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Abstract

Spatiotemporal predictive learning aims to generate fu-
ture frames by learning from historical frames. In this pa-
per, we investigate existing methods and present a general
framework of spatiotemporal predictive learning, in which
the spatial encoder and decoder capture intra-frame fea-
tures and the middle temporal module catches inter-frame
correlations. While the mainstream methods employ recur-
rent units to capture long-term temporal dependencies, they
suffer from low computational efficiency due to their unpar-
allelizable architectures. To parallelize the temporal mod-
ule, we propose the Temporal Attention Unit (TAU), which
decomposes temporal attention into intra-frame statical at-
tention and inter-frame dynamical attention. Moreover,
while the mean squared error loss focuses on intra-frame
errors, we introduce a novel differential divergence regu-
larization to take inter-frame variations into account. Ex-
tensive experiments demonstrate that the proposed method
enables the derived model to achieve competitive perfor-
mance on various spatiotemporal prediction benchmarks.

1. Introduction
The last decade has witnessed revolutionary advances in

deep learning across various supervised learning tasks such
as image classification [34,52,87], object detection [73,75],
computational biology [21, 22, 43, 83, 84], and etc. Despite
significant breakthroughs in supervised learning, which re-
lies on large-scale labeled datasets, the potential of unsuper-
vised learning remains largely untapped. Self-supervised
learning that designs pretext tasks to produce labels derived
from the data itself is recognized as a subset of unsupervised
learning. In the context of self-supervised learning, con-
trastive self-supervised learning [7,8,28,33,85,86,92,104]
predicts the noise contrastive estimation from predefined
positive or negative pairs, and masked self-supervised learn-
ing [17, 32, 45, 51, 57, 102] predicts the masked patches
from the visible patches. Unlike these image-level self-
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supervised learning, spatiotemporal predictive learning that
predicts future frames from past frames at the video-
level [6, 19, 27, 46, 60, 63].
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Figure 1. Comparison of model architectures among common spa-
tiotemporal predictive learning methods. Note that we denote 2D
convolutional neural networks as Conv while 3D Conv means 3D
convolutional neural networks.

Accurate spatiotemporal predictive learning can bene-
fit broad practical applications in climate change [74, 77],
human motion forecasting [91, 107], traffic flow predic-
tion [18, 97], and representation learning [39, 71]. The
significance of spatiotemporal predictive learning primarily
lies in its potential of exploring both spatial correlation and
temporal evolution in the physical world. Moreover, the
self-supervised nature of spatiotemporal predictive learn-
ing aligns well with human learning styles without a large
amount of labeled data. Massive videos can provide a rich
source of visual information, enabling spatiotemporal pre-
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dictive learning to serve as a generative pre-training strat-
egy [35, 60] for feature representation learning towards di-
verse downstream visual supervised tasks.

Most of the existing methods [2,3,9,11,12,19,24,29,41,
44,65,78,79,82,88,89,93–96,98,100,103] in spatiotempo-
ral predictive learning employ hybrid architectures of con-
volutional neural networks and recurrent units in which spa-
tial correlation and time evolution can be learned, respec-
tively. Inspired by the success of long short-term mem-
ory (LSTM) [36] in sequential modeling, ConvLSTM [78]
is a seminal work on the topic of spatiotemporal predic-
tive learning that extends fully connected LSTM to con-
volutional LSTM towards accurate precipitation nowcast-
ing. PredRNN [95] is an admirable work that proposes
Spatiotemporal LSTM (ST-LSTM) units to model spatial
appearances and temporal variations in a unified memory
pool. This work provides insights on designing typical re-
current units for spatiotemporal predictive learning and in-
spires a series of subsequent works [4, 93, 96, 98]. E3D-
LSTM [94] integrates 3D convolutional neural networks
into recurrent units towards good representations with both
short-term frame dependencies and long-term high-level re-
lations. PhyDNet [29] introduces a two-branch architec-
ture that involves physical-based PhyCells and ConvLSTMs
for performing partial differential equation constraints in
latent space. CrevNet [103] proposes an invertible two-
way autoencoder based on flow [14, 15] and a condition-
ally reversible architecture for spatiotemporal predictive
learning. As shown in Figure 1 (a), we present a gen-
eral framework consisting of the spatial encoder/decoder
and the middle temporal module, abstracted from these
methods. Though these spatiotemporal predictive learning
methods have different temporal modules and spatial en-
coders/decoders, they basically share a similar framework.

Based on the general framework, we argue that the tem-
poral module plays an essential role in spatiotemporal pre-
dictive learning. While the common choice of the tempo-
ral module is the recurrent-based units, we explore a novel
parallelizable attention module named Temporal Attention
Unit (TAU) to capture time evolution. The proposed tempo-
ral attention is decomposed into intra-frame statical atten-
tion and inter-frame dynamical attention. Furthermore, we
argue that the mean square error loss only focuses on intra-
frame differences, and we propose a differential divergence
regularization that also cares about the inter-frame varia-
tions. Keeping the spatial encoder and decoder as simple as
2D convolutional neural networks, we deliberately imple-
ment our proposed TAU modules and surprisingly find the
derived model achieves competitive performance as those
recurrent-based models. This observation provides a new
perspective to improve spatiotemporal predictive learning
by parallelizable attention networks instead of common-
used recurrent units.

We conduct experiments on various datasets with dif-
ferent experimental settings: (1) Standard spatiotemporal
predictive learning. Quantitative results on various datasets
demonstrate our proposed method can achieve competitive
performance on standard spatiotemporal predictive learn-
ing. (2) Generalization ability. To verify the generaliza-
tion ability, we train our model on KITTI and test it on the
Caltech Pedestrian dataset with different domains. (3) Pre-
dict future frames with flexible lengths. We tackle the long-
length frames by feeding the predicted frames as the input
and find the performance is consistently well. Through the
superior performance in the above three experimental set-
tings, we demonstrate that our proposed model can provide
a novel manner that learns temporal dependencies without
recurrent units.

2. Related works
2.1. Self-supervised learning

Deep learning has been well developed and applied in
various fields [5, 55, 56, 109, 110]. Learning from massive
data enables tremendous progress in supervised learning.
By designing pretext tasks and generating labels from the
data itself, self-supervised learning obtains supervisory sig-
nals. The model learns valuable representations by solving
pretext tasks that leverage the underlying structure of the
data. Early works on visual self-supervised learning design
pretext tasks such as colorization [108], inpainting [69], ro-
tation [26], jigsaw [66]. Contrastive self-supervised learn-
ing [7, 8, 28, 33, 92, 104] is a dominant manner in visual
self-supervised learning that aims at a pretext task of group-
ing similar samples closer and diverse samples away from
each other. However, contrastive self-supervised learning is
limited by making pairs by multiple images, which affects
its ability on small-scale datasets. Masked self-supervised
learning [17, 32, 45, 51, 57, 102], which predicts the masked
patches from the visible ones, is another research direc-
tion. Although masked pretraining has great success in nat-
ural language processing, its applications in visual tasks are
challenging. Spatiotemporal predictive learning is another
promising branch of self-supervised learning that focus on
video-level information and predicts future frames condi-
tioned on past frames.

In contrast to the above image-level methods, spatiotem-
poral predictive learning focus on video-level information
and predicts future frames conditioned on past frames. By
learning the intrinsic motion dynamics, the model is en-
abled to easily decouple the foreground and background.

2.2. Spatiotemporal predictive learning

Recurrent models have achieved remarkable advances
in spatiotemporal predictive learning. Inspired by recur-
rent neural networks, VideoModeling [62] adopts language
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modeling and quantizes the image patches into a large dic-
tionary for recurrent units. ConvLSTM [78] leverages con-
volutional neural networks to model the LSTM architec-
ture. PredNet [61] persistently predicts future video frames
using deep recurrent convolutional neural networks with
bottom-up and top-down connections. PredRNN [95] pro-
poses a Spatiotemporal LSTM unit that extracts and mem-
orizes spatial and temporal representations simultaneously,
and its following work PredRNN++ [93] further introduces
gradient highway unit and Casual LSTM to adaptively cap-
ture temporal dependencies. E3D-LSTM [94] designs ei-
detic memory transition in recurrent convolutional units.
Conv-TT-LSTM [82] employs a higher-order ConvLSTM
to predict by combining convolutional features across time.
MotionRNN [100] focuses on motion trends and transient
variations. LMC-Memory [50] introduces a long-term mo-
tion context memory using memory alignment learning.
PredRNN-v2 [96] extends PredRNN by leveraging a mem-
ory decoupling loss and curriculum learning strategy.

Instead of using recurrent-based methods that are com-
putationally expensive for spatiotemporal predictive learn-
ing, we introduce TAU, a model that uses visual attention
mechanism to parallelize the temporal evolution without the
recurrent structure. There are prior arts that have some sim-
ilarities with our proposed model. PredCNN [101] and Tra-
jectoryCNN [54] implement pure convolutional neural net-
works as the temporal module. SimVP [23] is a seminal
work that applies blocks of Inception modules with a UNet
architecture to learn the temporal evolution. Though their
temporal modules are parallelizable, we argue that convolu-
tions alone cannot capture long-term dependencies. More-
over, SimVP provides a simple baseline with minor com-
plex attachment but a large space for further improvements.
In general, SimVP first downsamples video sequences to
reduce the computation, then uses Inception-UNet to learn
essential spatiotemporal relationships, and upsamples the
representations to predict future frames. Our work aims to
replace the pivotal Inception-UNet with efficient attention
modules that promote prediction performance. In this pa-
per, we employ a simple yet effective attention mechanism
to enable the temporal module not only to be parallelizable
but also to capture long-term time evolution.

3. Methods

3.1. Preliminaries

We formally define the spatiotemporal predictive learn-
ing problem as follows. Given a video sequence X t,T =
{xi}tt−T+1 at time t with the past T frames, we aim to
predict the subsequent T ′ frames Yt+1,T ′

= {xi}t+1+T ′

t+1

from time t + 1, where xi ∈ RC×H×W is usually an im-
age with channels C, height H , and width W . In practice,
we represent the video sequences as tensors, i.e., X t,T ∈

RT×C×H×W and Yt+1,T ′ ∈ RT ′×C×H×W .
The model with learnable parameters Θ learns a map-

ping FΘ : X t,T 7→ Yt+1,T ′
by exploring both spatial and

temporal dependencies. In our case, the mapping FΘ is a
neural network model trained to minimize the difference
between the predicted future frames and the ground-truth
future frames. The optimal parameters Θ∗ are:

Θ∗ = argmin
Θ

L(FΘ(X t,T ),Yt+1,T ′
), (1)

where L is a loss function that evaluates such differences.

3.2. Overview

We illustrate the overview model in Figure 2 using the
input Moving MNIST [81] data as an example.

+
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Figure 2. The overview architecture of our proposed model.

Striving for simplicity, the model follows the general
framework in Figure 1, while the spatial encoder consists
of four vanilla 2D convolutional layers, and the spatial de-
coder consists of four 2D transposed convolutional lay-
ers (’Conv2d’ and ’ConvTranspose2d’ in PyTorch respec-
tively). We add a residual connection from the first con-
volutional layer to the last transposed convolutional layer
for preserving the spatial-dependent features. Stacks of
TAU modules are in the middle of the spatial encoder and
decoder to extract temporal-dependent features. Though
our model is simple, it can efficiently learn both spatial-
dependent and temporal-dependent features without recur-
rent architectures.

3.3. Temporal Attention Unit

Suppose a batch of input video tensors B ∈
RB×T×C×H×W with the number of videos B = |B| is
given. In the spatial encoder and decoder, we reshape the
sequential input data B × T × C ×H ×W as (B × T )×
C ×H ×W so that only spatial correlations are taken into
account. In the temporal module, we reshape the feature
B × T × C ×H ×W as B × (T × C) ×H ×W so that
frames are arranged in order on the channel dimension.
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We decompose the temporal attention into the intra-
frame statical attention and the inter-frame dynamical atten-
tion, as shown in Figure 3. Inspired by the recent progress
of vision Transformers (ViTs) [17,57] and large kernel con-
volutions [13, 30, 58], we propose to employ small kernel
depth-wise convolutions (DW Conv), depth-wise convolu-
tions with dilations (DW-D Conv), and 1×1 convolutions to
model the large kernel convolutions. Through the obtained
large receptive field on intra-frames, the statical attention
is able to capture long-range dependencies. However, the
statical attention alone is not enough for learning temporal
evolutions along the timeline. Thus, we employ the dynam-
ical attention that learns the attention weights of channels in
a squeeze-and-excitation manner [38]. The final attention is
the product of dynamical attention and statical attention.

H W

T*C

T*C

Dynamical 
Attention

Statical 
Attention

Figure 3. The intra-frame statical attention and the inter-frame
dynamical attention.

We show the detailed scheme of our model in Figure 4.
The proposed TAU module can be formally expressed as:

SA = Conv1×1(DW-D Conv(DW Conv(H))),

DA = FC(AvgPool(H)),

H ′ = (SA ⊗ DA) ⊙ H,

(2)

where H ∈ RB×(T×C′)×H×W is the hidden fea-
ture that will be fed into the TAU module, SA ∈
RB×(T×C′)×H×W ,DA ∈ RB×(T×C′)×1×1 denote the stat-
ical and dynamical attention, FC and AvgPool are fully con-
nected layers and the average pooling. We represent the
Kronecker product by ⊗ and the Hadamard product by ⊙.

3.4. Differential Divergence Regularization

To improve the prediction of our model, we further pro-
pose a differential divergence regularization that forces the
model to learn the differences between consecutive frames
and be aware of the inherent variation.

Given the predicted frames Ŷ = FΘ(X ) ∈
RT ′×C×H×W and its corresponding ground-truth frames
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Figure 4. The detailed schema of our model.

Y , we first calculate their forward difference ∆Ŷ,∆Y ∈
R(T ′−1)×C×H×W , where:

∆Ŷi = Ŷi+1 − Ŷi,

∆Yi = Yi+1 − Yi.
(3)

Then, we transform the differences into probabilities by
the softmax function on the channel, height, and width di-
mension and obtain σ(∆Ŷ), σ(∆Y), where:

σ(∆Ŷ)i,j,k,l =
exp (∆Ŷi,j,k,l/τ)∑C

j′=1

∑H
k′=1

∑W
l′=1 exp(∆Ŷi,j′,k′,l′/τ)

,

σ(∆Y)i,j,k,l =
exp (∆Yi,j,k,l)/τ∑C

j′=1

∑H
k′=1

∑W
l′=1 exp(∆Yi,j′,k′,l′/τ)

,

(4)
and τ represents the temperature parameter which we em-
pirically set as 0.1 to sharpen the probability distribution.
Through the competition mechanism of the softmax func-
tion [10, 70, 99], the high difference frames are penalized.

Thus, the differential divergence regularization Lreg is
defined as the Kullback-Leibler divergence between the
probability distributions σ(∆Ŷ) and σ(∆Y):

Lreg(Ŷ,Y) = DKL(σ(∆Ŷ) || σ(∆Y))

=

T ′−1∑
i=1

σ(∆Ŷi) log
σ(∆Ŷi)

σ(∆Yi)
.

(5)

Our model is trained end-to-end in a fully unsupervised
manner, and the overall objective function consists of the
mean square error loss and the differential divergence regu-
larization weighted by a constant α:

L =

T ′∑
i=1

∥Ŷ − Y∥2 + αLreg(Ŷ,Y), (6)

where the first term focuses on intra-frame-level differ-
ences, and the second regularization term focuses on inter-
frame-level variations.

18773



4. Experiments
In this section, we present experiments that demonstrate

the effectiveness of our proposed method. The experiments
are conducted on various datasets with different settings to
validate our proposed model from three aspects:

• Standard spatiotemporal predictive learning (Sec-
tion 4.2). We recognize the prediction problem of the
same number of input and output frames as the stan-
dard spatiotemporal predictive learning. We evaluate
the performance on standard spatiotemporal predictive
learning and compare our model with state-of-the-art
methods with Moving MNIST [81]and TaxiBJ [106]
datasets.

• Generalization ability across different datasets (Sec-
tion 4.3). Generalizing the learned knowledge to other
domains is a challenge in unsupervised learning. We
investigate the such ability of our method by training
the model on the KITTI [25] dataset and evaluating it
on the Caltech Pedestrian [16] dataset.

• Predicting frames with flexible lengths (Section 4.4).
One of the advantages of recurrent units is that they
can easily handle flexible-length frames like the KTH
dataset [76]. Our work tackles the long-length frame
prediction by imitating recurrent units that feed pre-
dicted frames as the input and recursively produce
long-term predictions.

4.1. Experimental Setups

Datasets We quantitatively evaluate our model on the fol-
lowing datasets for both synthetic and real-world scenarios:

• Moving MNIST [81] is a synthetic dataset consisting
of two digits independently moving within the 64 ×
64 grid and bouncing off the boundary. It is a standard
benchmark in spatiotemporal predictive learning.

• TaxiBJ contains the trajectory data in Beijing col-
lected from taxicab GPS with two channels, i.e., inflow
or outflow defined in [106]. Following the previous
works [29, 98], we normalize the data into [0, 1].

• KTH [76] contains 25 individuals performing six
types of actions. Following [90, 94], we use person
1-16 for training and 17-25 for testing. Models are
trained to predict the next 20 or 40 frames from the
previous 10 observations.

• Caltech Pedestrian is a driving dataset focusing on
detecting pedestrians. It consists of approximately 10
hours of 640 × 480 videos taken from vehicles driv-
ing through regular traffic in an urban environment.
We follow the same protocol of PredNet [61] and

CrevNet [103] for pre-processing, training, and eval-
uation.

We summarize the statistics of the above datasets in Table 1,
including the number of training samples Ntrain and the
number of testing samples Ntest.

Table 1. The statistics of datasets. The training or testing set has
Ntrain or Ntest samples, composed by T or T ′ images with the
shape (C,H,W ).

Ntrain Ntest (C,H,W ) T T ′

MMNIST 10000 10000 (1, 64, 64) 10 10
TaxiBJ 19627 1334 (2, 32, 32) 4 4
KTH 5200 3167 (1, 128, 128) 10 20 or 40

Caltech 2042 1983 (3, 128, 160) 10 1

Measurement Following [29, 103], we employ Mean
Squared Error (MSE), Mean Absolute Error (MAE), Struc-
ture Similarity Index Measure (SSIM), and Peak Signal
to Noise Ratio (PSNR) to evaluate the quality of predic-
tions. MSE and MAE estimate the absolute pixel-wise er-
rors, SSIM measures the similarity of structural information
within the spatial neighborhoods, and PSNR is an expres-
sion for the ratio between the maximum possible power of
a signal and the power of distorted noise.

Implementation details We implement the proposed
method with the Pytorch framework and conduct exper-
iments on a single NVIDIA-V100 GPU. The model is
trained with a mini-batch of 16 video sequences while the
AdamW optimizer is utilized with a learning rate of 0.01
and a weight decay of 0.05.

4.2. Standard spatiotemporal predictive learning

4.2.1 Moving MNIST

This dataset is a standard benchmark in spatiotemporal
predictive learning. We evaluate our proposed method
against strong recent baselines, including competitive recur-
rent architectures: ConvLSTM [78], PredRNN [95], Pre-
dRNN++ [93], MIM [98], LMC [50], E3D-LSTM [94],
Conv-TT-LSTM [82], and CrevNet [103]. We also com-
pare the method DDPAE [37] that is specifically designed
for this dataset. The quantitative results are reported in Ta-
ble 2, and qualitative visualizations of the predicted results
are shown in Figure 5.

Our proposed method significantly outperforms all the
baselines above under three different metrics. The perfor-
mance gain is large with respect to state-of-the-art recurrent
methods.
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Figure 5. Qualitative visualization of predicted results on Moving MNIST dataset. The differences between the ground truth and the
predicted frames are visualized in the last row.

Table 2. Quantitative results of different methods on the Moving
MNIST dataset (10 → 10 frames).

Moving MNIST
Method MSE↓ MAE↓ SSIM↑

ConvLSTM [78] 103.3 182.9 0.707
VPN [44] 64.1 - 0.870

PredRNN [95] 56.8 126.1 0.867
PredRNN++ [93] 46.5 106.8 0.898

MIM [98] 44.2 101.1 0.910
LMC [50] 41.5 - 0.924

E3D-LSTM [94] 41.3 87.2 0.910
Conv-TT-LSTM [82] 53.0 - 0.915

DDPAE [37] 38.9 90.7 0.922
PhyDNet [29] 24.4 70.3 0.947
SimVP [23] 23.8 68.9 0.948

Crevnet [103] 22.3 - 0.949
Ours 19.8 60.3 0.957

4.2.2 TaxiBJ

We evaluate our proposed model on a complicated real-
world dataset, TaxiBJ [106]. Driven by human conscious-
ness, the complex real-world traffic flows requires model-
ing transport phenomena and traffic diffusion for prediction.
Due to the spatiotemporal nature of the traffic forecasting
task, we straightforwardly implement our model for it.

The qualitative visualizations of the predicted results are
shown in Figure 6, and the quantitative results are reported
in Table 3. Though the given frames are quite different
from the future frames, our model can still accurately pro-
duce reliable frames. The difference between target frames

input

target

predicted

|target-
predicted|

t=1 t=2 t=3 t=4

t=12
t=5 t=6 t=7 t=8

Figure 6. Qualitative visualization of predicted results on TaxiBJ
dataset. The differences between the ground truth and the pre-
dicted frames are visualized in the last row.

and predicted frames is mainly located in central spots, but
the overall trend is approximating the ground truth. It can
also be observed that the quantitative results are consistently
well, which demonstrates the practical application value in
real-world scenarios.

4.3. Generalization across different datasets

The generalization ability is one of the fundamental
problems in artificial intelligence technology. Traditional
supervised learning suffers from its poor generalization of
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Table 3. Quantitative results of different methods on the TaxiBJ
dataset (4 → 4 frames).

TaxiBJ
Method MSE × 100↓ MAE↓ SSIM↑

ConvLSTM [78] 48.5 17.7 0.978
PredRNN [95] 46.4 17.1 0.971

PredRNN++ [93] 44.8 16.9 0.977
MIM [98] 42.9 16.6 0.971

E3D-LSTM [94] 43.2 16.9 0.979
PhyDNet [29] 41.9 16.2 0.982
SimVP [23] 41.4 16.2 0.982

Ours 34.4 15.6 0.983

labeled datasets with different domains. Self-supervised
learning aims to learn robust representations based on un-
labeled data and evaluates the generalization ability of the
learned model. While contrastive self-supervised learning
and masked self-supervised learning in visual tasks usually
evaluate such generalization ability by downstream tasks,
we evaluate it by the prediction results across different
datasets in spatiotemporal predictive learning.

input target predicted |target-predicted|
t=10 t=11

Figure 7. Qualitative visualization of predicted results on Caltech
dataset. The differences between the ground truth and the pre-
dicted frames are visualized in the last row.

Following the previous works [53, 61, 103], we train
the model using the raw video sequences from the KITTI
dataset and evaluate the model by Caltech Pedestrian
dataset that is made to match the frame rate and image size
(128 × 160) of the KTTI dataset. The final prediction is
made for the next frame after a 10-frame warm-up.

We show the qualitative visualization in Figure 7 and re-

port the quantitative results in Table 4. Note that some of
the baseline results are copied from [68]. It can be seen that
our proposed method achieves state-of-the-art performance
under both SSIM and PSNR metrics in this generalization
evaluation task. Moreover, our model shows significantly
robust predictions in terms of the variation of illumination
and lane line, suggesting its practical applications in au-
tonomous vehicles.

Table 4. Quantitative results of different methods on the Caltech
Pedestrian dataset (10 → 1 frame).

Caltech Pedestrian
Method SSIM↑ PSNR↑

BeyondMSE [64] 0.847 -
MCnet [90] 0.879 -
DVF [59] 0.897 26.2

Dual-GAN [53] 0.899 -
CtrlGen [31] 0.900 26.5
PredNet [61] 0.905 27.6

ContextVP [4] 0.921 28.7
GAN-VGG [80] 0.916 -

G-VGG [80] 0.917 -
SDC-Net [72] 0.918 -

rCycleGan [47] 0.919 29.2
DPG [20] 0.923 28.2

G-MAE [80] 0.923 -
GAN-MAE [80] 0.923 -
CrevNet [103] 0.925 29.3

STMFANet [41] 0.927 29.1
SimVP [23] 0.940 33.1

Ours 0.946 33.7

4.4. Predicting frames with flexible lengths

Though recurrent units are adept at handling flexible-
length frames, our model can also easily tackle such prob-
lems by imitating recurrent units that feed predicted frames
as the input and recursively produce predictions. For this
KTH dataset, our model is trained to predict the next 20 or
40 frames from the given 10 observations. Moreover, this
dataset contains six types of human actions (walking, jog-
ging, running, boxing, hand waving and hand clapping) per-
formed several times by 25 subjects in four different scenar-
ios: outdoors, outdoors with scale variations, outdoors with
different clothes and indoors. The difficulty of this human
motion prediction task not only lies in its flexible lengths of
predicted frames but also in its complex dynamics involving
the randomness of human consciousness. Following [95],
we use the Peak Signal Noise Ratio (PSNR) and the Struc-
tural Similarity Index Measure (SSIM) as evaluation met-
rics to measure the framewise prediction quality from the
perceptive view. The detailed quantitative results are shown
in Table 5.
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Table 5. Quantitative results of different methods on the KTH
dataset (10 → 20 and 10 → 40 frames).

KTH (10 → 20) KTH (10 → 40)
Method SSIM↑ PSNR↑ SSIM↑ PSNR↑

MCnet [90] 0.804 25.95 0.73 23.89
ConvLSTM [78] 0.712 23.58 0.639 22.85

SAVP [48] 0.746 25.38 0.701 23.97
VPN [44] 0.746 23.76 – –
DFN [40] 0.794 27.26 0.652 23.01
fRNN [67] 0.771 26.12 0.678 23.77
Znet [105] 0.817 27.58 – –
SV2Pv [1] 0.838 27.79 0.789 26.12

PredRNN [95] 0.839 27.55 0.703 24.16
VarNet [42] 0.843 28.48 0.739 25.37

SAVP-VAE [48] 0.852 27.77 0.811 26.18
PredRNN++ [93] 0.865 28.47 0.741 25.21

MSNET [49] 0.876 27.08 – –
E3d-LSTM [94] 0.879 29.31 0.810 27.24
STMFANet [41] 0.893 29.85 0.851 27.56

SimVP [23] 0.905 33.72 0.886 32.93

Ours 0.911 34.13 0.897 33.01

4.5. Empirical Running Time

TAU benefits from the parallelizable computation archi-
tecture, which leads to fast convergence and high training
speed. We evaluate our efficiency by measuring the run-
ning time against state-of-the-art spatiotemporal predictive
learning methods.

0 10 20 30 40 50
0

20

40

60

80

100

120

140
CrevNet
PhyDNet
Ours
MSE 35.0

Figure 8. The learning curve comparison between state-of-the-art
methods and ours (evaluated by MSE). The red dotted line denotes
MSE 35.0, and only the first 50 epochs are shown.

The experiments are conducted on a single Tesla V100
GPU, and the batch size is set as 16. For the Moving
MNIST dataset, CrevNet [103] needs about 30 minutes per
epoch, and PhyDNet [29] needs about 7 minutes per epoch.
Our model only requires 2.5 minutes per epoch. Further-
more, our method is able to converge at a rapid rate. As
shown in Figure 8, on the Moving MNIST dataset, our
model can achieve MSE 35.0 with only 50 epochs, while
CrevNet and PhyDNet are far from this performance.

4.6. Computational Cost and Ablation Study

We compare the performance and computational cost
with state-of-the-art methods in the first several rows in Ta-
ble 6. Our model achieves superior results with better per-
formance and much lower Flops. We also conduct ablation
studies and summarize the results in Table 6. It can be seen
that replacing TAU with the same number of convolutional
blocks with vanilla 3× 3 convolutions (Conv Baseline) sig-
nificantly degrades the performance. Training our model
without differential divergence regularization (w/o DDR)
will also weaken the prediction results. Both the TAU mod-
ule and differential divergence regularization are useful. We
also find that SA and DA of the TAU module play important
roles in better performance.

Table 6. Ablation study of our proposed method.

Method M-MNIST TaxiBJ (×100) Flops(G)

PredRNN 56.8 46.4 115.94
PredRNN++ 46.4 44.8 171.73

MIM 44.2 42.9 179.17
E3DLSTM 41.3 43.2 298.85

SimVP 23.8 41.4 19.43

Conv Baseline 58.9 43.5 6.11
Ours w/o SA 23.2 40.8 15.30
Ours w/o DA 22.4 38.4 15.96

Ours w/o DDR 21.1 37.7 15.96
Ours 19.8 34.4 15.96

5. Conclusion
In this paper, we present a general framework of spa-

tiotemporal predictive learning and propose an attention-
based temporal module to replace the common-used recur-
rent units. By decomposing the temporal module into the
intra-frame statical attention and the inter-frame dynamical
attention, our proposed TAU module can achieve compet-
itive performance across various experimental settings and
datasets. Moreover, a novel differential divergence regu-
larization is proposed to overcome the drawback of MSE
loss that only considers the intra-frame error. In summary,
our work highlights the importance of both intra-frame and
inter-frame variations that enable the model to capture long-
term relations and provide a new paradigm of efficient spa-
tiotemporal predictive learning.
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