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Abstract

Multi-view clustering has hitherto been studied due to
their effectiveness in dealing with heterogeneous data. De-
spite the empirical success made by recent works, there
still exists several severe challenges. Particularly, previous
multi-view clustering algorithms seldom consider the topo-
logical structure in data, which is essential for clustering
data on manifold. Moreover, existing methods cannot fully
explore the consistency of local structures between different
views as they uncover the clustering structure in a intra-
view way instead of a inter-view manner. In this paper, we
propose to exploit the implied data manifold by learning
the topological structure of data. Besides, considering that
the consistency of multiple views is manifested in the gen-
erally similar local structure while the inconsistent struc-
tures are the minority, we further explore the intersections
of multiple views in the sample level such that the cross-view
consistency can be better maintained. We model the above
concerns in a unified framework and design an efficient al-
gorithm to solve the corresponding optimization problem.
Experimental results on various multi-view datasets certifi-
cate the effectiveness of the proposed method and verify its
superiority over other SOTA approaches.

1. Introduction

In many real scenarios, data are usually collected from
diverse sources in various domains or described by multi-
ple feature sets [1, 2]. A case in point is the image dataset,
which can be represented by different visual descriptors,
such as LBP, GIST, CENTRIST, HOG, SIFT and Color Mo-
ment [3]. Moreover, a document can be written in differ-
ent languages, and a website can be described by its link-
age, page content, etc. These data are generally known as
multi-view data [1, 4]. Each view contains partial and com-
plementary information, any of which suffices for learning,
and they all together agree to a consensus latent represen-
tation [5–7]. Multi-view clustering aims to accurately par-
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tition data into distinct clusters according to their compati-
ble and complementary information embedded in heteroge-
neous features [1, 8].

In general, multi-view clustering methods can be di-
vided into four categories according to the mechanisms
and principles on which these methods are based. [1] ini-
tiated the trend of co-training algorithm by first carrying
out a co-training strategy and making the clustering re-
sults on all view tend to each other as well as satisfying
the broadest agreement across all views. Owing to the ef-
ficiency of exploiting similarities among multiple views,
multi-kernel learning is widely utilized to boost the perfor-
mance of multi-view clustering methods [9–11]. Multi-task
multi-view clustering [12,13] inherits the property of multi-
task clustering. Each view of the data is treated with at least
one related task. Moreover, inter-task knowledge is trans-
ferred from one to another so that the relationship between
multi-view and multi-task is fully exploited to improve the
clustering outcomes. Another kind of graph-based multi-
view clustering methods usually attempt to explore an opti-
mal consensus graph across all views, and utilize graph-cut
algorithm on the optimal graph to obtain final clustering re-
sult [3, 5, 14].

A great number of multi-view clustering methods have
been proposed and illustrated remarkable empirical suc-
cesses up to now [15–17]. However, there are still severe
drawbacks urgently need to be overcome. For one thing,
existing multi-view clustering algorithms seldom consider
the topological structure in data, which is essential for clus-
tering data on manifold. Considering that the data sampled
from real world typically lie in the nonlinear manifold, data
points geometrically far from one to another may keep high
consistency when they are linked by a series of consecutive
neighbors. For another, they suffer from a coarse-grained
problem that ignores the view correlation between samples.
Note that redundancy or partial structure mistakes in certain
views may lead to a sub-optimal cluster structure. Besides,
traditional view-wise fusion strategy would result in a su-
perimposition of redundancies, and hence acquire a more
imprecise common cluster structure.

Regarding the above issues, we propose to exploit the
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implied data manifold by learning the topological structure
of data. Besides, considering that the consistency of multi-
ple views is manifested in the generally similar local struc-
ture while the inconsistent structures are the minority, we
further explore the intersections of multiple views in the
sample level such that the cross-view consistency can be
better maintained. By leveraging the subtasks of topologi-
cal relevance learning and the sample-level graph fusion in
our collaborative model, each subtask is alternately boosted
towards an optimal solution. Experimental results on var-
ious multi-view datasets certificate the effectiveness of the
proposed method.

2. Related Work
Manifold learning has attracted widespread attention in

recent decades [18, 19]. A plethora of works are mainly
spent on exploring methods for discovering nonlinear low-
dimensional manifolds between individuals where the topo-
logical relevance can be high [20]. The ability of those al-
gorithms is to learn the manifold structure embedded in the
high-dimensional ambient space.

Existing studies show that interactions between the in-
stances place heavy reliance on the topological relationship
instead of the metric range [21]. That is, a higher cohesion
of the aggregation can be maintained by a topological inter-
action. Therefore, the work in [22] learns the topological
relevance between different samples to uncover the hidden
structures of the crowded and measure collectiveness. From
the perspective of topological space, the relevance between
two individuals is high if they are connected by countable
neighbors, even though they show low similarity in the spa-
tial scene. It is based on a simple yet intuitive assump-
tion that the topological connectivities between individuals
could be propagated from near to far. In light of this, we
replace the most often-used Euclidean distance with a pow-
erful manifold topological relevance to capture the intrinsic
structures.

Given a precomputed affinity matrix G = [gjk] ∈ Rn×n,
where n is the number of data samples. Based on the as-
sumption that if two data points keep high consistency, their
topological relevance to any other point is assumed to be
similar, [22] introduced a structure-based clustering strat-
egy to explore the topological relevance between different
samples. The objective function can be defined as

min
Z

1

2

n∑
i,j,k=1

gjk (zij − zik)
2
+ λ ∥Z− I∥2F , (1)

where Z represents the topological relationship graph and
the element zij is the topological relevance of i-th point
to j-th point. The first term in Eq. (1), as a smoothness
constraint, is incorporated to meet the aforementioned as-
sumption, which ensures that for data points j and k, their
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Figure 1. By concatenating all views to a tensor, we obtain Z̃.
Rotating the obtained tensor Z̃ and cutting it vertically, we have
the i-th frontal slice Z̃i.

topological relevance to point i is assumed to be similar if
they have high consistency. The second term in Eq. (1), as
a fitting constraint, is used to rule out the trivial solution.
We also utilize a weighting coefficient α to balance the two
terms. According to the above form, we detect the consis-
tency by propagating topological relationship, and the rel-
evance between two distant points will be high if they are
connected by countable neighbors.

However, the model in Eq. (1) is applied for solving the
singe-view problem, and it is not suitable for multi-view
clustering tasks. In this paper, we propose to explore the
manifold topological structure for multi-view data. Given
G(v)(v = 1, . . . ,m) ∈ Rn×n as the input similarity graphs
of multi-view data with m views. Based on Eq. (1), the
topological relationship for each view can be measured by

min
Z(v)

1

2

m∑
v=1

n∑
i,j,k=1

g
(v)
jk

(
z
(v)
ij − z

(v)
ik

)2
+ λ

∥∥∥Z(v) − I
∥∥∥2
F

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0,

(2)
where all z(v)ij is constrained to be non-negative and the sum

of z(v)i is one. Considering that a data point connected with
many similar neighbors would largely affect the objective
value. We utilize a normalized form of Eq. (2), which is
formulated as

min
Z(v)

1
2

m∑
v=1

n∑
i,j,k=1

g
(v)
jk

(
z
(v)
ij√
d
(v)
jj

− z
(v)
ik√
d
(v)
kk

)2

+ λ
∥∥Z(v) − I

∥∥2
F

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0,

(3)
where D(v) is the degree matrix of G(v).

3. The proposed Methodology
As aforementioned, existing multi-view clustering meth-

ods generally suffer from a coarse-grained problem that ig-
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nores the view correlation between samples. To tackle this
inappropriate fusion strategy, we design a novel model to
explore the intersections of multiple views in the sample
level. It is able to capture more intrinsic cross-view con-
sistency and is robust to the inconsistency introduced by
certain views. Inspired by [23, 24], here we proposed a
transformation on a set of multi-view matrices. As shown
in Figure 1, first we start with concatenating all views to a
tensor Z̃ ∈ Rn×n×m. Then we get the i-th frontal slice
Z̃i ∈ Rn×m corresponding to the i-th sample to explore
sample-level manifold information. By conducting such
transformation, it is feasible for us to manipulate fuse all
views on the sample level as follow:

min
S

n∑
i=1

∥∥∥sTi −wT
i Z̃i

∥∥∥2
2
+ β∥S∥2F

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0,

S ≥ 0,W ≥ 0, sTi 1 = 1,W1 = 1,

(4)

where wT
i corresponds to the weight of different views with

respect to the i-th sample. Each column of S integrates
the consistent information of one instance across all views.
β is the balanced parameter for the penalty term, which
is utilized to prevent the trivial solution when a specific
view dominants the others. The constraints that we apply
to the optimal fusion graph S and weight matrix W assist
to narrow down the solution space and strongly boost the
efficiency of our optimization process. Based on the ele-
mentary yet intuitive assumption that the topological rele-
vance between instances tends to be propagated from near
to far. That is, the individuals have low spatial similarity
may achieve high topological relevance if they are linked by
the consecutive neighbors. Thus, we explore the similarity
between instances on a more appropriate topological man-
ifold structure rather than on the Euclidean structure. With
the help of topological manifold exploration in the multi-
view clustering domain, by combining Eq. (3) and Eq. (4),
we can easily derive:

min
Z(v),W,S

m∑
v=1

1

2

n∑
i,j,k=1

g
(v)
jk

 z
(v)
ij√
d
(v)
jj

−
z
(v)
ik√
d
(v)
kk

2

+ λ
∥∥∥Z(v) − I

∥∥∥2
F︸ ︷︷ ︸

topological relevance learning

+α

n∑
i=1

∥∥∥sTi −wT
i Z̃i

∥∥∥2
2
+ β∥S∥2F︸ ︷︷ ︸

sample-level graph fusion

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0,

S ≥ 0,wi ≥ 0,S1 = 1,wT
i 1 = 1.

(5)
Moreover, considering the graph for sample-level graph fu-
sion might be a translation from the topological manifold,

we introduce an intermediate variable Q to link the topolog-
ical relevance learning and the sample-level graph fusion.
As a result, the joint optimization framework of sample-
level multi-view clustering with topological relevance con-
sidered can be formulated as:

min
Z(v),W,S

m∑
v=1

1

2

n∑
i,j,k=1

g
(v)
jk

 z
(v)
ij√
d
(v)
jj

−
z
(v)
ik√
d
(v)
kk

2

+ λ
∥∥∥Z(v) − I

∥∥∥2
F︸ ︷︷ ︸

topological relevance learning

+ γ

m∑
v=1

∥Z(v) −Q(v)∥2F + α

n∑
i=1

∥∥∥sTi −wT
i Q̃i

∥∥∥2
2
+ β∥S∥2F︸ ︷︷ ︸

sample-level graph fusion

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0,

S ≥ 0,wi ≥ 0,S1 = 1,wT
i 1 = 1,

(6)
where γ and α are trade-off parameters. It is noteworthy
that our model in Eq. (6) enjoys several properties that are
distinct from existing approaches:

• Instead of performing the inter-view graph fusion, we
propose to conducting a cross-view graph fusion pro-
cess in a sample-wise way. Considering that the con-
sistency of multiple views is manifested in the gener-
ally similar local structure while the inconsistent struc-
tures are the minority, we further explore the intersec-
tions of multiple views in the sample level such that
the cross-view consistency can be better maintained.

• Note that the topological structure is essential for clus-
tering data on manifold. Based on a simple yet intu-
itive assumption that the topological connectivities be-
tween individuals could be propagated from near to far,
we propose to exploit the implied data manifold with
the topological relevance considered.

• We model the subtasks of topological relevance learn-
ing and the sample-level graph fusion in a unified
framework, each subtask is alternately boosted to-
wards an optimal solution. An efficient algorithm
to solve the corresponding optimization problem is
also introduced. Experimental results on several
benchmark datasets certificate the effectiveness of our
method.

4. Optimization
In this section, we design an iterative updating algorithm

to solve the optimization problem in Eq. (6). Since it is not
jointly convex in all variable s, we propose to optimize the
objective function with respect to one variable while fix-
ing other variables. And the procedure repeats until conver-
gence.
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Algorithm 1: Algorithm to solve Eq. (10)
Input: a nonzero matrix A and a nonzero vector b.

Set 1 < ρ < 2, initialize η > 0, h.
Output: Z(v).

1: repeat
2: Update p according to (13).
3: Update z

(v)
i according to (15).

4: Update η ← ρη.
5: Update h← h+ η

(
z
(v)
i − p

)
.

6: until converge

Update Z(v)

For each Z(v), we need to solve

min
Z(v)

1

2

m∑
v=1

n∑
i,j,k=1

g
(v)
jk

 z
(v)
ij√
d
(v)
jj

−
z
(v)
ik√
d
(v)
kk

2

+λ

m∑
v=1

∥∥∥Z(v) − I
∥∥∥2
F
+ γ

m∑
v=1

∥Q(v) − Z(v)∥2F

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0.

(7)

Since Eq. (7) is independent for different v, for each v
we have

min
Z(v)

1

2

n∑
i=1

{ n∑
j,k=1

g
(v)
jk

 z
(v)
ij√
d
(v)
jj

−
z
(v)
ik√
d
(v)
kk

2

+λ

n∑
j=1

∥∥∥z(v)ij − eij

∥∥∥2
F
+ γ

n∑
j=1

∥q(v)ij − z
(v)
ij ∥

2
F

}
s.t.

(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0.

(8)

For each i, Eq. (8) can be further rewritten in a vector
form as

min
z
(v)
i

n∑
i=1

(
z
(v)
i

)T (
I−D− 1

2G(v)D− 1
2

)
z
(v)
i

+λ
∥∥∥z(v)i − ei

∥∥∥2
F
+ γ∥q(v)

i − z
(v)
i ∥

2
F

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0.

(9)

Denote A(v) = (1 + λ+ γ) I − D− 1
2G(v)D− 1

2 and b =

2λei + 2γq
(v)
i , Eq. (9) can be stated as:

min(
z
(v)
i

)T
1=1,z

(v)
ij ≥0

(
z
(v)
i

)T
A(v)z

(v)
i −

(
z
(v)
i

)T
b (10)

Algorithm 2: Algorithm to solve Eq. (6)

Input: A set of similarity graph G(v). (v = 1,2,...,m)
Parameter α, β, λ and γ.

Output: Clustering result.
1: repeat
2: Update Z(v) according to Algorithm 1.
3: Update S by solving Eq. (18).
4: Update W according to Eq. (21).
5: Update Q̃i according to Eq. (24).
6: until converge
7: Conduct the standard spectral clustering on the optimal

graph S to obtain the final clustering result.

It is obvious that Eq. (10) is a quadratic convex opti-
mization problem which can be solved with the classical
augmented Lagrangian multiplier (ALM) method [25]. In
detail, Eq. (10) can be cracked by tackling its counterpart:

min(
z
(v)
i

)T
1=1,z

(v)
ij ≥0,p=z

(v)
i

(
z
(v)
i

)T
A(v)p−

(
z
(v)
i

)T
b

(11)
whose augmented Lagrangian function can be defined as:

min(
z
(v)
i

)T
1=1,z

(v)
ij ≥0

(
z
(v)
i

)T
A(v)p−

(
z
(v)
i

)T
b

+
η

2
∥z(v)i − p+

1

η
h∥22

(12)

where the second term in Eq. (12) is a penalty function term
which guarantees that p = z

(v)
i , η and h are the correspond-

ing penalty coefficient and parameter, respectively.
Note that p and z

(v)
i can be iteratively optimized:

1) Update p with fixed z
(v)
i The Lagrange function of

Eq. (12) w.r.t. p is

Lp =
(
z
(v)
i

)T
A(v)p+

η

2
∥z(v)i − p+

1

η
h∥22 (13)

Taking the derivative of Lp w.r.t p and setting the derivative
to zero. Thus, we have:

p = z
(v)
i −

1

η

((
A(v)

)T
z
(v)
i + h

)
(14)

2) Update z
(v)
i with fixed p. The Lagrange function of

Eq. (13) w.r.t. z(v)i can be written as

min(
z
(v)
i

)T
1=1,z

(v)
ij ≥0

∥∥∥∥z(v)i − p+
1

η
h+

A(v)p− b

η

∥∥∥∥2
2

,

(15)
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(a) Yale Dataset (b) HW Dataset (c) ORL Dataset

Figure 2. Sample images of datasets Yale, HW and ORL.

which has a closed-form solution and can be readily
achieved by the off-the-shelf optimization algorithm [26].

According to the ALM principles [25], η can be mag-
nified increasingly in each iteration, and h is updated by
h ← h + η

(
z
(v)
i − h

)
. The detailed algorithm to solve

Eq. (10) is summarized in Algorithm 1.
Update S
Drop all unrelated terms of Eq. (6) w.r.t. S, thus we have

min
S

α

n∑
i=1

∥∥∥sTi −wT
i Q̃i

∥∥∥2
2
+ β∥S∥2F

s.t. S ≥ 0,S1 = 1.

(16)

We can reformulate Eq. (16) in a vector form as

min
si

(α+ β) sis
T
i − 2αwT

i Q̃isi

s.t. si1 = 1, si ≥ 0.
(17)

Based on Eq. (17), we get the following compact formu-
lation

min
si1=1,si≥0

∥∥∥∥si − α

α+ β
wT

i Q̃i

∥∥∥∥2
2

, (18)

which can be effectively solved by the optimization algo-
rithm proposed in [26].

Update W
Optimizing Eq. (6) w.r.t. W is equivalent to solving

min
wi

∥∥∥sTi −wT
i Q̃i

∥∥∥2
2

s.t. wi ≥ 0,wT
i 1 = 1.

(19)

Eq. (19) can be reorganized as

min
wi

∥∥wT
i Bi

∥∥2
2

s.t. wi ≥ 0,wT
i 1 = 1.

(20)

where Bi =
(
1sTi − Q̃i

)
∈ Rm×n.

Taking the derivative of Eq. (20) w.r.t wi, it yields

wi =

(
BiB

T
i

)−1
1

1T
(
BiBT

i

)−1
1
. (21)

Update Q̃i

Fixing all the other irrelevant variables in Eq. (6), we
have:

min
Q̃i

γ

m∑
v=1

∥Z(v) −Q(v)∥2F + α

n∑
i=1

∥∥∥sTi −wT
i Q̃i

∥∥∥2
2

(22)

Obviously, Eq. (22) is sample-wise independent. There-
fore, it can be written as:

min
Q̃i

γ∥Z̃(v) − Q̃(v)∥2F + α
∥∥∥sTi −wT

i Q̃i

∥∥∥2
2

(23)

Naturally, by taking the derivative of Eq. (23), it yields:

Q̃i =
(
γI+ αwiw

T
i

)−1
(
γZ̃i + αwis

T
i

)
(24)

The detailed algorithm to solve the objective in Eq. (6)
is summarized in Algorithm 2.

5. Experiment
This section is comprised of four sub-sections: experi-

mental setting, result analysis, robustness analysis and con-
vergence analysis.

5.1. Experiment Setting

We compare our proposed method with several multi-
view clustering methods: Multi-view Spectral Cluster-
ing with Co-training strategy(Co-train) [27]. Multi-

23970



Table 1. The clustering results on 100leaves dataset (%)

Method ACC NMI Purity F-score
Co-train 33.21 ± 0.85 57.59 ± 0.73 36.10 ± 0.81 15.88 ± 0.79
Co-reg 32.16 ± 0.93 58.97 ± 0.82 36.00 ± 0.82 17.33 ± 0.99
DiMSC 48.52 ± 1.57 71.24 ± 0.55 51.14 ± 1.41 33.66 ± 1.17
AMGL 77.66 ± 1.58 90.35 ± 0.97 82.29 ± 1.16 59.54 ± 7.04
MVGL 54.12 ± 0.00 63.96 ± 0.00 57.44 ± 0.00 8.58 ± 0.00
WMSC 77.26 ± 0.99 89.81 ± 0.47 79.62 ± 0.68 71.11 ± 1.31
AWP 66.13 ± 0.00 85.52 ± 0.00 68.19 ± 0.00 60.75 ± 0.00

MCGC 90.25 ± 0.00 93.90 ± 0.00 91.13 ± 0.00 77.79 ± 0.00
LRMSC 75.25 ± 1.56 87.64 ± 0.54 77.60 ± 1.31 66.62 ± 1.46
MVCTM 68.63 ± 0.00 76.46 ± 0.00 72.25 ± 0.00 16.52 ± 0.00
SMVSC 37.94 ± 0.27 65.04 ± 0.29 39.42 ± 0.23 23.22 ± 0.39
FPMVS 35.14 ± 0.20 63.06 ± 0.43 36.96 ± 0.26 22.12 ± 0.38
CSMSC 76.06 ± 1.15 88.83 ± 0.43 78.96 ± 0.81 68.91 ± 1.25

Ours 90.86 ± 0.01 96.38 ± 0.00 92.46 ± 0.01 88.69 ± 0.01

Table 2. The clustering results on HW dataset (%)

Method ACC NMI Purity F-score
Co-train 81.28 ± 5.37 72.04 ± 2.98 82.25 ± 4.11 70.93 ± 4.19
Co-reg 54.96 ± 4.35 47.46 ± 1.97 58.64 ± 2.87 42.62 ± 2.40
DiMSC 46.26 ± 0.45 32.97 ± 0.33 46.79 ± 0.47 27.92 ± 0.27
AMGL 93.76 ± 8.57 95.02 ± 4.23 94.89 ± 6.78 93.63 ± 7.16
MVGL 85.35 ± 0.00 85.19 ± 0.00 85.75 ± 0.00 82.48 ± 0.00
WMSC 74.87 ± 0.14 66.79 ± 0.19 74.95 ± 0.16 63.65 ± 0.22
AWP 69.55 ± 0.00 59.49 ± 0.00 71.45 ± 0.00 58.35 ± 0.00

MCGC 53.95 ± 0.00 61.78 ± 0.00 54.10 ± 0.00 57.25 ± 0.00
LRMSC 79.39 ± 2.95 76.49 ± 1.33 83.25 ± 1.47 72.83 ± 1.89
MVCTM 98.75 ± 0.00 96.91 ± 0.00 98.75 ± 0.00 97.52 ± 0.00
SMVSC 78.59 ± 0.46 69.03 ± 0.57 78.90 ± 0.38 67.65 ± 0.76
FPMVS 78.40 ± 0.18 70.88 ± 0.89 78.77 ± 0.41 69.66 ± 0.85
CSMSC 86.87 ± 0.02 80.04 ± 0.09 86.87 ± 0.02 78.05 ± 0.04

Ours 99.25 ± 0.00 98.15 ± 0.00 99.25 ± 0.00 98.51 ± 0.00

Table 3. The clustering results on MSRC dataset (%)

Method ACC NMI Purity F-score
Co-train 64.95 ± 6.24 54.27 ± 4.18 66.52 ± 5.00 52.59 ± 4.97
Co-reg 63.95 ± 4.50 57.89 ± 2.99 67.24 ± 4.47 55.31 ± 3.98
DiMSC 71.90 ± 0.95 59.62 ± 0.96 71.90 ± 0.95 58.02 ± 1.08
AMGL 76.71 ± 4.33 70.98 ± 2.20 79.00 ± 2.80 67.13 ± 2.49
MVGL 70.48 ± 0.00 58.18 ± 0.00 70.48 ± 0.00 54.56 ± 0.00
WMSC 69.05 ± 0.00 59.55 ± 0.17 71.43 ± 0.00 57.57 ± 0.08
AWP 63.33 ± 0.00 54.88 ± 0.00 63.33 ± 0.00 53.76 ± 0.00

MCGC 80.48 ± 0.00 70.18 ± 0.00 80.95 ± 0.00 72.46 ± 0.00
LRMSC 71.81 ± 2.89 62.42 ± 1.58 74.14 ± 1.78 60.08 ± 1.57
MVCTM 85.71 ± 0.00 76.15 ± 0.00 85.71 ± 0.00 74.90 ± 0.00
SMVSC 81.43 ± 0.00 70.18 ± 0.00 81.43 ± 0.00 69.36 ± 0.00
FPMVS 78.57 ± 0.00 66.84 ± 0.00 78.57 ± 0.00 68.36 ± 0.00
CSMSC 80.43 ± 0.14 71.36 ± 0.19 80.43 ± 0.14 70.06 ± 0.21

Ours 87.14 ± 0.00 78.21 ± 0.00 87.14 ± 0.00 77.87 ± 0.00

view Spectral Clustering with Co-regularized strategy(Co-
reg) [28]. Diversity-induced Multi-view Subspace Cluster-
ing(DiMSC) [14]. Auto-weighted Multiple Graph Learn-
ing(AMGL) [29]. Consistent and Specific Multi-View Sub-
space Clustering(CSMSC) [6]. Graph Learning for Multi-
view Clustering(MVGL) [30] . Weighted Multi-view Spec-

Table 4. The clustering results on ORL dataset (%)

Method ACC NMI Purity F-score
Co-train 61.90 ± 3.19 79.23 ± 1.58 65.60 ± 2.23 50.88 ± 3.26
Co-reg 61.65 ± 2.81 79.38 ± 1.69 66.22 ± 2.14 51.39 ± 3.51
DiMSC 80.03 ± 1.78 90.63 ± 0.88 82.93 ± 1.17 74.61 ± 1.91
AMGL 73.15 ± 3.22 85.59 ± 1.09 78.27 ± 2.01 58.89 ± 3.62
MVGL 49.00 ± 0.00 66.30 ± 0.00 58.00 ± 0.00 18.24 ± 0.00
WMSC 76.60 ± 3.70 88.26 ± 1.68 79.75 ± 2.85 69.84 ± 4.38
AWP 74.50 ± 0.00 86.02 ± 0.00 76.25 ± 0.00 65.18 ± 0.00

MCGC 77.00 ± 0.00 87.22 ± 0.00 82.75 ± 0.00 56.25 ± 0.00
LRMSC 79.62 ± 3.09 90.49 ± 1.50 83.42 ± 2.46 73.99 ± 3.96
MVCTM 59.50 ± 0.00 72.58 ± 0.00 66.75 ± 0.00 23.98 ± 0.00
SMVSC 58.28 ± 0.51 76.07 ± 0.14 61.75 ± 0.30 43.96 ± 0.33
FPMVS 55.45 ± 0.59 73.72 ± 0.48 59.27 ± 0.56 41.02 ± 0.69
CSMSC 77.57 ± 1.88 89.20 ± 0.95 80.77 ± 1.78 71.69 ± 2.58

Ours 84.35 ± 0.02 91.78 ± 0.01 86.45 ± 0.01 78.58 ± 0.02

Table 5. The clustering results on Cornell dataset (%)

Method ACC NMI Purity F-score
Co-train 41.38 ± 1.67 22.36 ± 1.43 54.26 ± 1.90 34.86 ± 0.90
Co-reg 36.26 ± 2.00 13.68 ± 1.45 47.28 ± 1.77 31.98 ± 1.41
DiMSC 40.15 ± 1.76 17.95 ± 0.82 52.77 ± 0.67 34.58 ± 0.57
AMGL 37.38 ± 4.44 4.26 ± 0.37 44.82 ± 0.34 37.24 ± 3.51
MVGL 44.10 ± 0.00 9.42 ± 0.00 45.64 ± 0.00 38.10 ± 0.00
WMSC 46.10 ± 0.15 21.69 ± 0.17 52.26 ± 0.15 37.24 ± 0.12
AWP 38.97 ± 0.00 13.63 ± 0.00 49.74 ± 0.00 33.72 ± 0.00

MCGC 36.41 ± 0.00 22.60 ± 0.00 53.85 ± 0.00 33.79 ± 0.00
LRMSC 34.77 ± 1.62 8.51 ± 1.48 43.95 ± 0.76 28.99 ± 0.72
MVCTM 40.00 ± 0.00 15.20 ± 0.00 51.79 ± 0.00 36.89 ± 0.00
SMVSC 48.67 ± 2.21 20.61 ± 1.36 53.90 ± 0.87 42.14 ± 2.28
FPMVS 35.90 ± 0.00 17.67 ± 0.00 53.33 ± 0.00 33.20 ± 0.00
CSMSC 47.33 ± 0.33 23.86 ± 0.36 55.49 ± 0.21 37.87 ± 0.37

Ours 51.28 ± 0.00 34.81 ± 0.00 61.03 ± 0.00 42.03 ± 0.00

Table 6. The clustering results on Yale dataset(%)

Method ACC NMI Purity F-score
Co-train 53.94 ± 4.21 57.90 ± 3.14 55.52 ± 4.11 38.68 ± 3.72
Co-reg 56.36 ± 3.49 60.30 ± 3.05 57.64 ± 3.25 41.43 ± 3.79
DiMSC 64.36 ± 3.40 66.57 ± 2.30 64.79 ± 3.22 49.41 ± 2.90
AMGL 59.94 ± 3.64 62.95 ± 2.78 61.33 ± 2.93 41.87 ± 4.18
MVGL 44.85 ± 0.00 49.19 ± 0.00 46.67 ± 0.00 26.05 ± 0.00
WMSC 61.88 ± 3.64 65.40 ± 2.89 62.12 ± 3.84 48.08 ± 3.53
AWP 61.82 ± 0.00 65.77 ± 0.00 61.82 ± 0.00 49.71 ± 0.00

MCGC 67.27 ± 0.00 68.92 ± 0.00 67.27 ± 0.00 48.33 ± 0.00
LRMSC 68.36 ± 1.11 70.36 ± 1.11 68.55 ± 1.10 52.27 ± 1.67
MVCTM 62.42 ± 0.00 66.14 ± 0.00 62.42 ± 0.00 47.40 ± 0.00
SMVSC 60.36 ± 0.95 62.23 ± 1.37 60.73 ± 0.89 43.05 ± 1.51
FPMVS 44.24 ± 0.00 49.76 ± 0.00 46.67 ± 0.00 30.45 ± 0.00
CSMSC 64.06 ± 2.91 68.22 ± 1.49 64.12 ± 2.80 51.84 ± 1.76

Ours 71.03 ± 0.01 74.51 ± 0.01 71.21 ± 0.00 59.72 ± 0.01

tral Clustering(WMSC) [31]. multi-view clustering via
Adaptively Weighted Procrustes(AWP) [32]. Multi-view
Consensus Graph Clustering(MCGC) [33]. Generalized
Latent Multi-View Subspace Clustering(LRMSC) [34].
Multi-view Clustering on Topological Manifold(MVCTM)
Fast Parameter-free Multi-view Subspace Clustering with
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Figure 3. Parameter analysis on ORL dataset

Consensus Anchor Guidance(FPMVS) [35]. Multi-view
Subspace Clustering with Unified Anchors(SMVSC) [36]
Consistent and Specific Multi-View Subspace Cluster-
ing(CSMSC) [6]. Rather than adopting view-wise weigh-
ing strategy like the above mentioned methods, we deli-
cately conduct graph fusion in a sample-wise manner. Thus,
the superiority of our proposed approach could be demon-
strated in the experiment section.

As for benchmark datasets, we adopt 100leaves, HW,
MRSC, ORL, Cornell and Yale. Specifically, the leaves
data set (100leaves) consists of 1,600 leaves from each of
100 plant species. For each sample, margin, shape and tex-
ture are given as three distinct views. Handwritten numerals
data (HW) is composed of 2,000 data points for digits 0 to 9
from UCI machine learning repository and two public fea-
tures are available. MSRC data set contains 210 images
and can be separated into 7 classes including cow, airplane,
face, bicycle, tree, building and car. There are five visual

features from each sample. ORL consists of 400 face im-
ages in 40 different themes in total. For each subject, the
images are described in three features: facial expressions,
facial details and the lighting. Cornell, which is collected
by Cornell University, contains 195 web pages and a web
page is made of 2 views: content features and cites features.
Dataset Yale contains 165 gray-scale images under varying
poses and illuminations, where every image is of size 64 ×
64.

5.2. Result Analysis

With the aim of evaluating our proposed approach ade-
quately with above mentioned SOTA multi-view clustering
methods, we adopt four widely used criteria including Nor-
malized Mutual Information(NMI), Accuracy(ACC), Purity
and F-Score. The clustering results are reported in Ta-
bles (1)- (6). We can arrive at a conclusion that our method
is very effective and competitive as the proposed method
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Figure 4. Convergence curves on all datasets

outperforms other competitors in the majority of cases. In
detail, our method consistently obtains the best results in
terms of NMI, ACC and Purity on all datasets. While for F-
score, the proposed method surpasses the compared meth-
ods except in one case on dataset Cornell. The superiority
of our method explicitly demonstrates the effectiveness of
the sample-wise learning strategy and corroborates our the-
oretical findings.

5.3. Parameter Discussion

With the aim of studying what impact different param-
eter settings will have on the clustering results, we vary α,
β, λ and γ in the ranges

[
1e−4, . . . , 1e4

]
,
[
1e−4, . . . , 1e4

]
,[

1e−1, . . . , 1e2
]

and
[
1, . . . , 1e3

]
, respectively. Taking the

ORL dataset as an example, we can see the clustering per-
formance is quite stable with respect to different parameter
settings, as shown in Figure (3). Considering that there is
little difference among the performances of diverse param-
eter combinations, we can come to a conclusion that our
approach is robust to the hyper parameters.

5.4. Convergence Analysis

Owing to the fact that the optimization of our proposed
method is essentially a non-convex problem that is solved
by an iterative algorithm, it is critical to validate the con-
vergence of our model. Therefore, this section empirically
showcases the convergence property and how fast our algo-
rithm can converge. The convergence curves of our model
on six datasets shown in Fig. (4) demonstrate the effective-
ness of our optimization approach. Note that despite the
non-convexity of Eq. (6), our model can still discover an

optimal solution for each variable and achieve a local min-
ima within a few iterations, which verifies the effectiveness
of the proposed optimization algorithm.

6. Conclusion

In this paper, we propose to exploit the implied data man-
ifold by learning the topological structure of data. Besides,
considering that the consistency of multiple views is man-
ifested in the generally similar local structure while the in-
consistent structures are the minority, we further explore
the intersections of multiple views in the sample level such
that the cross-view consistency can be better maintained.
By leveraging the subtasks of topological relevance learn-
ing and the sample-level graph fusion in our collaborative
model, each subtask is alternately boosted towards an opti-
mal solution. We also design an efficient algorithm to solve
the corresponding optimization problem. Meanwhile, our
method generates outstanding results on several authorita-
tive benchmark datasets and is proven to outperform current
state-of-the-art methods. In the future, we are interested
in extending the proposed model to other machine learning
framework such as kernel learning and deep learning.
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