.

VQA-X
Approach B4 M R S C Acc Human
CAPS [41] 5.9 12.6 26.3 11.9 35.2 68.6 -
PJ-X [41] 19.5 18.2 43.4 15.1 71.3 76.4 65.4
FME [58] 24.4 19.5 47.7 17.9 88.8 75.5 -

NLX-GPT [48] 25.6 21.5 48.7 20.2 97.2 83.1 70.2
S3C∗(ours) 26.5 22.0 49.0 20.9 100.5 83.7 73.9
S3C (ours) 27.8 22.8 50.7 21.5 104.4 85.6 77.4

Table 2. Comparison with the state-of-the-art methods on the A-
OKVQA. Note that these results are unfiltered scores. S3C∗ de-
notes the model without unlabelled samples.

AOKVQA
Approach B4 M R S C Acc val Acc test Human

ViLBERT [29] - - - - - 30.6 25.9 -
LXMERT [52] - - - - - 30.7 25.9 -

KRISP [35] - - - - - 33.7 27.1 -
Clipcap [49] - - - - - 30.8 25.9 -
e-UG [20] 15.1 18.1 42.4 14.9 51.5 30.5 25.6 44.1

NLX-GPT [48] 20.1 17.0 46.3 15.8 65.4 32.7 28.7 46.9
S3C∗(ours) 21.8 17.9 47.3 17.3 70.6 33.0 29.6 49.4
S3C (ours) 22.5 18.5 48.4 18.1 74.4 34.2 33.5 54.7

Table 3. Comparison with the state-of-the-art methods on the VQA-X. Note that these results are filtered scores. S3C∗ denotes the model
without unlabelled samples.

B1 B2 B3 B4 M R S C Acc Human
RVT [34] 51.9 37.0 25.6 17.4 19.2 42.1 15.8 52.5 68.6 60.5
PJ-X [41] 57.4 42.2 30.9 22.7 19.7 46.0 17.1 82.7 76.4 69.3
FME [58] 59.1 43.4 31.7 23.1 20.4 47.1 18.4 87.0 75.5 -
QA-only [20] 51.0 36.4 25.3 17.3 18.6 41.9 14.9 49.9 - -
e-UG [20] 57.3 42.7 31.4 23.2 22.1 45.7 20.1 74.1 80.5 71.4
NLX-GPT [48] 64.2 49.5 37.6 28.5 23.1 51.5 22.1 110.6 83.2 73.7
S3C∗(ours) 64.4 49.9 38.0 29.1 23.4 51.9 22.7 112.1 83.7 75.9
S3C (ours) 64.7 50.5 38.8 30.7 23.9 52.1 23.0 116.7 85.6 79.2

matic metrics BLEU [40], METEOR [11], ROUGE-L [26],
SPICE [1] and CIDEr [55] to evaluate generated expla-
nations. For the evaluation of predicted answers, we fol-
low [48, 60] to compute the VQA accuracy.

Human Evaluation. Automatic VQA-NLE measures do
not always reflect the correctness and logicality of the ex-
planations [20, 53], thus we also build human evaluations.
The process is similar to [20, 34]. Specifically, for each
explanation, three human evaluators are required to decide
whether an explanation can justify the answer and select an
option (including “yes, weak yes, weak no and no”). The
selection will be mapped to scores (1, 2

3 , 1
3 and 0). The final

scores are computed by averaging among all test samples.
Meanwhile, these evaluators are asked to choose the reasons
for unqualified explanations. We follow [20] to define three
kinds of aspects to evaluate the explanations: irrelevant ex-
planations, insufficient explanations and meaningless expla-
nations. First, the irrelevant explanations may not match the
image, for example, ”have a long neck” is a good explana-
tion for the answer ”giraffes” when asked ”what animals
are these?”, but the image may display cows. Second, the
insufficient explanations only describe the image but cannot
corroborate the answers. For example, the sentence “there
are some people” does not sufficiently justify the question
“do people have a party?”. Lastly, some nonsensical sen-
tences could be judged as contradictory explanations, such
as “a man is a woman”. For each sample, the human evalu-
ators can select multiple shortcomings. More details of the
human evaluation can be found in the [20].

4.3. Quantitative evaluation.

Automatic Evaluation. We compare our method with
the state-of-the-art models on the VQA-X and A-OKVQA
datasets in Table 1-3. The B4, M, R, S, C, Acc and Hu-
man are short for BLEU-4, METEOR, ROUGE-L, SPICE,
CIDEr, Answer precision and Human evaluation. We use
“unfiltered” to indicate that the explanations are evaluated
regardless of whether the answer is true or false. While
“filtered” is to only consider the explanations which have
correct answers. From Table 1, the “S3C*” denotes that
we only apply the self-critical framework without using
unlabelled samples, while the row “S3C” indicates our
method in the semi-supervised setting. We observe that
the proposed framework outperforms both the post-hoc
explanation methods [41, 58] and the self-rationalization
method [48]. Meanwhile, it’s worth noting that although
the NLX-GPT uses a more powerful pre-trained VL model
with larger pre-trained datasets (i.e., COCO captions [27],
Flicker30k [43] and Visual Genome [24]), our method still
obtains 3.3 absolute gains on the CIDEr indicator with
fewer pre-trained data (only using COCO captions). Fur-
thermore, when we utilize our proposed semi-supervised
paradigm, the results are further improved by 7.2 points.
These results show that our model can generate more reli-
able explanations and it can benefit from the amount of data
without human-explanation labels. We also report the accu-
racy of answers in the column of “Acc”. It can be observed
that our self-critical method with semi-supervised learning
can simultaneously boost the precision of answers and cor-
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Table 4. Main shortcomings. The main shortcomings of unquali-
fied explanations on the VQA-X dataset. For each sample, human
evaluators can select multiple shortcomings.

Model
Irrelevant

explanations
Insufficient

explanations
Meaningless
explanations

RVT [34] 25.7% 33.5% 11.4%
PJ-X [41] 21.1% 28.4% 9.2%
e-UG [20] 22.8% 25.4% 8.7%
NLX-GPT [48] 20.3% 22.2% 9.1%
S3C (ours) 17.3% 18.9% 8.2%

Table 5. Cross-dataset testing. We alternately use the VQA-
X and A-OKVQA as source dataset and target dataset to test
the generalization of our framework.

VQA-X→A-OKVQA
Approach B4 M R S C Acc

NLX-GPT [48] 10.7 12.7 34.2 10.7 35.4 10.4
S3C (ours) 12.0 13.3 34.3 12.5 45.3 18.8

A-OKVQA→VQA-X
Approach B4 M R S C Acc

NLX-GPT [48] 9.1 13.6 32.8 9.1 33.2 42.4
S3C (ours) 10.9 15.0 34.1 10.4 38.6 43.8

Table 6. Ablation study. We ablate key components to demonstrate the effectiveness of our method. SCR and Semi are Self-Critical
Reinforcement module and Semi-supervised learning paradigm respectively.

question image answer explanation SCR Semi B4 M R S C Acc
1 ✓ ✓ ✓ – – – – – – – – 80.1
2 ✓ ✓ – ✓ – – 24.4 20.7 47.3 19.5 90.4 –
3 ✓ ✓ ✓ ✓ – – 27.5 22.9 50.4 21.9 109.1 82.2
4 ✓ ✓ ✓ ✓ ✓ – 29.1 23.4 51.9 22.7 112.1 83.7
5 ✓ ✓ ✓ ✓ ✓ ✓ 30.7 23.9 52.1 23.0 116.7 85.6

responding explanations.

In Table 2, we evaluate our method on the A-OKVQA
dataset. The results show that the S3C can outperform all
the previous works [17, 29, 35, 48, 49, 52]. Especially, com-
pared to the SOTA model [48], there are 9.0 points and 4.8%
improvements in the CIDEr and answer accuracy based on
our model. It demonstrates that our model can benefit from
semi-supervised learning and generate explanations about
commonsense reasoning.

In addition, to prove the algorithm’s validity, we fol-
low [20, 48] to report the filtered scores for the VQA-
X dataset in Table 3. Through filtering the correct an-
swers, our method can outperform whatever post-hoc [20,
34, 41, 58] and self-rationalization [48] methods. Mean-
while, the proposed S3C achieves a new state-of-the-art
with the CIDEr score improved by 6.1 points to 116.7 and
boost the answer accuracy by 2.4% to 85.6.

Human Evaluation. To evaluate the faithfulness and
correctness of these generated explanations, we conduct the
human evaluation that is shown in the column of “Human”
in Table 1-3. The experimental results further prove our
method has better self-interpretability for the VQA-NLE
task. Moreover, we also ask the human evaluators to se-
lect the shortcomings for each unqualified explanation on
the VQA-X dataset. As shown in Table 4, we build three
shortcoming options (i.e., irrelevant explanations, insuffi-
cient explanations and meaningless explanations) with a
multi-choice process. These results indicate that the S3C
can obtain relatively better rationales and empirically con-
firm the effectiveness of our method.

4.4. Cross-dataset Performance.

We propose cross-dataset experiments to measure the
generalization and reliability of our framework. For all we
know, there is very little research on cross-dataset explana-
tion generation. As shown in the first two rows of Table 5,
we use the VQA-X and the A-OKVQA as the source dataset
and target dataset to test the generalization ability of our
framework. Specifically, we use the weights from the state-
of-the-art method [48], which are trained on the VQA-X
dataset and tested on the A-OKVQA dataset to obtain the
results of the NLX-GPT. From the comparisons of six in-
dicators, we find that our self-critical model has better gen-
eralization from the general VQA to the knowledge-based
VQA. This suggests that S3C can learn commonsense from
visual question answering and generate better explanations
and answers. Meanwhile, when we exchange the source
dataset and target dataset as shown in the last two rows of
Table 5, our framework can still surpass the existing SOTA
model on all evaluation measures. These quantitative re-
sults effectively demonstrate the generalization and stability
of our model.

4.5. Ablation Studies.

As shown in Table 6, we conduct several ablation stud-
ies on the VQA-X to demonstrate the effectiveness of our
method. In particular, we first build the experiments in the
1-3 rows of Table 6, which use our Answer-Explanation
Prompt module with cross-entropy loss as the baseline mod-
els. It can be found that when we simultaneously generate
both answers and interpretations, the answer accuracy and
CIDEr can achieve significant improvements. Meanwhile,
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(f) Is this a bar?  
NLX: [yes] <there are people sitting at tables>
Ours: [yes] <the men are sitting at a 
bar with drinks in front of them>
GT: [yes] <there are drinks on a long countertop 
with people eating and drinking>

(c) What is the elephant doing? 
NLX: [drinking] <it is in the water>
Ours: [drinking] <the trunk is in the water>
GT: [drinking] <his trunk is in the water>

(e) Does this animal appear to be looking
at the camera?

NLX: [yes] <it is looking at something>
Ours: [no] <it is looking away from the camera>
GT: [no] <the animal is looking off to the side>

(b) Is he in a swimming pool?    
NLX: [yes] <he is on a surfboard>
Ours: [no] <he is surfing in the ocean>
GT: [no] <the man is riding an ocean wave>

(a) Is this man dressed formal?
NLX: [no] <he is wearing a tie>
Ours: [yes] <he is wearing a dress shirt and tie>
GT: [yes] <he's wearing a crisp dress shirt and a tie>

(d) Are the people having a party?
NLX: [no] <there are no people present>
Ours: [yes] <they are laughing and having a good time>
GT: [yes] <they are standing in a kitchen
with drinks in hand and laughing>

Figure 3. Some generation results on the VQA-X datasets. The [ ] and <> indicate answers and explanations respectively. We show the
results of the state-of-the-art NLX-GPT [48], our method and ground-truth (they are short for NLX, Ours and GT).

these results also prove that the answer-explanation pairs
have inherent consistency and they can promote each other.
Further, we establish the Self-Critical Reinforcement mod-
ule as shown in the fourth row, and the result of accuracy
and CIDEr are boosted by 1.5% and 3.0 points. It suggests
that our self-critical method with sequence sampling strat-
egy can encourage the model to generate more reliable ex-
planations and correct answers. Finally, when we extend
our model to the semi-supervised setting, the performance
improves to 85.6 on the accuracy and 116.7 on the CIDEr
over the baseline model (i.e., the row 5 of Table 6) by 3.4%
and 7.6 points. The results demonstrate that our framework
is remarkably effective in improving the logical consistency
and the self-interpretability of the model.

4.6. Qualitative evaluation.

As shown in Fig. 3, we show some qualitative results
from NLX-GPT [48] and our S3C method on the VQA-X
dataset. Through overall comparison, our model achieves
better logical consistency between answers and explana-
tions. For example, in Fig. 3 (a), although the SOTA
method [48] correctly identifies the significant symbol of
formal dress (i.e., tie), the predicted answer is “no” that
is contradictory to the explanation. On the contrary, our
method not only obtains a more complete and faithful ratio-
nale but also generates a logically consistent answer. Ad-
ditionally, the S3C can also produce more persuasive and

trusty sentences. For instance, in Fig. 3 (b)-(f), the gen-
erated sentences contain scene description “having a good
time” and fine-grained rationale “the trunk is in the water”.

5. Conclusion

In this paper, we propose a new Semi-Supervised VQA-
NLE method via Self-Critical Learning (S3C). Different
from previous works, our method first utilizes the prompt-
ing mechanism to motivate the model to generate answers
and candidate explanations. Meanwhile, we design a novel
Self-Critical Reinforcement module, which converts the an-
swer scores as rewards to evaluate these possible rationales.
Furthermore, our framework can benefit from an abundance
of question-answer pairs without human-annotated explana-
tions and further boost the self-interpretability of the model.
With the automatic measures and human evaluations, our
S3C achieves a new state-of-the-art on multiple bench-
marks and provides a new paradigm for our community.
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