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Abstract

Neural Radiance Field (NeRF) is a popular method in
representing 3D scenes by optimising a continuous volumet-
ric scene function. Its large success which lies in applying
volumetric rendering (VR) is also its Achilles’ heel in pro-
ducing view-dependent effects. As a consequence, glossy
and transparent surfaces often appear murky. A remedy
to reduce these artefacts is to constrain this VR equation
by excluding volumes with back-facing normal. While this
approach has some success in rendering glossy surfaces,
translucent objects are still poorly represented. In this pa-
per, we present an alternative to the physics-based VR ap-
proach by introducing a self-attention-based framework on
volumes along a ray. In addition, inspired by modern game
engines which utilise Light Probes to store local lighting
passing through the scene, we incorporate Learnable Em-
beddings to capture view dependent effects within the scene.
Our method, which we call ABLE-NeRF, significantly re-
duces ‘blurry’ glossy surfaces in rendering and produces
realistic translucent surfaces which lack in prior art. In the
Blender dataset, ABLE-NeRF achieves SOTA results and
surpasses Ref-NeRF in all 3 image quality metrics PSNR,
SSIM, LPIPS.

1. Introduction
Neural Radiance Field (NeRF) has become the de facto

method for 3D scene representation. By representing the
scene as a continuous function, NeRF is able to generate
photo-realistic novel view images by marching camera rays
through the scene. NeRF first samples a set of 3D points
along a camera ray and outputs its outgoing radiance. The
final pixel colour of a camera ray is then computed us-
ing volumetric rendering (VR) which colours are alpha-
composited. This simple approach allows NeRF to gen-
erate impressive photo-realistic novel views of a complex
3D scene. However, NeRF is unable to produce accurate
colours of objects with view-dependent effects. Colours of

Figure 1. We illustrate two views of the Blender ’Drums’ Scene.
The surface of the drums exhibit either a translucent surface or
a reflective surface at different angles. As shown, Ref-NeRF
model has severe difficulties interpolating between the translu-
cent and reflective surfaces as the viewing angle changes. Our
method demonstrates its superiority over NeRF rendering models
by producing such accurate view-dependent effects. In addition,
the specularity of the cymbals are rendered much closer to ground
truth compared to Ref-NeRF.

translucent objects often appear murky and glossy objects
have blurry specular highlights. Our work aims to reduce
these artefacts.

The exhibited artefacts of the NeRF rendering model is
largely due to the inherent usage of VR as features are ac-
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cumulated in the colour space. Variants of NeRF attempt to
tackle this defect by altering the basis of this VR equation.
For instance, Ref-NeRF first predicts the normal vector of
each point on the ray. If a point has a predicted normal fac-
ing backwards from the camera, its colour is excluded from
computation via regularisation. However, prediction of nor-
mals in an object’s interior is ill-posed since these points
are not on actual surfaces. As a consequence, Ref-NeRF
achieves some success over the baseline NeRF model, al-
beit imperfectly.

When rendering translucent objects with additional
specular effects, NeRF and its variants suffer from the same
deficiency. This is due to the computation of σ which is
analogous to the ‘opacity’ attribute of a point used in the VR
equation. It is also related to the point’s transmissivity and
its contribution of radiance of to its ray. As per the Fresnel
effect [5], this property should depend on viewing angles.
Similarly, [19] describes a notion of ‘alphasphere’, which
describes an opacity hull of a point that stores an opacity
value viewed at direction ω. Most NeRF methods disregard
the viewing angle in computing σ. In fig. 1, the surface
of the uttermost right drum in the Blender scene exhibits
changing reflective and translucent properties at different
viewing angles. Ref-Nerf and other variants, by discount-
ing the dependency of σ on viewing angle, may not render
accurate colours of such objects.

Additionally, learning to model opacity and colour sepa-
rately may be inadequate in predicting the ray’s colour. Ac-
cumulating high-frequency features directly in the colour
space causes the model to be sensitive to both opacity and
sampling intervals of points along the ray. Therefore we re-
work how volumetric rendering can be applied to view syn-
thesis. Inspecting the VR equation reveals that this method-
ology is similar to a self-attention mechanism; a point’s
contribution to its ray colour is dependent on points lying
in-front of it. By this principle we designed ABLE-NeRF
as an attention-based framework. To mimic the VR equa-
tion, mask attention is applied to points, preventing them
from attending to others behind it.

The second stage of ABLE-NeRF takes inspiration from
modern game engines in relighting objects by invoking
a form of memorisation framework called ‘baking’. In
practice, traditional computer graphics rendering methods
would capture indirect lighting by applying Monte Carlo
path tracing to cache irradiance and then apply interpola-
tion during run-time. Similarly, game engines would use
lightmaps to cache global illumination for lower computa-
tional costs. For relighting dynamic objects, localised light
probes are embedded in the scene to capture light passing
through free space. At run-time, moving objects query from
these light probes for accurate relighting. The commonal-
ity between all these approaches is the process of ‘memo-
rising’ lighting information and interpolating them during

run time for accurate relighting. As such, we take inspi-
ration from these methods by creating a memorisation net-
work for view synthesis. Given a static scene, we incorpo-
rate Learnable Embeddings (LE), which are learnable mem-
ory tokens, to store scene information in latent space during
training. Specifically, the LE attends to points sampled dur-
ing ray casting via cross-attention to memorise scene infor-
mation. To render accurate view dependent effects a direc-
tional view token, comprising of camera pose, would de-
code from these embeddings.

ABLE-NeRF provides high quality rendering on novel
view synthesis tasks. The memorisation network achieves
significant improvements in producing precise specular ef-
fects over Ref-NeRF. Moreover, by reworking volumetric
rendering as an attention framework, ABLE-NeRF renders
much more accurate colours of translucent objects than
prior art. On the blender dataset, ABLE-NeRF excels both
quantitatively and qualitatively relative to Ref-NeRF.

In summary, our technical contributions are:
(1) An approach demonstrating the capability and superi-

ority of transformers modelling a physics based volumetric
rendering approach.

(2) A memorisation based framework with Learnable
Embeddings (LE) to capture and render detailed view-
dependent effects with a cross-attention network.

2. Related Work
We first review techniques from computer graphics for

capturing indirect lighting effects and global illumination.
Following, we discuss how NeRF and its other variants ren-
der photo-realistic images of a 3D scene from an unseen
viewing angle.

Indirect Illumination in Rendering. Rendering with
indirect illumination is a widely studied topic. Pioneer-
ing works using path tracing [15] or light tracing [10] cast
rays from a camera until they hit a point and traces random
rays at the visible surface to light sources. However, these
methods requires heavy computation as sampling multiple
rays is a costly operation. Instead, irradiance caching [16]
is applied to sparsely samples rays and its indirect illumi-
nation is stored to speed up this process. An object’s il-
lumination will then be interpolated at its nearby cached
values. Other methods involving a pre-computation based
method like radiance transfer and lightmaps [1], first cal-
culate the surface brightness and store it in texture maps
for real time performance. Unlike lightmaps storing sur-
face lighting information, light probes [27] bake lighting
information passing through the scene. During run time, dy-
namic objects would query from the nearest light probes for
indirect lighting information. The use of probes can be sim-
ilarly be extended to reflections. In game engines, reflection
probes [28] are made to capture images as cubemaps within
the scene. These cubemaps are then utilised by objects with
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reflective materials to produce convincing reflections of the
environment.

The impetus to incorporate Learnable Embeddings in our
work takes inspiration from how these light or reflection
probes function. Yet, our work differs from the traditional
graphics pipeline in the type of information being captured.
Unlike probes in game engines, these embeddings do not
exist as physical entities in the 3D scene geometry. Instead,
Learnable Embeddings operate within the latent space as
learnable latent vectors. In this manner, the LE capture la-
tent information of a given scene. Thus, it is crucial to opti-
mise these LE via training. Similar to relighting dynamic
objects by interpolating nearby light probes or reflection
probes, new viewing angles would query from these LE to
achieve accurate view dependent effects.

3D Scene Representation for View Synthesis Numer-
ous methods have been proposed for generating new images
of a scene using only a few captured images. Light field ren-
dering methods [13, 18] characterise the unobstructed flow
of light passing through the scene as 4D function and slice
this slab differently to generate new views. While these
methods require a large number of light field samples to
interpolate new views, recent deep learning-based meth-
ods [23] only require sparse inputs. Separately, image based
rendering methods [6, 7, 14, 26, 31] balance a set of weights
heuristically or learned to blend nearby input images cre-
ating novel views. Scene representation methods also ex-
tend to volumetric methods by colouring voxel grids [22]
or reconstructing plenoxels [12]. Methods involving neural
networks are also capable of learning volumetric scene rep-
resentation through gradient-based methods [11, 17, 24, 25]

The shift towards coordinate-based methods has shown
a quantum leap in concise 3D scene representation. With
a few layers of MLP, NeRF [20] can map a continuous in-
put of 3D coordinates to the scene geometry and appear-
ance. NeRF can also be extended to dynamic scenes, avatar
animations, and even scene editing. These algorithms,
which model appearance, typically decompose scene mate-
rials into its BRDF properties [32]. As a result, they require
strong physics based assumptions such as known lighting
conditions or single type materials. On the contrary, Ref-
NeRF [30] does not assume these precise physical mean-
ings. This enables Ref-NeRF to avoid relying on such as-
sumptions. Our work follows this school of thought. We
do not assume a physics based learning approach as we re-
place volumetric rendering by an end to end deep learning
methodology.

Transformers for View Synthesis The use of transform-
ers for view synthesis have gained popularity lately. IBR-
Net [31] applies a ray transformer to generate σ values be-
fore using the VR equation to accumulate colours. In [26],
the authors apply a two-stage transformer-based model to
aggregate features along epipolar lines in each reference

views and then combine these reference views with a view
transformer. SRT [21] extracts features from training im-
ages with a CNN and then apply transformers to aggregate
features before using a target ray to query for a pixel colour.
NeRF-in-detail [2] also uses a transformer to propose new
sample points along a ray and then apply NeRF to gener-
ate a ray colour. Unlike ABLE-NeRF, none of these meth-
ods apply transformers to model a physics based volumetric
rendering approach.

2.1. Neural Radiance Field Overview

NeRF represents a 3D scene as a continuous volumetric
scene function. It traces a pixel ray r(t) = o + td, into a
scene where o and d represent the camera origin and pose.
After sampling for 3D points along the ray, NeRF predict
point’s opacity using spatial MLPs. Following which, a di-
rectional MLP determines the colour of the point. Finally,
to compute the colour of a ray, alpha composition with nu-
merical quadrature is applied to these points based on (1).

Ĉ (r) =

N∑
i=1

Ti (1− exp (−σiδi)) ci (1)

where

Ti = exp

−
i−1∑
j=1

σjδj

 (2)

NeRF maintains two separate sets of model parameters
for the coarse and fine network. The network is optimised
with a total squared error between the predicted pixel colour
and the true pixel colours of both the coarse and fine net-
work.

L =
∑
r∈R

[∥∥∥Ĉc (r)− Cc (r)
∥∥∥2
2
+

∥∥∥Ĉf (r)− Cf (r)
∥∥∥2
2

]
(3)

In practise, only the output of the fine network is used to
render the final image.

3. Method
As aforementioned, applying NeRF’s volumetric render-

ing to accumulate features in the colour space causes the
outgoing radiance to be highly sensitive to both opacity
σ prediction and the point sampling intervals δ. Despite
the δ intervals, the density σ of each point acts as a dif-
ferential opacity for controlling the accumulated radiance
along a ray passing through space [20]. As such, NeRF
has difficulty predicting the colour of a surface point ex-
hibiting both transmissive and reflective properties at dif-
ferent angles, resulting in a ‘murky’ appearance. ABLE-
NeRF addresses this issue by diverging from such physics-
based volumetric rendering equation. Instead, we formu-
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Figure 2. A visualisation of ABLE-NeRF. Similar to mip-NeRF, we cast a ray and sample for N conic frustum volumes between the
near and far boundary. Each volume passes through a Volume Embedding layer consisting of several layers of MLP. A ray token ‘R’ is
appended to the sequence of points before propagating it to the Attention-Based rendering Transformer (AB Transformer) module. After
the last transformer layer, the ray token is used to compute a non explicit view-dependent colour. Next, several Learnable Embedding (LE)
and a view-dependent token ‘V’ are appended to the sequence of embedded volumes post AB Transformer module before passing to LE
Transformer. Within LE Transformer, LE cross-attend to the embedded volumes to memorise static scene information. LE then processes
this information with self-attention and a view-dependent token ‘V’ decodes from LE. The final colour is produced by a tone mapping
function that takes into account both the colour and view tokens, after the MLP head.

late an attention-based network in ABLE-NeRF to deter-
mine a ray’s colour. These changes allow ABLE-NeRF a
flexibility to selectively assign attention weights to points
compared to alpha compositing point features (2) along a
ray. We constrained the attention mechanism by introduc-
ing masks where frontal points are restricted from attending
to rear points. This masking strategy allows us to encode
a viewing directional information implicitly. In addition,
to capture view-dependent appearance caused by forms of
indirect illumination, we incorporate LE as a methodology
inspired by light and reflection probes from modern game
engines.

3.1. Attention-based Volumetric Rendering

NeRF predicts both σ value and colour of a sampled
point. As a consequence, NeRF faces difficulties in pre-
dicting a surface that exhibits both translucent and reflec-
tive properties at different angles shown in fig. 1. Authors
of [30] attribute NeRF’s inadequacy in predicting an ob-
ject’s specular effects to the difficulty in interpolating be-
tween ‘highly complicated functions’ for glossy appear-
ance. We further extend this argument, stating it is even
more challenging to interpolate between glossy and translu-
cent appearances of a sampled point that exudes both char-
acteristics.

To solve this issue, we can decompose the problem into
rendering translucent and reflective surfaces separately. De-
termining a point’s σ is equivalent to controlling a point’s

opacity [20]. Therefore, points along a translucent surface
should have low σ values to describe a low radiance accu-
mulation along a ray. Conversely, for an entirely reflective
surface, the points of the reflective surface should have a
high σ value to indicate a high outgoing radiance. Thus,
predicting a point’s σ is critical in describing its outgoing
radiance. However, in NeRF, σ is fixed for a point that is
either translucent or reflective at different angles. In this
scenario, the task of predicting a point’s outgoing radiance
is left to the viewing directional MLP, which is ill-equipped
to do so.

Inspired by the use of volumetric rendering (2), the
weight of a point depends on the weights of itself and the
frontal points lying along the same ray. In our work, we
apply a transformer model to generate the weights of indi-
vidual points of the same ray. With this approach, we do not
generate σ values directly based on the spatial position of a
sampled conic frustum of volume [3]. Instead of assigning
weights based on σ and δ as per (1), the importance of a
point contributing to a ray’s radiance is determined by an
attention mechanism.

For a given ray, we sample N number of conic frustums
of volumes along it encoded with Integrated Positional En-
coding (IPE) described in mip-NeRF. Each conic volume
passes through a volume embedding block of four MLP lay-
ers to generate a volume embedding vi, where i denotes
the position of conic volume along the ray starting from
the camera, with latent dimensional size of D. Similar to
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ViT [9] and BERT’s [class] token [8], we prepend a ray to-
ken R of the same dimension to the sequence of volume
embeddings. We abuse the notation of sets to describe an
input sequence Z0, as a set of ray token and the sequence of
embedded conic volumes, to the first transformer layer as
described in (4). The subscript notation in Z is used to de-
note the number of successive self-attention operations on
the set.

In a manner similar to (2), we utilise a ‘masking’ tech-
nique to the limit the attention of volume embeddings solely
to those that lie ahead of them along the ray, thereby exclud-
ing all others. Specifically, a volume embedding can only
attend to the itself, the ray token, and other volume embed-
dings lying in front of it. This exclusion is represented in the
set exclusion shown in (5), where conic volumes sequenced
behind vi are excluded from the standard self attention op-
eration. The masking is expressed by setting the scaled-dot
product attention to −∞ in the input of softmax, similar to
the decoder settings of Transformers, to denote illegal con-
nections [29]. This ‘masking’ constraint allows us to im-
plicitly encode view-dependent information; zero masking
indicating a bi-directional ray, while masking constraints it
to being uni-directional. We demonstrate in sec. 5.1 the im-
portance of masking. No masking is applied to the ray token
(6).

After the final encoder layer L, a single MLP classifica-
tion head is attached to RL to predict the colour of the ray
(7). The equations are presented below.

Z0 = {R,v1,v2, ...,vN} (4)

vi
l = Att(Zl−1\{vi+1

l−1, ...,v
N
l−1}) (5)

Rl = Att(Zl−1) (6)

y = MLP(RL) (7)

3.2. Hierarchical Volume Sampling with Coarse-
Fine Feature Propagation

We follow the general NeRF rendering strategy in cre-
ating two networks: coarse and fine. In NeRF, the coarse
network uses Nc stratified samples as inputs and then re-
samples Nf = 1

2Nc points. Next, the fine network uses
the total Nc+Nf points to produce the final colour. Unlike
NeRF, mip-NeRF samples Nc = Nf conic frustum volumes
for each of the coarse and fine networks. The final predicted
ray colour uses only Nf samples for computation, discard-
ing information from the coarse network. In our work, the
coarse network also uses Nc stratified samples. To gener-
ate Nf = Nc samples in our fine network, we sample from
the attention weights of the output coarse ray token at state
RC

L (after L layers attending to all the coarse volume em-
beddings in the coarse network). Unlike mip-NeRF which
discards coarse sample information entirely, we retain this
information by reusing coarse ray token as the input fine ray

token (RF
0 = RC

L ) for the fine network. Thus, we retain the
ray representation from the coarse network. This approach
allows us to avoid the quadratic cost of scaling up to an en-
tire Nc +Nf samples in every transformer layer of the fine
network and only rely on Nf samples.

3.3. Learnable Embeddings for View-Dependent
Appearance

NeRF’s rendering process strictly calculates the radiance
of points along a ray. However, the directional MLP is in-
sufficient in computing the specularities of a point. Other
NeRF variants attempt to resolve this with some success by
predicting a reflection direction of each point [30]. The gen-
eral rendering equation [15] describes how indirect illumi-
nation should include multi bounce lighting, where lights
reflects off surfaces and shines upon other surfaces. In
NeRF’s strict rendering ray casting approach, only points
on the ray are used for radiance computation. Consequently,
NeRF’s rendering model can only coarsely approximate di-
rect and indirect illumination using a view direction. We
are interested in resolving this issue by capturing the indi-
rect illumination effects radiated by other possible sources.
Hence, it is imperative to formulate a query process for ex-
ternal sources beyond volumes along a ray. Inspired by
game engines’ usage of probes, we create LE to store static
scene information. These LE serves as a form of memory
which allows us to design a secondary branch of attention
mechanism as seen in fig. 2.

Like the ViT class token, Learnable Embeddings (LE) in
our work are trainable network parameters (memory tokens)
used to capture static lighting information by querying from
conic frustums in latent space. The iterative training pro-
cess whereby LE attends to conic volumes in the scene al-
lows the scene lighting information to be encoded as mem-
ory. During inference, conic volumes are mapped into latent
space via these embeddings and then decoded with a view
directional token. In our architecture, the view token is a
camera pose Fourier encoded by 16 bands and mapped to
the same dimension as LE via a linear layer.

3.4. Tone Mapping

The attention-based rendering backbone outputs the di-
rect illumination exuded by the conic frustum of volumes
along the ray. Separately, the cross-attention branch with
LE outputs the view dependent illumination of these vol-
umes. In this manner, we prevent the network from over-
fitting with this separation. To combine both the outputs,
we apply a fixed mapping function to convert linear colours
to sRGB, capped to [0,1] as Ref-NeRF [30].

4. Experiments
We implement our model on two datasets; the Blender

dataset and Shiny Blender dataset. Similar to mip-Nerf [3],
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Model PSNR ↑ SSIM ↑ LPIPS ↓
PhySG 20.60 0.861 0.144
VolSDF 27.96 0.932 0.096
NSVF 31.74 0.953 0.046
NeRF 32.38 0.957 0.043

Mip-NeRF 33.09 0.961 0.043
Ref-NeRF 33.99 0.966 0.038

Ours, no LE 34.05 0.963 0.041
Ours 35.02 0.975 0.035

Table 1. Baseline comparisons of ABLE-NeRF and previous ap-
proaches on Blender dataset. Results extracted from [30].

we sample conic frustums of volumes along a ray. Our
model maintains two networks, coarse and fine. The num-
ber of transformer layers, L, described in sec. 3.1 is 2 and
6 for the coarse and fine networks respectively. The coarse
network is designed as a lighter network with fewer layers,
as its purpose is to generate fine samples, similar to mip-
NeRF 360 [4] proposal MLP. We sample 192 conic frus-
tums in total, 96 samples in each network, and included
32 LE (shared by coarse and fine networks) to store view-
dependent information. The volume embedding module
consists of 4 MLP layers, each with 192 hidden units, with
ReLU activations. The dimensions of each transformers are
set to 192, the same dimension as the volume embedding
layers and in the feed-forward layers, the FF hidden unit ra-
tios are set to 1:3. For the Shiny Blender dataset, we set the
number of LE to 16, as it contains simpler objects compared
to the standard Blender dataset. Optimisation on each scene
is trained for 250k iterations.

On each dataset, we evaluate ABLE-NeRF with three
commonly used image quality metrics; PSNR, SSIM,
LPIPS. A full breakdown of per-scene scores is included
in the supplementary materials.

4.1. Blender Dataset

We compare ABLE-NeRF with the latest neural based
synthesis network on the standard Blender dataset that orig-
inated from NeRF’s paper. The results in Table 1 shows that
our work surpasses prior art when compared to the top per-
forming NeRF based method which applies a physics-based
volumetric rendering.

ABLE-NeRF also outperforms prior art qualitatively in
rendering photo-realistic appearances of surfaces. As seen
in fig. 3, ABLE-NeRF renders compelling visuals of highly
complex surfaces in the Blender Ship scene where the sur-
faces of the waves resemble the ground truth more closely
compared to Ref-NeRF. In the Materials scene, ABLE-
NeRF produces reflections of intra-scene objects, attributed
to the use of LE, which captures multi-bounce lighting ef-
fects. The appearance of reflections of spheres off another
neighbouring sphere (reflections of reflections) is clearer

Figure 3. ABLE-NeRF significantly improves upon visual realism
of highly complex surfaces such as the waves in the Blender ship
scene. Furthermore ABLE-NeRF is able to capture intra-scene re-
flections of neighbouring spheres off glossy sphere in the Blender
Materials scene. Top performing NeRF based variant often fail in
producing surfaces of complex geometries and challenging view-
dependent multi-bounce lighting.

Model PSNR ↑ SSIM ↑ LPIPS ↓
PhySG 26.21 0.921 0.121

Mip-NeRF 29.21 0.942 0.092
Ref-NeRF (no pred. normals) 30.91 0.936 0.105

Ref-NeRF 35.96 0.967 0.058
Ours 33.88 0.969 0.075

Table 2. Baseline comparisons of ABLE-NeRF and previous ap-
proaches on Shiny Blender dataset. Results extracted from [30].

compared to standard ray-casting approaches of NeRF. This
highlights the importance of maintaining LE to capture in-
direct lighting effects.

4.2. Shiny Blender Dataset

Compared to the Blender dataset by NeRF [20], the
Shiny Blender dataset by Ref-NeRF [30] contains objects
with more glossy surfaces. It is important to note that the
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Figure 4. ABLE-NeRF is able render intra-scene surface reflec-
tions better than Ref-NeRF. As shown in the Shiny Blender Coffee
scene, the reflection of the teaspoon on the side of the cup appears
more apparent than Ref-NeRF.

Figure 5. Prior to tone-mapping, (a) and (c) are outputs from the
AB Transformer while (b) and (d) are outputs from the LE Trans-
former.

Shiny Blender dataset mostly consists of singular objects
with simple geometries, where the surfaces are smooth and
rounded. As a result, Ref-NeRF outperforms ABLE-NeRF
in terms of PSNR and LPIPS since the normals for such
objects are easier to predict, compared to the complex sur-
faces in the standard Blender dataset of NeRF. For exam-
ple, for a smooth rounded ‘Shiny Ball’, Ref-NeRF outper-
forms ABLE-NeRF due to its simpler geometry. However,
for a more complex surface such as the ‘Toaster’, ABLE-
NeRF outperforms Ref-NeRF. We display Ref-NeRF abla-
tion study results with no normal predictions to support our
case. Without normal predictions, ABLE-NeRF surpasses
Ref-NeRF by a wide margin.

It is worth highlighting to readers that ABLE-NeRF ex-
cels at capturing intra-scene reflections of surfaces caused
by multi-bounce lighting, which are highly complex scenes.
In such scenarios, the reflections of objects interact with
other objects within the scene. In fig. 4, we show reflec-
tions of the teaspoon off the cup in the ‘Coffee’ scene is
rendered closely to ground truth. Ref-NeRF fails to capture
such intra-scene reflections compared to ABLE-NeRF. The
intra-scene reflection due to multi-bounce lighting is well
captured as shown in fig. 5.

5. Architectural Analysis
5.1. Masking Strategy

The masking strategy is imperative in allowing trans-
formers to model volumetric rendering as an end to end
deep learning based approach. Without masks, the model

Figure 6. Here we show the importance of masking rear points
from frontal point along a camera ray. Without mask, a bi-
directional ray is implied causing the network to have difficulty
rendering the object’s surface accurately. With the masking strat-
egy, we enable transformers to mimic a volumetric rendering strat-
egy and also implicitly encode a view directional information.

Figure 7. As we corrupt the weights of LE with additive Gaussian
noise, we observe that the view-dependent surfaces of the drum
scene changes. As we continue to destroy the weights of LE by
setting it to zero, we corrupt the specularities and transparencies
of the drums. Observe that the specularity in left cymbal of the
uttermost right figure is completely eradicated. Diffuse surfaces
largely remain unchanged perceptually.

would render inaccurate surfaces as seen in fig. 6. By in-
cluding masks, we implicitly encode a uni-directional ray
versus a non-masking bidirectional ray as shown in the fig-
ure. We have attempted to introduce a uni-directional ray
information without masks by appending a volume’s posi-
tion on a ray. However, this attempt is ineffective compared
to our original masking strategy.

5.2. Learnable Embeddings

Learnable Embeddings Inclusion We validate our
model design choices by performing an ablation study on
the Blender dataset. In this setup, we exclude LE and com-
pute the final ray colour using only the ray token. The
results are included in Table 1. Without LE, the model
performs comparatively with Ref-NeRF. By including LE,
ABLE-NeRF has the flexibility to attend to embeddings not
constrained to the line of ray. Evidently, we demonstrate
in fig. 8 that LE allows our model to capture better view-
dependent specularities.

Perturbating Learnable Embedding We formally de-
scribed LE as a form of memory for a static scene. As
a form of analysis to understand what LE are effectively
memorising, we perturbed these memory by adding Gaus-
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Figure 8. We visualise how ABLE-NeRF benefits from the use of transformers for volumetric rendering and also the inclusion of LE.
Observe the specularities of the right and centre cymbals. Removing LE causes the model to fail in capturing specular effects effectively
on the cymbals. Even without LE, the basic backbone of using transformers as a deep learning VR-based approach allows us to render the
translucent portions of the drums more accurately compared to NeRF based approaches.

Figure 9. We extract the per-volume attention from the ray token.
By selecting the highest attention weight to the volume, we are
able to plot a depth map based on the distance traversed to that
conic volume frustum along the ray from the camera origin.

sian noise to corrupt these memory tokens. Lastly, we
wiped the memory of LE, collapsing all memory into a sin-
gle entity, by setting its weights to zero. With reference to
fig. 7, observe that the diffuse surfaces remains perceptually
unchanged while view-dependent surfaces with speculari-
ties and translucency are affected. This analysis offers us
insights to how LE could be modified to edit scenes depen-
dent on viewing direction for future work.

5.3. Attention Maps as Depth Maps

As the ray token selectively assigns attention weights to
conic volume frustums along the ray, the volume with the
highest attention weight could imply a surface of the ob-
ject in the scene. With the attention map, we plot a depth
map based on the distance traversed from the camera origin
to the volume with the highest attention weight. Fig. 9 il-
lustrates the capability of ABLE-NeRF in generating depth
maps from attention weights.

6. Conclusion

We have highlighted the general issues of NeRF-based
rendering methods that use physics-based volumetric ren-
dering, which cause difficulties in rendering complex sur-
faces that exhibits both translucent and specular appear-
ances. Our model, ABLE-NeRF, ameliorates such issues
by applying a deep learning-based method using masking
on transformers to learn a physics-based volumetric ren-
dering method. With the attention weights generated by
transformers, we can re-sample a 3D space effectively with
visual content and output a depth map from an attention
map. Lastly, we have included Learnable Embeddings
as a form of memorisation framework to capture view-
dependent lighting effects in latent space and allow the view
angle token to query these LE beyond a ray for accurate
view-dependent visuals. These contributions allow ABLE-
NeRF to significantly improve upon prior art in novel view
synthesis. We believe that our work paves the way for-
ward in rendering accurate visuals of complex objects and
scenes, as well as hinting at the potential for new scene edit-
ing methods by reprogramming LE. Our code is available at
https://github.com/TangZJ/able-nerf.
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