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Abstract

Recently, self-supervised 6D object pose estimation,
where synthetic images with object poses (sometimes jointly
with un-annotated real images) are used for training, has
attracted much attention in computer vision. Some typical
works in literature employ a time-consuming differentiable
renderer for object pose prediction at the training stage, so
that (i) their performances on real images are generally lim-
ited due to the gap between their rendered images and real
images and (ii) their training process is computationally ex-
pensive. To address the two problems, we propose a novel
Network for Self-supervised Monocular Object pose esti-
mation by utilizing the predicted Camera poses from un-
annotated real images, called SMOC-Net. The proposed
network is explored under a knowledge distillation frame-
work, consisting of a teacher model and a student model.
The teacher model contains a backbone estimation module
for initial object pose estimation, and an object pose refiner
for refining the initial object poses using a geometric con-
straint (called relative-pose constraint) derived from rela-
tive camera poses. The student model gains knowledge for
object pose estimation from the teacher model by impos-
ing the relative-pose constraint. Thanks to the relative-pose
constraint, SMOC-Net could not only narrow the domain
gap between synthetic and real data but also reduce the
training cost. Experimental results on two public datasets
demonstrate that SMOC-Net outperforms several state-of-
the-art methods by a large margin while requiring much less
training time than the differentiable-renderer-based meth-
ods.

1. Introduction

Monocular 6D object pose estimation is a challenging
task in the computer vision field, which aims to estimate
object poses from single images. According to whether real

images with ground-truth object poses are given for model
training, the existing works for monocular object pose es-
timation in literature could be divided into two categories:
fully-supervised methods [17, 35] which are trained by uti-
lizing annotated real images with ground-truth object poses,
and self-supervised methods [16, 34] which are trained by
utilizing synthetic images with object poses (sometimes
jointly with un-annotated real images). Since it is very time-
consuming to obtain high-quality object poses as ground
truth, self-supervised monocular object pose estimation has
attracted increasing attention recently [16, 33, 39].

Some existing methods for self-supervised monocular
object pose estimation [16, 31] use only synthetic images
with object poses (which are generated via Blender [22]
or some other rendering tools [24, 29]) for training. How-
ever, due to the domain gap between real and synthetic
data, the performances of these self-supervised methods are
significantly lower compared to the fully-supervised meth-
ods [22, 35]. Addressing this domain gap problem, a few
recent self-supervised methods [33, 34, 39] jointly use syn-
thetic images with object pose and un-annotated real images
at their training stage, where a differentiable renderer [19] is
introduced to provide a constraint on the difference between
real and rendered images. Although these methods could al-
leviate the domain gap problem by utilizing the introduced
differentiable renderer, they still have to be confronted with
the following two problems: (i) There still exists a notice-
able gap between real images and rendered images by the
differentiable renderer, so that their performances on object
pose estimation are still limited; (ii) Much time has to be
spent on differentiable rendering during training, so that the
training costs of these methods are quite heavy.

To address the above problems, this paper proposes a
novel Network for Self-supervised Monocular Object pose
estimation by utilizing the predicted Camera poses from un-
annotated real images, called SMOC-Net. The SMOC-Net
is designed via the knowledge distillation technique, con-
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sisting of a teacher model and a student model. Under the
teacher model, a backbone pose estimation module is in-
troduced to provide an initial estimation on the pose of the
image object. Then, a geometric constraint (called relative-
pose constraint) on object poses is mathematically derived
from relative camera poses which are calculated by a typ-
ical structure from motion method (here, we straightfor-
wardly use COLMAP [25, 26]), and a camera-pose-guided
refiner is further explored to refine the initial object pose
based on this constraint. The student model simply employs
the same architecture as the backbone estimation module of
the teacher model, and it learns knowledge from the teacher
model by imposing the relative-pose constraint, so that it
could estimate object poses as accurately and fast as possi-
ble. Once the proposed SMOC-Net has been trained, only
its student model is used to predict the object pose from an
arbitrary testing image.

In sum, the main contributions in this paper include:
1. We design the relative-pose constraint on object

poses under the knowledge distillation framework for self-
supervised object pose estimation. And it could narrow the
domain gap between synthetic and real data to some extent.

2. According to the designed relative-pose constraint,
we explore the camera-pose-guided refiner, which is able to
refine low-accuracy object poses effectively.

3. By jointly utilizing the camera-pose-guided refiner
and the above object pose constraint, we propose the
SMOC-Net for monocular 6D object pose estimation. Ex-
perimental results in Sec. 4 demonstrate that the proposed
SMOC-Net does not only outperform several state-of-the-
art methods when only synthetic images with object poses
and un-annotated real images are used for training, but also
perform better than three state-of-the-art fully-supervised
methods on the public dataset LineMOD [8].

2. Related Work
In this section, we review the existing fully-supervised

and self-supervised methods for monocular 6D object pose
estimation in literature, respectively.

2.1. Fully-Supervised 6D Object Pose Estimation

Fully-supervised object pose estimation methods use
real RGB(D) images with object poses for training. Some
early works directly regressed object pose with various
Convolutional Neural Networks (CNNs) such as PoseCNN
[37] and SSD-6D [13]. Xiang et al. [37] proposed the
PoseCNN for 6D object pose estimation, which estimated
the 3D translation by predicting the distance between object
center in the image and the camera, and the 3D rotation was
estimated by regressing a quaternion representation. Kehl
et al. [13] proposed the SSD-6D, where rotation estimation
was treated as a classification problem by discretizing the
rotation space into classifiable viewpoint bins.

For improving pose estimation accuracy further, many
methods first established 2D-3D correspondences using
CNNs, and then solved the object pose via Perspective-n-
Point (PnP) algorithms. Keypoint-based methods [22, 28,
32] established correspondences by detecting keypoints in
2D images. Peng et al. [22] proposed a pixel level vot-
ing network (PVNet) by using the direction vector field to
predict keypoints, which achieved good performance un-
der severe truncation and occlusion. Song et al. [28] pro-
posed the HybridPose by using hybrid representation such
as keypoints, edge vectors, and symmetry correspondences.
Some other methods predicted the corresponding 3D coor-
dinates of each pixel in 2D images [17,21,40] or dense UV
maps [41] to establish dense correspondences. Li et al. [17]
proposed CDPN, which treated rotation and translation es-
timations as two different tasks. Rotation was calculated
from dense correspondences, while translation was directly
regressed from the target region. Hodan et al. [11] pro-
posed EPOS, which represented the target object by com-
pact surface fragments for better handling symmetries. To
achieve end-to-end training, a Patch-PnP module consisting
of CNNs and fully connected layers was proposed in [35].
Chen et al. [4] proposed an Epro-PnP module whose out-
put was the probability density distribution of object pose
and also achieved end-to-end training. Su et al. [30] pro-
posed a discrete descriptor to represent the object surface
densely, which was used to establish accurate and robust
correspondences. Huang et al. [18] proposed to predict 3D
object coordinates at 3D query points sampled in the camera
frustum, which could efficiently handle occlusions. Shun
et al. [12] utilized a deep texture rendering and differen-
tiable Levenberg-Marquardt optimization to refine the ob-
ject poses fast and accurately. Xu et al. [38] proposed a
framework based on a recurrent neural network for object
pose refinement, which was robust to erroneous initial poses
and occlusions.

2.2. Self-Supervised 6D Object Pose Estimation

To avoid the data annotation problem in fully-supervised
object pose estimation, many self-supervised methods for
object pose estimation have been proposed. Some self-
supervised methods [16, 23, 31] only used synthetic images
with object poses as training data. Sundermeyer et al. [31]
proposed the AAE method by utilizing an auto-encoder,
where only synthetic data was used for training. It em-
ployed a series of domain adaption techniques to reduce the
domain gap between real and synthetic images. Rambach
et al. [23] proposed to estimate object pose from synthetic
single channel images, showing that proper representation
could also reduce the domain gap. Li et al. [16] proposed
SD-Pose, which preprocessed input images by multi-level
semantic representations and achieved better performance.

To further narrow the domain gap, a few recent self-
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Figure 1. Architecture of the proposed SMOC-Net. It consists of a teacher model and a student model. The teacher model consists of a
backbone pose estimation module and a camera-pose-guided (C-P-G) refiner. The student model simply employs the same architecture as
the backbone estimation module of the teacher model. For a set of multi-view real images {Isrc1 , ..., Isrcn }, their corresponding camera
poses {Pc1, ..., Pcn} are calculated by an SfM method (a). Then, a 2D object detector (Yolov4 [1]) is used to extract object regions from
the input images, and a set of object patch pairs are obtained for self-supervised training. The predicted object poses {Poi, Poj} are
self-supervised with camera poses {Pci, Pcj} (b) and pseudo pose labels {P ∗

oi, P
∗
oj} (c) that have been refined by the camera-pose-guided

refiner (d).

supervised methods [33, 34, 39] jointly used synthetic im-
ages with object poses and un-annotated real images at their
training stage. In [34], the network was first trained on
synthetic data in a fully-supervised manner and then self-
supervised with un-annotated real data by seeking a visu-
ally and geometrically optimal alignment between real im-
ages and rendered images by a differentiable renderer. But
depth images were required during self-supervised train-
ing. Sock et al. [27] proposed a two-stage self-supervised
method, which also used a differentiable renderer to estab-
lish pose consistency between rendered and real images.
Beyond using image-level consistency for self-supervised
pose estimation, Yang et al. [39] proposed a self-supervised
network DSC-PoseNet based on dual-scale keypoint con-
sistency. But it suffered dramatic performance degradation
when there was occlusion. Wang et al. [33] revised [34] and
proposed Self6D++, which used the pose estimation net-
work GDR-Net [35] and noisy student training to improve
accuracy and robustness. However, there still exists a gap
between real images and rendered images by the differen-
tiable renderer. And additionally, differentiable rendering
is a computationally expensive process. Addressing these
issues, this paper proposes a novel self-supervised object
pose estimation by imposing a derived geometric constraint
from camera poses, which would be described in detail in
the following section.

3. Methodology

In this section, we propose the SMOC-Net for self-
supervised monocular object pose estimation. Firstly, the
architecture of the proposed SMOC-Net is introduced.
Then, we present the derived geometric constraint from
camera poses and the camera-pose-guided refiner respec-
tively. Finally, the total loss function is described.

3.1. Architecture

The SMOC-Net is explored under a knowledge distilla-
tion framework, which contains a teacher model and a stu-
dent model, and its architecture is shown in Fig. 1. As seen
from this figure, an object detector is firstly used for ex-
tracting the object regions in the input images, and we sim-
ply use Yolo-v4 [1] here as the object detector as done in
some existing object pose estimation works [33, 35]. The
teacher model consists of a backbone estimation module
and a camera-pose-guided refiner. The backbone estima-
tion module is used to calculate an initial object pose esti-
mation, and we simply use the existing method GDR-Net
[35] as the backbone estimation module here. The camera-
pose-guided refiner is explored to refine the initial object
pose obtained from the backbone estimation module, by uti-
lizing a derived geometric constraint from relative camera
poses (called relative-pose constraint). The student model
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Figure 2. World, object and camera coordinate systems. For a 3D
point P , its coordinates could be transformed from object/world
coordinate systems to camera coordinate systems by correspond-
ing absolute object/camera poses in the camera/world systems.

employs the same architecture as the backbone estimation
module, and it gains knowledge from the teacher model by
utilizing the same relative-pose constraint.

At the training stage, the proposed SMOC-Net is trained
by utilizing both synthetic data [10] with labels and a set
of un-annotated real multi-view images. Firstly, the back-
bone GDR-Net and the detector Yolo-v4 are trained singly
by only utilizing the synthetic RGB data as done in [33,34].
Then, the classic SfM (Structure from Motion) method
COLMAP [5,25,26] is utilized to calculate the correspond-
ing absolute camera poses from the training set of multi-
view real images, and the object detector is implemented
for extracting object patches from the input real images.
According to the calculated camera poses as well as the cor-
responding original real object patches, we could straight-
forwardly obtain a set of object patch pairs with pseudo rel-
ative camera poses (which could be calculated according
to the obtained absolute camera poses). Next, unlike the
existing works [33, 34, 39] that deal with each training im-
age singly, the proposed method deals with pairs of training
patches. Finally, the student model is trained with the set of
augmented object patch pairs with pseudo relative poses for
learning knowledge from the teacher model.

At the testing stage, only the student module is used for
predicting object pose from each monocular RGB image.
In Sections 3.2 and 3.3, both the relative-pose constraint
and the camera-pose-guided refiner would be introduced,
respectively, in detail.

3.2. Relative-Pose Constraint

Given a set of N object patch pairs with the correspond-
ing absolute camera poses in the world coordinate system,
we could obtain a geometric constraint on the object relative

pose (called relative-pose constraint) for each patch pair as
follows:

For an arbitrary pair of object patches, without loss of
generality, let i and j (i < j; i = 1, ..., N − 1; j =
i + 1, ..., N) denote the indices of the two patches. Then
as shown in Fig. 2, for an arbitrary 3D object point, let Xci

and Xcj denote its coordinates in the two camera coordinate
systems corresponding to the two input patches, and let Xo

and Xw denote its coordinates in the object and world coor-
dinate systems respectively.

Let [Roi, toi] and [Roj , toj ] represent the absolute object
poses in the two camera systems. Then, we have

Xci = RoiXo + toi, (1)
Xcj = RojXo + toj . (2)

Let [Rci, tci] and [Rcj , tcj ] represent the absolute camera
poses in the world system, which are calculated by the SfM
method COLMAP [5, 25]. It has to be pointed out that the
calculated translations by COLMAP are not equal to the
ground-truth translation, but up to a scale. Hence, we have

Xci = RciXw + λtci, (3)
Xcj = RcjXw + λtcj , (4)

where λ is a scale factor. According to Eqn. (1) and Eqn.
(3), we have

Xw = R−1
ci RoiXo +R−1

ci (toi − λtci). (5)

According to Eqn. (2) and Eqn. (4), we have

Xw = R−1
cj RojXo +R−1

cj (toj − λtcj). (6)

According to Eqn. (5) and Eqn. (6), we have

R−1
ci Roi = R−1

cj Roj , (7)

R−1
ci (toi − λtci) = R−1

cj (toj − λtcj). (8)

Eqn. (7) could be rewritten as

RoiR
−1
oj = RciR

−1
cj . (9)

Eqn. (8) could be rewritten as

R−1
ci toi −R−1

cj toj = λ(R−1
ci tci −R−1

cj tcj). (10)

To remove the scale factor λ, both sides of the Eqn. (10) are
normalized as

R−1
ci toi −R−1

cj toj

||R−1
ci toi −R−1

cj toj ||2
=

R−1
ci tci −R−1

cj tcj

||R−1
ci tci −R−1

cj tcj ||2
, (11)

where || · ||2 is the L2 norm. It is noted that once the cam-
era poses [Rci, tci] and [Rcj , tcj ] are known, Eqn. (9) and
Eqn. (11) provide constraints on relative object rotation and
translation respectively. Hence, they are used together as
our relative-pose constraint.
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Figure 3. Architecture of the explored camera-pose-guided refiner.
For a pair of 6D object poses {P ∗

init-oi, P
∗
init-oj}, they are first re-

fined by DeepIM [15]. The refined poses {P̃oi, P̃oj} are then fur-
ther updated using rotation increments and translation increments
calculated according to the relative-pose constraint.

3.3. Camera-Pose-Guided Refiner

In this section, we propose an iterative object pose refiner
(called camera-pose-guided refiner), and its architecture is
shown in Fig. 3. Given a set of N object patch pairs with
the corresponding absolute camera poses in the world coor-
dinate system, and their corresponding initial object poses
are estimated by the teacher backbone estimation module.
We could further refine the initial poses of each patch pair
by utilizing the above relative-pose constraint as follows:

At each iteration, the object poses are firstly refined by
DeepIM [15], which is pre-trained on synthetic RGB data.
Let P̃oi = [R̃oi, t̃oi] and P̃oj = [R̃oj , t̃oj ] represent the re-
fined absolute object poses of two input patches. Then, we
further refine the absolute object rotations and translations
of the two patches with the corresponding absolute camera
poses, respectively.
Rotation Refinement Let Rij = RciR

−1
cj denotes the rel-

ative camera rotation of two camera systems. In the rotation
refinement, we seek to apply slight increments to the object
rotations {R̃oi, R̃oj}. At each iteration, let {∆Roi,∆Roj}
represent the referred slight increments. Then, the object
rotations would be updated as {R̃oi∆Roi, R̃oj∆Roj}. Ac-
cording to the relative rotation constraint in Eqn. (9), we
have the following constraint equation:

∆R−1
oi ∆Rij∆Roj = E, (12)

where ∆Rij = R̃−1
oi RijR̃oj . This is an under-constrained

equation whose solution is not unique, hence, an auxiliary
condition ∆R−1

oi = ∆Roj is introduced for guaranteeing a
unique solution, considering that both the increments ∆Roi

and ∆Roj at each iteration change slightly. Then, consider-
ing that Eqn. (12) is a nonlinear equation which is hard to
solve, we compute the approximate solution by solving the
following minimization problem:

min
∆Roi,∆Roj

||ω(∆R−1
oi ∆Rij∆Roj)||22, (13)

where ω(R) is the axis-angle representation of 3D rotation
R. Let {∆ωoi,∆ωoj} denote the axis-angle representation
of {∆Roi,∆Roj}, and ∆ωij denote the axis-angle repre-
sentation of ∆Rij . The concatenation of ∆ωoi and ∆ωoj

into a 6×1 vector is denoted as ∆Ω. Therefore, our prob-
lem is to solve the following minimization problem:

min
∆Ω

||rij(∆Ω)||22, (14)

where

rij(∆Ω) = ω(R(−∆ωoi)R(∆ωij)R(∆ωoj)). (15)

Inspired by Avishek et al. [3], the above minimization prob-
lem is transformed to solve the following problem using
quasi-Newton method:

min
∆Ω

||rij(0) + J rij(0)T∆Ω||22. (16)

It is equivalent to solve a linear system of equations:

Jrij(0)T∆Ω = −rij(0), (17)

where Jrij(0) is the Jacobian of rij(∆Ω) at the current
point ∆Ω = 0, and

Jrij(0)T ≈ ||∆ωij ||2
2

cot(
||∆ωij ||2

2
)[I − I]

≈ [I − I]. (18)

Therefore, the final approximate solution is

∆ωoi = −∆ωoj = −∆ωij

2
, (19)

∆Roi = ∆R−1
oj = R(−∆ωij

2
). (20)

Translation Refinement In the translation refinement,
we seek to apply slight increments to object translations
{t̃oi, t̃oj}. At each iteration, let {∆toi,∆toj} represent the
referred slight increments. Then, the object translations
would be updated as {t̃oi + ∆toi, t̃oj + ∆toj}. According
to the relative translation constraint in Eqn. (11), we have
the following constraint equation:

R−1
ci (t̃oi +∆toi)−R−1

cj (t̃oj +∆toj)

||R−1
ci (t̃oi +∆toi)−R−1

cj (t̃oj +∆toj)||2
− tij

||tij ||2
= 0,

(21)
where

tij = R−1
ci tci −R−1

cj tcj . (22)

It is approximate to solve the following linear system of
equations:

R−1
ci ∆toi −R−1

cj ∆toj

||t∗ij ||2
+

t∗ij
||t∗ij ||2

− tij
||tij ||2

= 0, (23)
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where

t∗ij = R−1
ci t̃oi −R−1

cj t̃oj . (24)

This is also an under-constrained equation, hence, an aux-
iliary condition ∆toi = −∆toj is introduced, considering
that both the increments ∆toi and ∆toj at each iteration
change slightly. So the final approximate solution is

∆toi = −∆toj = (R−1
ci +R−1

cj )−1(
||t∗ij ||2
||tij ||2

tij − t∗ij). (25)

Finally, the absolute object poses are further updated
by utilizing both rotation increments and translation incre-
ments. Let P ∗

oi and P ∗
oj represent the updated object poses.

Then, we have

P ∗
oi = [R̃oi∆Roi, t̃oi +∆toi], (26)

P ∗
oj = [R̃oj∆Roj , t̃oj +∆toj ]. (27)

3.4. Loss Function

The total loss function Lself of the proposed SMOC-Net
contains three loss terms: a rotation loss Lrot, a translation
loss Ltrans and a point matching loss Lpair

pm .
According to the relative rotation constraint, the rotation

loss is defined as

Lrot = ||ω(RojR
−1
oi Rij)||2, (28)

where Rij = RciR
−1
cj .

According to the relative translation constraint, the trans-
lation loss is defined by measuring the angle of two relative
translation vectors as

Ltrans = acos(tc,ij · to,ij), (29)

where acos(·) is the arccos function and

tc,ij =
R−1

ci tci −R−1
cj tcj

||R−1
ci tci −R−1

cj tcj ||2
, (30)

to,ij =
R−1

ci toi −R−1
cj toj

||R−1
ci toi −R−1

cj toj ||2
. (31)

Inspired by [15, 33, 35], the point matching loss for geo-
metrically aligning the predicted poses and the pseudo pose
labels is used:

Lpm = min avg
Ro∈symX∈M

||(R∗
oX+ t∗o)− (RoX+ to)||1, (32)

where || · ||1 is the L1 norm, sym is a pool of symmetric ro-
tations including the given rotation to deal with symmetric
objects following [21], M represents the CAD object point
cloud given in the evaluation datasets, Ro, (tox, toy) and toz

are disentangled from Po = [Ro, to], and P ∗
o = [R∗

o, t
∗
o] de-

notes the pseudo pose label. Since the proposed method
deals with pairs of training patches, the sum of two point
matching losses is eventually used:

Lpair
pm = Lpm,i + Lpm,j . (33)

Accordingly, the total loss function Lself is the weighted
sum of the above three loss terms as

Lself = Lrot + λ1Ltrans + λ2Lpair
pm , (34)

where λ1 and λ2 are two weight parameters.

4. Experiments
4.1. Datasets

Synthetic PBR Dataset [10] As the physically-based ren-
derer has been proven to perform better than OpenGL ren-
derers [13, 34], we use the synthetic PBR data from [10] to
train the 2D object detector Yolov4 [1] and the backbone
pose estimation module GDR-Net [35].
LineMOD [8] is a standard benchmark for 6D object pose
estimation, consisting of 13 sequences. And there are about
1.2k images in each sequence. As done in [13], we use 15%
of images for training and the remaining for testing.
Occluded-LineMOD [2] is generated from benchvise se-
quence of the LineMOD dataset, and it contains 1214 im-
ages. As done in [33], we sample data for testing using the
BOP split [9] and use the remaining data for training.

4.2. Metrics

We evaluate the performance using the common Aver-
age Distance of Distinguishable Model Points (ADD) met-
ric [8], which measures the distance between 3D object
model point clouds transformed by the predicted pose and
the corresponding ground-truth. A pose is considered cor-
rect when the distance is less than 10% of the diameter of
a 3D model. ADD-S is used [37] for symmetric objects by
computing the closest point distance.

4.3. Implementation Details

Our method is implemented by Pytorch, and all experi-
ments are conducted on an NVIDIA 3080 GPU. The camera
poses are calculated using a classic SfM method COLMAP
[25,26,36] before training. We replace ResNet-34 [7] back-
bone of GDR-Net [35] with ResNeSt-50 [6] backbone as
done in [33]. The learning rate is set to 10−4. The strategy
of pre-training with synthetic data is the same as [33]. Dur-
ing the self-supervised training, we train the student pose
estimation network for 30 epochs using un-annotated real
RGB data, and the batch size is set to 8. In each epoch,
all N training images are randomly divided into N/2 image
pairs. During inference, only the student pose estimation
network is used.
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Training Manner Methods Training data Ape Bv. Cam Can Cat Dril Duck Eb. Glue Holep Iron Lamp Phone Mean

Fully-supervision
DPOD [41]

R
53.3 95.2 90.0 94.1 60.4 97.4 66.0 99.6 93.8 64.9 99.8 88.1 71.4 82.6

PVNet [22] 43.6 99.9 86.9 95.5 79.3 96.4 52.6 99.2 95.7 81.9 98.9 99.3 92.4 86.3
CDPN [17] 64.4 97.8 91.7 95.5 83.8 96.2 66.8 99.7 99.6 85.8 97.9 97.9 90.8 89.9

Self-supervision

AAE [31]
S

4.2 22.9 32.9 37.0 18.7 24.8 5.9 81.0 46.2 18.2 35.1 61.2 36.3 32.6
MHP [20] 11.9 66.2 22.4 59.8 26.9 44.6 8.3 55.7 54.6 15.5 60.8 - 34.4 38.8

DPOD [41] 35.1 59.4 15.5 48.8 28.1 59.3 25.6 51.2 34.6 17.7 84.7 45.0 20.9 40.5
Self6D [34] S+R−+D 38.9 75.2 36.9 65.6 57.9 67.0 19.6 99.0 94.1 16.2 77.9 68.2 50.1 58.9

Self6D++ [33] 75.4 94.9 97.0 99.5 86.6 98.9 68.3 99.0 96.1 41.9 99.4 98.9 94.3 88.5
DSC-PoseNet [39]

S+R−
35.9 83.1 51.5 61.0 45.0 68.0 27.6 89.2 52.5 26.4 56.3 68.7 46.4 54.7

Self6D++ [33] 76.0 91.6 97.1 99.8 85.6 98.8 56.5 91.0 92.2 35.4 99.5 97.4 91.8 85.6
OURS 85.6 96.7 97.2 99.9 95.0 100.0 76.0 98.3 99.2 45.6 99.9 98.9 94.0 91.3

Table 1. Comparison with state-of-the-art methods on LineMOD dataset. The table reports results for the Average Recall (%) of ADD(-S).
All results except ours and DSC-PoseNet are copied from [33]. The best RGB based label-free method is marked in bold. R: annotated
real RGB data. S: synthetic RGB data. R−: unannotated real RGB data. D: depth data.

Methods Training data Ape Can Cat Dril Duck Eb. Glue Holep Mean

DPOD [41]
S

2.3 4.0 1.2 10.5 7.2 4.4 12.9 7.5 6.3
CDPN [17] 20.0 15.1 16.4 5.0 22.2 36.1 27.9 24.0 20.8
CosyPose [14] 44.0 69.9 42.1 67.5 47.8 24.4 60.0 17.5 46.7

Self6D [34] S+R−+D 13.7 43.2 18.7 32.5 14.4 57.8 54.3 22.0 32.1
Self6D++ [33] 59.4 96.5 60.8 92.0 30.6 51.1 88.6 38.3 64.7

DSC-PoseNet [39]
S+R−

13.9 15.1 19.4 40.5 6.9 38.9 24.0 16.3 21.9
Self6D++ [33] 57.7 95.0 52.6 90.5 26.7 45.0 87.1 23.5 59.8
OURS 60.0 94.5 59.1 93.0 37.2 48.3 89.3 25.0 63.3

Table 2. Comparison with state-of-the-art methods on Occluded-LineMOD dataset.

4.4. Comparative Evaluation

Comparisons on LineMOD. Here, we evaluate the
proposed SMOC-Net on the LineMOD dataset in compari-
son to some state-of-the-art methods, including three fully-
supervised methods (DPOD [41], PVNet [22], CDPN [17]),
three self-supervised methods that are trained with only
synthetic data (AAE [31], MHP [20], DPOD [41]), one self-
supervised method that is trained with both synthetic data
and un-annotated real images (DSC-PoseNet [39]), and two
self-supervised methods that are trained with synthetic data
+ un-annotated real images + depth images (Self6D [34],
Self6D++ [33]). In addition, for a more comprehensive
comparison, we also compare our method with Self6D++
[33] trained with synthetic data and un-annotated real im-
ages but without depth images. The corresponding results
are reported in Table 1.

As seen from Table 1, the fully-supervised methods
DPOD, PVNet, CDPN perform better than most of the ex-
isting self-supervised methods in most cases, mainly be-
cause annotated real images with object poses are used
for training these fully-supervised methods. Moreover, the
proposed SMOC-Net achieves a better performance than
all the comparative methods (regardless of whether these
methods are trained in an either fully-supervised or self-
supervised manner), because of the derived relative-pose

constraint and the designed camera-pose-guided refiner in
SMOC-Net. These results demonstrate the effectiveness of
the proposed method for 6D object pose estimation.

Comparisons on Occluded-LineMOD. We evalu-
ate the proposed SMOC-Net on the Occluded-LineMOD
dataset where there exist many occlusions, in comparison
to DPOD [41], CDPN [17], CosyPose [14], Self6D [34],
Self6D++ [33], and DSC-PoseNet [39]. The corresponding
results are reported in Table 2. As seen from this table, the
overall average recalls of most of the comparative methods
are lower than 60% or even lower. Among all the com-
parative methods, Self6D++ trained with 3 categories of
data (synthetic, unannotated real images, and depth images)
performs the best, mainly because it uses additional scene
depth images at the training stage, which contain 3D spa-
tial information and are more effective in capturing the 3D
spatial relationship between adjacent objects. Moreover, the
proposed SMOC-Net achieves a slightly lower performance
than Self6D++ that is trained with 3 categories of data (syn-
thetic, unannotated real images, and depth images). How-
ever, the SMOC-Net significantly outperforms Self6D++
that is trained without depth images in the same manner as
SMOC-Net, and it also performs significantly better than
the other comparative methods. These results demonstrate
that the proposed method could effectively handle the oc-
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Method Ape Bv. Cam Can Cat Dril Duck Eb. Glue Holep Iron Lamp Phone Mean

w/o Lrot 82.1 95.0 97.0 99.8 94.1 100.0 72.6 98.5 99.3 40.3 99.9 96.2 95.2 90.0
w/o Ltrans 84.3 92.9 95.9 99.8 93.9 99.7 77.0 98.7 98.7 47.5 100.0 98.1 94.3 90.8
w/o refiner∗ 88.3 96.0 96.6 99.7 92.8 100.0 70.4 98.0 99.0 42.2 100.0 97.3 94.3 90.4
OURS− 50.7 99.4 89.5 97.2 80.0 98.7 26.3 81.1 91.2 41.9 98.8 98.9 64.4 77.5
OURS 85.6 96.7 97.2 99.9 95.0 100.0 76.0 98.3 99.2 45.6 99.9 98.9 94.0 91.3

Table 3. Ablation study on LineMOD dataset. Individual loss and pose refiner are evaluated on LineMOD. ∗ : the proposed camera-pose-
guided refiner is replaced with DeepIM [15]. OURS−: our results trained on synthetic data. The best results are marked in bold.

Figure 4. Visualized results on Occluded-LineMOD dataset. Top:
results of DSC-PoseNet. Middle: results of Self6D++. Bottom:
results of SMOC-Net. Red: the ground-truth object poses. Green:
the results after self-supervised training.

clusion case. Fig. 4 illustrates the visualized results of
Self6D++, DSC-PoseNet and SMOC-Net, which are all
trained with synthetic data and un-annotated real images.

4.5. Ablation Study

To evaluate the effects of the losses Lrot,Ltrans and the
camera-pose-guided refiner, we conduct the ablation study
on LineMOD and the results are reported in Table 3.

Firstly, we respectively disable the rotation loss Lrot and
the translation loss Ltrans. the corresponding models are
denoted as w/o Lrot and w/o Ltrans respectively. As shown
in Table 3, the pose accuracy decreases when disabling each
of them. These results demonstrate that both of the rota-
tion loss and the translation loss are effective to improve
the pose accuracy for our method. Then, we replace the
proposed camera-pose-guided refiner with DeepIM [15],
and the corresponding model is denoted as w/o refiner∗.
The performance of w/o refiner∗ is significantly lower than
the complete SMOC-Net. In addition, we also train our
model with only synthetic data, which is denoted as OUR−.
The overall average recall of OUR− is much lower than
the complete SMOC-Net, demonstrating that the proposed
self-supervised object pose estimation method could signif-
icantly improve the pose accuracy.

Method Training/Rendering Time (s) Total Time (s)

Self6D++ [33] 37/29 1110
OURS 8/- 283

Table 4. Comparison of the training times in one epoch and the
total times on LineMOD.

4.6. Comparison of Training Time

Here, we compare our training time on the LineMOD
dataset with Self6D++ [33], a state-of-the-art differentiable-
renderer-based method.

Both the training times in one epoch and the total times
by the two methods are reported in Table 4. As seen in
Table 4, the training time of Self6D++ in one epoch is
37 seconds, but Self6D++ spends 29 seconds on render-
ing, indicating that rendering is a main time-consuming part
for such a differentiable-renderer-based method. Moreover,
the training time of our method in one epoch is much less
than Self6D++, and the total training time (for both SfM
and network training) of our method is also much less than
Self6D++. These results demonstrate the priority of the pro-
posed method in model training.

5. Conclusion
In this paper, we have proposed the SMOC-Net for self-

supervised monocular object pose estimation by utilizing
the predicted camera poses from un-annotated real images.
Unlike most of the existing self-supervised methods that
rely on differentiable renderer for providing additional con-
straint on object pose prediction, the SMOC-Net utilizes
the derived relative-pose constraint for boosting the perfor-
mance on object pose estimation. We also propose a pose
refiner for further refining the initial object pose with the
derived relative-pose constraint. The experimental results
on two public datasets demonstrate the effectiveness of the
proposed method even when dealing with strong occlusions.
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timating 6D Pose of Objects with Symmetries. In CVPR,
pages 11703–11712, 2020. 2

[12] Shun Iwase, Xingyu Liu, Rawal Khirodkar, Rio Yokota, and
Kris M. Kitani. RePOSE: Fast 6D Object Pose Refinement
via Deep Texture Rendering. In ICCV, pages 3283–3292,
2021. 2

[13] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan
Ilic, and Nassir Navab. Ssd-6d: Making rgb-based 3d de-
tection and 6d pose estimation great again. In ICCV, pages
1521–1529, 2017. 2, 6
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