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Abstract

Recently, there has been a significant advancement in
image generation technology, known as GAN. It can easily
generate realistic fake images, leading to an increased risk
of abuse. However, most image detectors suffer from sharp
performance drops in unseen domains. The key of fake im-
age detection is to develop a generalized representation to
describe the artifacts produced by generation models. In
this work, we introduce a novel detection framework, named
Learning on Gradients (LGrad), designed for identifying
GAN-generated images, with the aim of constructing a gen-
eralized detector with cross-model and cross-data. Specif-
ically, a pretrained CNN model is employed as a trans-
formation model to convert images into gradients. Sub-
sequently, we leverage these gradients to present the gen-
eralized artifacts, which are fed into the classifier to as-
certain the authenticity of the images. In our framework,
we turn the data-dependent problem into a transformation-
model-dependent problem. To the best of our knowledge,
this is the first study to utilize gradients as the representa-
tion of artifacts in GAN-generated images. Extensive ex-
periments demonstrate the effectiveness and robustness of
gradients as generalized artifact representations. Our de-
tector achieves a new state-of-the-art performance with a
remarkable gain of 11.4%. The code is released at ht tps :
//github.com/chuangchuangtan/LGrad.

1. Introduction

Over the past years, remarkable progress has been made
in deep generative models, i.e. generative adversarial net-
works (GAN) [14], its variations [3, 21-23,36], and VAE
[25]. The generated media is highly realistic and indistin-
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Figure 1. Visualization of gradients of real images and GAN-
generated images extracted from a pre-trained model. To fully
understand the gradients, heatmaps for R, G, and B channels also
are shown, where red is high. In the gradients, the content of im-
ages is filtered out, and only the discriminative pixels are retained
for the pre-trained model’s target task. We utilize the gradients as
the generalized artifacts representation to develop a novel detec-
tion framework.

guishable from real to human eyes. Although it has the po-
tential for many novel applications [&], it also brings new
risks due to the abuse of fake information. The misuse
of DeepFakes has been confirmed that some people swap
the faces of women onto pornographic videos [¢]. In addi-
tion, some individuals, even non-experts, can malevolently
manipulate or create fake images or videos for political or
economic purposes, leading to serious social problems [17].
Thus, it is extremely necessary to develop forgery detection
techniques to help people determine the credibility of the
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media [17,40].

Various detectors [11-13,16,18,19,30,42,45] have been
developed to detect GAN-generated images. Some stud-
ies [16, 30, 45] focus on human face images, while oth-
ers [11,18,19,42] handle various categories of images. They
mainly depend on local regions artifacts [4, 44], blending
boundary [26], global textures [30], and frequency-level ar-
tifacts [13, 18, 19,45]. However, those methods heavily
rely on the training settings, resulting in failure detection
of images from unseen categories or GAN models. The
test images in the actual scene are always from unknown
sources [17], rendering it challenging to develop gener-
alized detectors. There are some works [19, 42] exploit-
ing pre-processing, data augmentation, and reducing the ef-
fects of frequency-level artifacts to develop a robust detec-
tor. Nevertheless, there still needs to be a more generalized
representation of the clue produced by generation models,
which is critical for robust fake image detection.

To tackle this problem, we propose a novel and simple
detection framework, referred to as Learning on Gradients
(LGrad). A new generalized feature, Gradients, is devel-
oped to serve as a representation of the artifacts produced
by GAN models. We believe that the gradients of a trained
CNN model can highlight the important pixels in the tar-
get task, thereby serving as a valuable cue for detecting
fake images. As shown in Figure 1, we adopt a pre-trained
discriminator of ProGAN [21] to extract gradients of im-
ages produced by Celeba-HQ [21], ProGAN [21], Style-
GAN [22], StyleGAN?2 [23]. In these gradients, the content
of images is filtered out, and only the discriminative pixels
that are relevant to the pre-trained model’s target task are re-
tained. Therefore, the gradients are more dependent on the
pre-trained model rather than on training sources, thereby
enhancing the detector’s performance with unseen data. In
our framework, a pretrained model, called transformation
model, is employed to convert images to gradients. These
gradients serve as the generalized artifacts and are fed into
the classifier to obtain a robust detector. Since the transfor-
mation model is indeterminate in our framework, targeted
anti-detection cannot be effectively launched.

To validate the performance of our LGrad, we only use
images generated by ProGAN to train the detector and eval-
uate it with various sources, including cross-category, cross-
model, and cross-model & category. Numerous experi-
ments prove the effectiveness and robustness of gradients
as generalized artifacts. Our detector achieves a new state-
of-the-art performance in known and unseen settings.

Our paper makes the following contributions:

* We develop a new detection framework, Learning on
Gradient (LGrad), to detect GAN-generated images.
Our detector achieves a new state-of-the-art perfor-
mance.

* We introduce a new generalized artifact representation,
Gradients, for GAN-generated image detection. Fur-
thermore, we are the first to use gradients as the repre-
sentation of artifacts.

e Our framework turns the data-driven problem into a
transformation-model-driven problem. The robustness
of the detector is improved with the introduction of the
transformation model.

e We prove the great potential of the discriminator of
GAN in detecting GAN-generated images.

2. Related Work

In this section, we discuss recent approaches for gen-
erated image detection. The previous methods attempt to
exploit spatial information or frequency artifacts as the rep-
resentation of clues produced by the generation model for
fake image detection.

2.1. Image-based Fake Detection

Early studies employ spatial information from generated
images to identify the fake images, such as color spaces [45]
and global texture [30]. Rossler et al. [37] introduce a large-
scale manipulated face dataset FaceForensics++ and adopt
Xception [7] as detector to identify the fake images with
compression. Li et al. [27] detect fake face videos by an-
alyzing eye blinking in the videos. ForensicTransfer [9]
presents a new autoencoder-based architecture to learn a
discriminative feature representation in the latent space for
detection well on new domains. Yu et al. [44] and Marra
et al. [31] believe that every GAN model has unique finger-
prints after training, and extracting it from generated images
to perform detection. Bayar et al. [2] design a new convo-
lutional network architecture to suppress the image of the
content and learn manipulation features for a generalized
detector. Gram-Net [30] leverages the Gram matrix to ex-
tract global texture as the robust representation for fake face
detection. Face X-ray [20] develops the blending boundary
to present the artifacts for detecting manipulated face im-
ages. Chai et al. [4] design a patch-based classifier to limit
the receptive field of the model for learning redundant arti-
facts in image patches. The patch-based predictions focus
on local artifacts rather than global structure, improving the
robustness of the detector. Yu ef al. [45] use the channel
difference image and spectrum image to mine the intrinsic
clues of images from the view of the camera imaging pro-
cess. Wang et al. [42] directly adopt a large number of real
and fake images with data augmentation to train a binary
classifier for improving unseen image performance. They
use some post-processing operations to improve robustness
during training, such as JPEG compression, blurring, and
resizing. PCL [46] extracts the distinct source features of
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Figure 2. The overall pipeline of the proposed framework. The method uses the same transformation model and the same classifier in the

testing and training phases.

images by self-consistency learning for detecting deepfake.
He et al. [16] design a re-synthesis procedure to extract vi-
sual cues for robust deepfake detection.

2.2. Frequency-based Fake Detection

Since GAN architectures depend on up-scaling opera-
tions, the generated images contain unique frequency-level
artifacts compared to neutral images [ 1]. Several works
[1,11,12,31,32,34] leverage the spectral distributions of
images as the representation of artifacts for fake image de-
tection. LOG [32] proposes a two-branch recurrent net-
work to integrate information from the color domain and
the frequency domain for detecting manipulated faces. F3-
Net [34] designs a two-stream collaborative learning net-
work to mine the forgery patterns in fake images, which ex-
ploits two frequency-aware clues, frequency-aware decom-
posed image components and local frequency statistics, to
present subtle forgery patterns and high-level semantics, re-
spectively. BiHPF [18] adopts two high-pass filters to am-
plify the magnitudes of the artifacts. FrePGAN [19] val-
idates that the frequency-level artifacts of fake images are
evident but uniquely vary by the type of GAN model or ob-
ject category, which can cause overfitting issues for fake
image detection. Thus, it generated the frequency-level per-
turbation maps to remove the effect of the frequency-level
artifacts.

3. Learning on Gradients framwork

The key to the fake image detection task is develop-
ing a generalized representation of artifacts generated by

GAN models. It should be generalized and robust enough
to span diverse categories and different GAN models. In or-
der to achieve this, we design a novel detection framework
to improve the cross-source performance in this work. The
overview of our method is shown in Figure 2. Our frame-
work employs gradients as the generalized representation
to obtain the robust detector. We transform the images to
the gradients by a pretrained CNN model named transfor-
mation model. In the process of transforming, most of the
content of images is filtered out due to the pooling layer in
the CNN model, and the essential pixels for the transforma-
tion model are highlighted. Figure 1 provides the visualiza-
tion evidence for our explanation. Extensive experiments
in Section 4 demonstrate the effectiveness of the gradients
using as the artifact representation.

3.1. Transformation to Gradients

The previous methods based on pixel and frequency-
level artifacts highly rely on the training data, resulting in
failure with unseen images. To solve this overfitting issue,
we adopt any one pretrained CNN model as the transfor-
mation model to convert all images consisting of training
images and test images to gradients. This approach effec-
tively maps all data to the gradient domain, which is de-
termined by the chosen transformation model. By relying
on this more generalized representation of artifacts, we can
achieve improved performance in detecting GAN-generated
images across diverse categories and GAN models.

We denote the images set as [ = {(I;,:)} ", where
yi = {0, 1} is the label of the images I; € R**"*¢ which
is real(y = 0) or fake(y = 1). The w, h, ¢ present width,
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height, and the number of channels. The transformation
model is defined as M (-). We first feed images I; into M
model.

I = M(IL), (1)

where [ € R™*¢ is the output vectors of the transformation
model M. Then, we calculate the gradients of sum(l) with
respect to the input I,

_ Osum(l)
=g )

G is the generalized artifacts representation of our method.
Note that the transformation model M is fixed, and its pa-
rameter would not update in our framework. The quality
of gradients G highly depends on the transformation model
M, which is helpful to reduce the reliance on training data
and enhance the generalization of the representations. In
our experiments, we adopt various popular CNN models to
implement the transformation model, including the classifi-
cation model, segmentation model, discriminator of GAN,
contrastive learning model, and GAN Inversion.

3.2. Detecting Fake Images

During the training stage of our framework, we use nor-
malized gradients ranging from 0 to 255 to train the bi-
nary classification network. We adopt the popular classi-
fier to distinguish whether the input gradients correspond to
GAN-generated images or not, and employ a cross-entropy
loss function to optimize the network. During the infer-
ence time, the test images are first converted to gradients by
the transformation model employed in the training stage.
Then, we obtain the final result by feeding gradients into
the trained classification network.

4. Experimental Results
4.1. Dataset

To evaluate the proposed approach, we adopt the dataset
provided by Wang et al. [42] to conduct experiments fol-
lowing the previous works [ 18, 19]. It contains various fake
images generated by ProGAN [21], StyleGAN [22], Style-
GAN2 [23], BigGAN [3], CycleGAN [49], StarGAN [6],
GauGAN [33] and Deepfake [37]. The real images are
sampled from LSUN [43], ImageNet [38], CelebA [29],
CelebA-HQ [21], COCO [28], and FaceForensics++ [37].
During the training stage, we train the classifier with im-
ages generated by ProGAN.

In addition, to verify the usefulness of our method for
face data, we sample 20,000 real images from Celeba-HQ,
and generate 20,000 face images by ProGAN as the training
set. And the images generated by StyleGAN, StyleGAN2
trained by Celeba-HQ [21] are employed as the test set. All
images are resized to 256 x 256 resolution.

4.2. Implementation Details

We apply the Resnet50 [15] model pre-trained with Im-
ageNet [38] as the classifier, and train it by Adam [24] with
learning rate of 5 x 10~*. The learning rate is decreased by
twenty percent after every ten epochs. The batch size is set
to 16, and the number of epochs is 100. In this paper, the
results of the last epoch are used as the final performance.
In addition, we randomly crop the input images during the
training phase and directly feed images into the classifier in
the test stage.

To fully understand the gradients as the generalized ar-
tifacts, we further employ various popular models to im-
plement the transformation model, i.e. VGG16 [39], In-
ceptionV3 [41], Resnet50 [15], DeeplabV3 [5], CLIP [35],
ViT [10], discriminator of ProGAN [21], StyleGAN [22],
StyleGAN2 [23], and GAN Idinvert [48]. All of those mod-
els in this paper are released by the official code. Following
the baselines [18, 19], we utilize the average precision score
(A.P.) and accuracy (Acc.) as evaluation metrics to evaluate
the proposed method.

4.3. Detection Performance Evaluations

To assess the effectiveness of our detector, we conducted
evaluations in four different settings: cross-model images,
cross-category images, cross-model & category images, and
perturbed images. Specifically, the detector is trained on
a known GAN model, e.g. ProGAN-Horse [21] dataset,
while evaluated with unseen images: 1) cross-category im-
ages, produced by the same GAN model trained on different
datasets, e.g. ProGAN-Airplane and ProGAN-Diningtable;
2) cross-model images, generated by different GAN models
trained on the same dataset, e.g. StyleGAN-Horse [22] and
StyleGAN2-Horse [23]; and 3) cross-model & category im-
ages, where both training data and GAN model are different
from the training setting, e.g. BigGAN-ImageNet [3,38] and
GauGAN-COCO [28,33]. Meanwhile, to fully understand
the proposed LGrad framework in terms of different trans-
formation models, we further implement the transformation
model with various popular CNN networks.

ProGAN- StyleGAN- StyleGAN2-
CelebaHQ CelebaHQ CelebaHQ
Acc. AP Acc. AP Acc. AP

99.6 100.0 76.8 98.9 642 96.2

Trans. Models

Input Image

ProGAN- 914 973 574 663 524 569
Randomlnit

VGG16 969 998 79.6 963 682 91.6
CLIP-RN50 99.5 100.0 99.4 100.0 99.2 100.0

ProGAN-bedroom 98.8 100.0 98.4 999 96.5 99.6
ProGAN-bridge 964 99.5 84.8 95.0 819 93.6

Table 1. Cross-model Performance on face images data.
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CLIP Trans. Bedroom Trans. Bridge Trans.
Test-categorys

ACC AP ACC AP ACC AP

airplane 929 97.0 994 100.0 994 100.0
bicycle 80.5 94.6 945 985 948 985
bird 85.6 944 99.2 1000 975 99.7
boat 90.6 96.6 99.6 1000 985 99.9
bottle 947 982 977 100.0 99.2 100.0
bus 81.5 949 98.1 100.0 96.7 99.8
car 84.0 957 99.7 100.0 99.1 100.0
cat 90.2 96.1 99.7 100.0 98.7 99.9
chair 945 985 962 999 99.1 100.0
COwW 855 950 995 100.0 97.7 99.8
diningtable 924 97.7 985 99.8 969 99.5
dog 89.8 96.1 99.6 100.0 984 999
horse 89.0 96.3 100.0 100.0 99.8 100.0
motorbike 79.2 948 97.0 99.7 969 993
person 93.6 97.1 989 100.0 99.1 100.0
pottedplant ~ 77.9 956 975 99.7 957 99.1
sheep 832 942 992 1000 958 993
sofa 94.1 98.6 99.1 100.0 99.2 100.0
train 83.6 944 944 997 96.1 99.6
tvmonitor 93.0 98.7 96.5 100.0 99.2 100.0
Mean 87.8 962 982 999 979 99.7

Table 2. Cross-category Performance on the ProGAN models
trained on different LSUN [43] object datasets.

4.3.1 Cross-model Performance.

We employ face images to show the cross-model perfor-
mance of our proposed LGrad framework. The training
set contains 25,000 fake images generated by ProGAN [21]
and 25,000 real images randomly sampled from Celeba-HQ
[21]. The test set consists of 10,000 images, half of which
are real images randomly sampled from Celeba-HQ [21],
while the other half are fake images generated by Style-
GAN [22] and StyleGAN2 [23]. We adopt popular CNN
models such as VGG16 [39], CLIP-RN50 [35], and dis-
criminators of ProGAN [21] as the transformation models,
and also randomly initialize a discriminator of ProGAN to
perform the transformation to demonstrate the effectiveness
of pre-trained models. In addition, we train the detector di-
rectly on the images to compare it with the gradients-based
detector.

The experimental results are shown in Table 1. We can
observe that image-based detectors suffer from sharp per-
formance drops on StyleGAN [22] and StyleGAN2 [23]. Tt
only achieves the Acc. of 64.2% on StyleGAN2, which is
much lower than the performance on ProGAN. In contrast,
all gradients-based detectors transformed by pre-trained
models outperform the one with random initialization of
ProGAN. The results demonstrate that the transformation

model eliminates the contents of images while retaining the
discriminative regions in the gradients. Thus, the gradients
can effectively present the generalized artifacts produced
by GAN models. The detector based on CLIP-RestNet50,
trained on various (image, text) pairs, achieves the best ac-
curacy of 99.4% and 99.2% on StyleGAN and StyleGAN2,
respectively. The discriminators of ProGAN trained on bed-
room or bridge datasets yield comparable results with the
CLIP-RestNet50 model. Our proposed framework shows
remarkable performance on face data.

4.3.2 Cross-category Performance.

We leverage the training set from Wang et al. [42] to vali-
date the cross-category performance, which contains 20 ob-
ject categories generated by ProGAN models. Each cate-
gory comprises 18,000 fake images and an equal number
of real images. We trained our detector using the horse
dataset and evaluated its performance on the remaining 19
datasets. We implement the transformation model with two
discriminators of ProGAN and Contrastive learning model,
including ProGAN-bedroom, ProGAN-bridge, and CLIP-
ResNet50. Table 2 reports the results of our detectors. The
performance of the horse is calculated on the training data.
When adopting the CLIP-RestNet50 model as the transfor-
mation model, the detector achieves the best result on cross-
model performance compared to the other models. We also
evaluate the performance of CLIP-RestNet50 on the cross-
category case. In Table 2, the CLIP-RestNet50 achieves
mean Acc. of 87.8% on 20 categories, while the ProGAN-
bedroom and ProGAN-bridge obtain higher accuracies of
98.2% and 97.9%, respectively. It can be observed that dis-
criminators are more suitable as the transformation model to
detect cross-category images. In summary, we can confirm
that our detectors show excellent performance in detecting
unseen categories.

4.3.3 Cross-model & category Performance.

We further expand the testing scope to evaluate the robust-
ness of our proposed method. The gradients-based detec-
tor is performed on eight different models following base-
lines [18, 19] including ProGAN, StyleGAN, StyleGAN?2,
BigGAN, CycleGAN, StarGAN, GauGAN, and Deepfake.
We adopt the discriminators of ProGAN and StyleGAN,
trained using the LSUN bedroom dataset, as the transfor-
mation model. For fair comparisons, we use the same ex-
perimental setting employed in baselines [19] to evaluate
the generality of the detector. Specifically, three training
configurations are employed to train the detector, including
1-class (horse), 2-class (chair, horse), and 4-class (car, cat,
chair, horse) settings.

Table 3 presents the results of our proposed LGrad
framework in comparison to various previous methods. We
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Settings

Test Models

Methods Input #class ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake| Mean
P Acc. A.P. Acc. AP. Acc. AP. Acc. AP.Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.|Acc. A.P.
Wang [42] Image 1 504 63.8 50.4 79.3 68.2 94.7 50.261.350.0 52.9 50.0 48.2 50.3 67.6 50.1 51.5(52.564.9
Frank [12] Freq 1 78.9 77.9 694 64.8 67.4 64.0 62.358.667.4 65.4 60.5 59.5 67.569.1 52.447.3|65.7 63.3
Durall [11] Freq 1 85.1 79.5 59.2 55.2 704 63.8 57.053.966.7 61.4 99.8 99.6 58.7 54.8 53.0 51.9|68.7 65.0
BiHPF [1§] Freq 1 82.5 81.4 68.0 62.8 68.8 63.6 67.062.575.5 74.2 90.1 90.1 73.692.1 51.649.972.172.1
FrePGAN [19]Image 1 95.5 99.4 80.6 90.6 77.4 93.0 63.560.559.4 59.9 99.6100.053.049.1 70.4 81.5/74.979.3
(I;S/fﬁgdmm) Grad 1 98.4 999 82.6 95.6 83.3 98.4 76.281.882.3 90.6 99.7100.071.7 75.0 52.8 57.8(80.9 87.4
(I;gsﬁiedm) Grad 1 99.4 999 96.0 99.6 93.8 99.4 79.588.984.7 94.4 99.5100.070.9 81.8 66.7 77.9(86.3 92.7
Wang [42] Image 2 64.6 92.7 52.8 82.8 75.7 96.6 51.670.558.6 81.5 51.2 74.3 53.6 86.6 50.6 51.5(57.379.6
Frank [12] Freq 2 85.7 81.3 73.1 68.5 75.0 70.9 76.970.886.5 80.8 85.0 77.0 67.3 65.3 50.1 55.3|75.071.2
Durall [11] Freq 2 79.0 73.9 63.6 58.8 67.3 62.1 69.562.965.4 60.8 99.4 99.4 67.0 63.050.5 50.2|70.2 66.4
BiHPF [ 18] Freq 2 87.4 874 71.6 74.1 77.0 81.1 82.680.686.0 86.6 93.8 80.8 75.3 88.2 53.7 54.0|78.479.1
FrePGAN Image 2 99.0 99.9 80.8 92.0 72.2 94.0 66.061.869.1 70.3 98.5100.053.151.0 62.2 80.6(75.1 81.2
kg{ﬁgﬂmm Grad 2 99.5100.085.8 99.3 83.5 99.4 78.987.778.8 89.0 99.6100.070.577.6 51.952.7(81.1 88.2
&Sgﬁiedro(‘m) Grad 2 99.8100.094.8 99.7 92.4 99.6 82.592.485.9 94.7 99.7 99.9 73.7 83.2 60.6 67.8(86.2 92.2
Wang [42] Image 4 914 994 63.8 91.4 76.4 97.5 52.973.372.7 88.6 63.8 90.8 63.992.251.762.3|67.1 86.9
Frank [12] Freq 4 90.3 85.2 74.5 72.0 73.1 71.4 88.786.075.5 71.2 99.5 99.5 69.277.4 60.7 49.1|78.9 76.5
Durall [11] Freq 4 81.1 744 544 52.6 66.8 62.0 60.156.369.0 64.0 98.1 98.1 61.9 57.450.2 50.0|67.7 64.4
BiHPF [ 18] Freq 4 90.7 86.2 769 75.1 76.2 7477 84.981.781.9 78.9 94.4 94.4 69.578.154.4 54.6/78.677.9
FrePGAN [19]Image 4 99.0 99.9 80.7 §9.6 84.1 98.6 69.271.171.1 74.4 99.9100.060.371.770.9 91.9|79.4 87.2
(thfﬁgdmm) Grad 4 99.7100.087.8 99.1 91.7 99.7 80.989.378.2 89.0 99.8100.073.578.653.155.0/{83.1 88.8
(I;Sgg&dmm) Grad 4 99.9100.094.8 99.9 96.0 99.9 82.990.785.3 94.0 99.6 100.072.4 79.3 58.0 67.9(86.1 91.5
Table 3. Classification accuracy with cross-model & category.
Perturbed ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake Mean
4 Acc. AP. Acc. AP. Acc. AP. Acc. AP Acc. AP. Acc. AP Acc. AP. Acc. AP |Acc. AP
No 99.4 999 96.0 99.6 93.8 994 79.5 88.9 84.7 944 99.5 100.0 709 81.8 66.7 77.9|86.3 92.7
blur 90.1 96.5 90.6 95.7 87.5 934 71.1 763 70.6 73.6 93.6 98.0 63.7 69.5 61.2 62.6|785 83.2
cropping 99.2 999 959 99.6 94.0 99.6 80.1 88.0 78.5 88.1 944 994 70.6 78.1 67.5 82.3|85.0 91.9
jpeg 76.2 90.0 744 90.2 72.6 89.1 66.0 74.6 72.77 83.2 76.0 89.5 60.1 67.6 58.0 65.2|69.5 81.2
noise 77.1 87.7 73.3 84.8 743 849 682 774 664 77.2 76.0 88.8 604 69.1 575 65.1|69.1 79.4
combined 86.3 94.6 83.5 93.0 824 923 71.2 789 73.0 804 84.7 943 64.7 71.5 612 674|759 84.1

Table 4. Performance of common image perturbations.

can find that the proposed LGrad framework successfully
surpasses the counterparts in the metric of average pre-
cision score and accuracy. Our detector shows signifi-
cantly better generalization to other methods, except on
GauGAN and Deepfake. Notably, our LGrad framework
achieves higher accuracy values increase to 99.4%, 96.0%,
93.8%, 79.5%, 84.7% on the ProGAN, StyleGAN, Style-
GAN?2, BigGAN, CycleGAN models with the 1-class set-
ting, respectively. We obtain comparable results on the
GauGAN model and deepfake. Furthermore, our LGrad

with StyleGAN-bedroom model successfully achieves a
new state-of-the-art accuracy, surpassing FrePGAN [19] by
11.4% and 13.4% in terms of mean accuracy and mean av-
erage precision score, respectively. We also compare to Fin-
gerprintNet [20] evaluated on six GAN models. When eval-
uated on StyleGAN, StyleGAN2, BigGAN, CycleGAN,
StarGAN, and GauGAN, FingerprintNet and the proposed
method achieve the mean Accuracy of 82.6% and 87.4%,
respectively. We achieve a gain of 4.8% in terms of mean
accuracy.

12110



Trans. Model ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake| Mean
’ Acc. AP. Acc. AP. Acc. AP. Acc. AP. Acc. AP. Acc. AP. Acc. A.P. Acc. A.P.|Acc. AP.
VGG16 [39] 96.0 99.5 65.5 88.8 74.7 93.8 73.078.1 77.8 86.1 99.8 100.0 60.7 63.1 60.4 67.8|76.0 84.7
InceptionV3 [41] 64.9 744 58.8 669 65.4 73.8 50.952.159.1 68.4 52.6 58.5 54.0 56.5 49.8 50.1|56.9 62.6
Resnet50 [15] 86.4 95.0 81.0 92.2 83.7 93.5 57.256.268.3 75.8 96.4 99.5 51.252.763.470.4|73.479.4
CLIP-Resnet50 [35] 87.6 95.8 80.2 90.0 78.9 91.0 60.1 61.1 84.2 87.9 88.5 95.1 72.6 71.6 64.9 64.4|77.1 82.1
ViT [10] 51.2 71.1 51.7 65.7 52.4 679 50.653.354.1 75.2 51.6 64.0 50.6 61.1 50.0 53.7|51.5 64.0
DeeplabV3 [5] 81.6 91.6 68.7 80.4 70.6 84.5 54.555.766.2 71.0 879 94.7 51.7 53.1 59.3 58.9/67.6 73.7
Idinvert [48] 97.4 99.8 71.6 953 71.2 954 86.694.8 78.7 85.7 97.4 99.7 72.0 82.1 60.1 72.1|79.4 90.6
ProGAN-bedroom [21] 98.4 999 82.6 95.6 83.3 98.4 76.2 81.8 82.3 90.6 99.7 100.0 71.7 75.0 52.8 57.8|80.9 87.4
ProGAN-bridge [21] 97.8 99.7 86.4 97.5 85.7 97.3 72.578.776.8 87.5 94.1 99.9 62.575.8 53.2 61.3|78.6 87.2
StyleGAN-bedroom [22] 99.4 99.9 96.0 99.6 93.8 99.4 79.588.9 84.7 94.4 99.5100.0 70.9 81.8 66.7 77.9|86.3 92.7
StyleGAN-cats [22] 97.4 99.7 83.4 97.3 77.4 96.4 69.874.679.3 90.2 97.8 99.8 68.0 77.4 65.9 72.9|79.9 88.5
StyleGAN2-church [23] 99.1 100.0 88.2 97.7 91.9 99.6 70.1 71.7 80.6 89.1 95.6 99.8 60.8 68.9 72.7 76.5|82.4 87.9

Table 5. Performance of different transformation models.

Methods Num. of ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake| Mean
Train. data Acc. A.P. Acc. AP. Acc. AP. Acc. AP. Acc. AP. Acc. A.P. Acc. AP. Acc. AP.|Acc. AP.
FrePGAN [19] 36k 95.5 99.4 80.6 90.6 77.4 93.0 63.560.559.4 59.9 99.6 100.0 53.0 49.1 70.4 81.5|74.979.3
LGrad 4k 95.9 99.5 88.9 98.0 91.7 99.0 59.155.258.7 58.4 87.8 99.8 59.2 66.2 65.9 83.5|75.9 82.4
LGrad 9k 98.3 999 924 994 922 994 71.774.573.0 76.8 98.1 100.0 64.0 74.2 68.0 79.3|82.2 87.9
LGrad 18k  98.8100.095.1 99.8 91.4 99.7 76.8 87.179.8 90.7 99.2 100.0 68.9 80.4 63.9 73.0{84.291.3
LGrad 36k 99.4 99.9 96.0 99.6 93.8 99.4 79.588.984.7 94.4 99.5100.070.9 81.8 66.7 77.9|86.3 92.7
LGrad 72k 99.8 100.094.8 99.7 92.4 99.6 82.592.485.9 94.7 99.7 99.9 73.7 83.2 60.6 67.8|86.2 92.2

Table 6. Results with variance in number of training data.

In comparison to the performance of FrePGAN [19], our
detector obtains the most significant improvement on Style-
GAN, increasing accuracy by 15.4%, 14.0%, 14.1% with 1-
class, 2-class, and 4-class settings, respectively. It is worth
noting that the LGrad framework fails to perform well on
the deepfake model, which is not a GAN model and is
trained with MSE loss and SSIM loss, resulting in an ac-
curacy value of only 66.7%. The results indicate that the
proposed LGrad approach is less reliant on the amount of
data, as it achieves similar results with 1-class, 2-class, and
4-class settings. As the number of training data increases,
the deepfake performance decreases, resulting in a drop in
the mean accuracy of all generative models.

In addition, we leverage the high-frequency component
of images as the artifacts representation to train the classi-
fier with the same settings. High-frequency-based method
obtains the mean accuracy of 75.1%, 75.0%, and 73.0%
with 1-class, 2-class, and 4-class settings, respectively. Our
LGrad increases accuracy by 11.2%, 11.2%, and 13.1% on
the same setting, respectively. Gradients are different from
high-frequency information. This suggests that gradients
can be used as an effective representation of artifacts that
are capable of detecting GAN-generated images across di-
verse categories and various GAN models.

4.3.4 Robustness against Image Perturbations.

To evaluate the robustness of the proposed framework to im-
age perturbations, we apply common image perturbations
on the test images with a probability of 50% following [13].
These perturbations include blurring, cropping, compres-
sion, adding random noise, and a combination of all of
them. In this subsection, the discriminator of StyleGAN-
bedroom is used as the transformation model. The results
are presented in Table 4. It can be observed that our detec-
tors are robust with respect to cropping and blur, but obtain
degraded performance on jpeg and noise. This could be due
to the fact that the influence of jpeg and noise for the trans-
formation model results in the transformed gradients that do
not work well. We could further improve the robustness of
the transformation model to tackle this problem.

4.4. Visualization

Figure 3 shows fake images generated by ProGAN and
StyleGAN, real images sampled from CelebA-HQ, the gra-
dients transformed from images, and Class Activate Map
(CAM) [47] extracted from the detector. We adopt the
discriminator of ProGAN-bedroom as the transformation
model. It can be observed from gradients that most of the
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Figure 3. The visualization of gradients and Class Activate Map (CAM) [47] extracted from detector on face images.

content of images is filtered out, and the essential pixels for
the transformation model are highlighted in the process of
transforming. Although some texture information is pre-
served, its value is relatively low. Furthermore, the class
activate map of the detector trained on gradients highlights
the discriminative region for detection, and it can be seen
that the maps of the real image highlight the face region,
while most maps of the generated image are located in the
background area. It reflects that the gradients, as the gener-
alized representation of artifacts, contain high-level rather
than low-level features such as texture.

5. Ablation Study

Effect of Transformation Model. In our framework,
we turn the data-dependent problem into a transformation-
model-dependent problem. The images are converted into
the gradient, which serves as the generalized representation
of artifacts. The performance of the detector highly relies
on the quality of the transformation model. Now we discuss
the influence of the transformation model on the detection
performance, by employing ten pre-trained models. Table
5 shows the across-model & data results of different trans-
formation models. We can observe that gradients gener-
ated by the discriminator of GAN perform better on unseen
data compared to the classification model and contrastive
learning model. In addition, discriminators with different
structures or trained with different data exhibit varying per-
formances. Thus, our framework turns the data-dependent
problem into a transformation-model-dependent problem.
In our experiment, the discriminator of StyleGAN-bedroom
obtains the best performance.

Effect of the number of training data In order to test
the influence of the number of training data for the detector,
we sample 4,000, 18,000, and 36,000 images which con-
tain equal numbers of real and fake images from the horse
dataset as the training set, respectively. We also use 72k

images of all the chairs and horses set to train the detector.
In this subsection, the discriminator of StyleGAN-bedroom
is also used as the transformation model. Table 6 compares
the proposed framework with the different number of train-
ing data. Our detector achieves similar across-model & data
performance with 18,000, 36,000, and 72,000 training im-
ages. In addition, the proposed LGrad with 4,000 training
data still outperforms FrePGAN with 36,000 images, indi-
cating the superiority of our method.

6. Conclusion

In this work, we propose a novel detection framework,
called Learning on Gradients(LGrad), designed to identify
GAN-generated images. In our method, the gradients are
employed as a generalized representation to describe the ar-
tifacts produced by generation models. Specifically, we uti-
lize a pre-trained CNN model as the transformation model
to convert images into gradients effectively transforming
the data-dependent problem into a transformation-model-
dependent problem. Numerous experiments in our paper
prove the great potential of the discriminator of GAN in
detecting GAN-generated images. Moreover, we demon-
strate the effectiveness and robustness of using gradients
as generalized artifact representations in detecting GAN-
generated images. Nonetheless, we acknowledge that the
LGrad framework may not perform well in detecting non-
GAN generative models, such as deepfake, and we aim to
address this limitation in future research.
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