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Abstract

Deep learning in computer vision has achieved great
success with the price of large-scale labeled training data.
However, exhaustive data annotation is impracticable for
each task of all domains of interest, due to high labor costs
and unguaranteed labeling accuracy. Besides, the uncon-
trollable data collection process produces non-IID training
and test data, where undesired duplication may exist. All
these nuisances may hinder the verification of typical theo-
ries and exposure to new findings. To circumvent them, an
alternative is to generate synthetic data via 3D rendering
with domain randomization. We in this work push forward
along this line by doing profound and extensive research on
bare supervised learning and downstream domain adapta-
tion. Specifically, under the well-controlled, IID data set-
ting enabled by 3D rendering, we systematically verify the
typical, important learning insights, e.g., shortcut learning,
and discover the new laws of various data regimes and net-
work architectures in generalization. We further investigate
the effect of image formation factors on generalization, e.g.,
object scale, material texture, illumination, camera view-
point, and background in a 3D scene. Moreover, we use
the simulation-to-reality adaptation as a downstream task
for comparing the transferability between synthetic and real
data when used for pre-training, which demonstrates that
synthetic data pre-training is also promising to improve real
test results. Lastly, to promote future research, we develop
a new large-scale synthetic-to-real benchmark for image
classification, termed S2RDA, which provides more signifi-
cant challenges for transfer from simulation to reality.

1. Introduction
Recently, we have witnessed considerable advances in

various computer vision applications [16,29,38]. However,
such a success is vulnerable and expensive in that it has been
limited to supervised learning methods with abundant la-
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beled data. Some publicly available datasets exist certainly,
which include a great mass of real-world images and ac-
quire their labels via crowdsourcing generally. For example,
ImageNet-1K [9] is of 1.28M images; MetaShift [26] has
2.56M natural images. Nevertheless, data collection and
annotation for all tasks of domains of interest are imprac-
tical since many of them require exhaustive manual efforts
and valuable domain expertise, e.g., self-driving and medi-
cal diagnosis. What’s worse, the label given by humans has
no guarantee to be correct, resulting in unpredictable label
noise. Besides, the poor-controlled data collection process
produces a lot of nuisances, e.g., training and test data aren’t
independent identically distributed (IID) and even have du-
plicate images. All of these shortcomings could prevent the
validation of typical insights and exposure to new findings.

To remedy them, one can resort to synthetic data gen-
eration via 3D rendering [10], where an arbitrary number
of images can be produced with diverse values of imaging
factors randomly chosen in a reasonable range, i.e., domain
randomization [48]; such a dataset creation pipeline is thus
very lucrative, where data with labels come for free. For
image classification, Peng et al. [32] propose the first large-
scale synthetic-to-real benchmark for visual domain adap-
tation [30], VisDA-2017; it includes 152K synthetic images
and 55K natural ones. Ros et al. [37] produce 9K synthetic
cityscape images for cross-domain semantic segmentation.
Hinterstoisser et al. [19] densely render a set of 64 retail ob-
jects for retail detection. All these datasets are customized
for specific tasks in cross-domain transfer. In this work, we
push forward along this line extensively and profoundly.

The deep models tend to find simple, unintended solu-
tions and learn shortcut features less related to the seman-
tics of particular object classes, due to systematic biases, as
revealed in [14]. For example, a model basing its prediction
on context would misclassify an airplane floating on water
as a boat. The seminal work [14] emphasizes that short-
cut opportunities are present in most data and rarely dis-
appear by simply adding more data. Modifying the training
data to block specific shortcuts may be a promising solution,
e.g., making image variation factors consistently distributed
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across all categories. To empirically verify the insight, we
propose to compare the traditional fixed-dataset periodic
training strategy with a new strategy of training with undu-
plicated examples generated by 3D rendering, under the
well-controlled, IID data setting. We run experiments on
three representative network architectures of ResNet [18],
ViT [12], and MLP-Mixer [49], which consistently show
obvious advantages of the data-unrepeatable training (cf.
Sec. 4.1). This also naturally validates the typical argu-
ments of probably approximately correct (PAC) generaliza-
tion [41] and variance-bias trade-off [11]. Thanks to the
ideal IID data condition enabled by the well-controlled 3D
rendering, we can also discover more reliable laws of var-
ious data regimes and network architectures in generaliza-
tion. Some interesting observations are as follows.

• Do not learn shortcuts! The test results on synthetic
data without background are good enough to show that
the synthetically trained models do not learn shortcut
solutions relying on context clues [14].

• A zero-sum game. For the data-unrepeatable train-
ing, IID and OOD (Out-of-Distribution [34, 55]) gen-
eralizations are some type of zero-sum game w.r.t. the
strength of data augmentation.

• Data augmentations do not help ViT much! In IID
tests, ViT performs surprisingly poorly whatever the
data augmentation is and even the triple number of
training epochs does not improve much.

• There is always a bottleneck from synthetic data to
OOD/real data. Here, increasing data size and model
capacity brings no more benefits, and domain adapta-
tion [56] to bridge the distribution gap is indispensable
except for evolving the image generation pipeline to
synthesize more realistic images.

Furthermore, we comprehensively assess image varia-
tion factors, e.g., object scale, material texture, illumina-
tion, camera viewpoint, and background in a 3D scene. We
then find that to generalize well, deep neural networks must
learn to ignore non-semantic variability, which may appear
in the test. To this end, sufficient images with different val-
ues of one imaging factor should be generated to learn a
robust, unbiased model, proving the necessity of sample di-
versity for generalization [42, 48, 55]. We also observe that
different factors and even their different values have uneven
importance to IID generalization, implying that the under-
explored weighted rendering [3] is worth studying.

Bare supervised learning on synthetic data results in poor
performance in OOD/real tests, and pre-training and then
domain adaptation can improve. Domain adaptation (DA)
[56] is a hot research area, which aims to make predictions
for unlabeled instances in the target domain by transferring

knowledge from the labeled source domain. To our knowl-
edge, there is little research on pre-training for DA [24]
(with real data). We thus use the popular simulation-to-real
classification adaptation [32] as a downstream task, study
the transferability of synthetic data pre-trained models by
comparing with those pre-trained on real data like ImageNet
and MetaShift. We report results for several representative
DA methods [7,13,40,45,47] on the commonly used back-
bone, and our experiments yield some surprising findings.

• The importance of pre-training for DA. DA fails
without pre-training (cf. Sec. 4.3.1).

• Effects of different pre-training schemes. Different
DA methods exhibit different relative advantages un-
der different pre-training data. The reliability of exist-
ing DA method evaluation criteria is unguaranteed.

• Synthetic data pre-training vs. real data pre-
training. Synthetic data pre-training is better than pre-
training on real data in our study.

• Implications for pre-training data setting. Big Syn-
thesis Small Real is worth researching. Pre-train with
target classes first under limited computing resources.

• The improved generalization of DA models. Real
data pre-training with extra non-target classes, fine-
grained target subclasses, or our synthesized data
added for target classes helps DA.

Last but not least, we introduce a new, large-scale
synthetic-to-real benchmark for classification adaptation
(S2RDA), which has two challenging tasks S2RDA-49 and
S2RDA-MS-39. S2RDA contains more categories, more re-
alistically synthesized source domain data coming for free,
and more complicated target domain data collected from di-
verse real-world sources, setting a more practical and chal-
lenging benchmark for future DA research.

2. Related Works
Real Datasets. A lot of large-scale real datasets [9, 15,
25–27, 35, 43, 44] have harnessed and organized the explo-
sive image data from the Internet or real world for deep
learning of meaningful visual representations. For exam-
ple, ImageNet [9] is a large-scale image database consisting
of 1.28M images from 1K common object categories, and
serves as the primary dataset for pre-training deep models
for vision tasks. Barbu et al. [2] collect a large real-world
test set for more realistic object recognition, ObjectNet,
which has 50K images and is bias-controlled. MetaShift
[26] of 2.56M natural images (∼ 400 classes) is formed by
context guided clustering of the images from GQA [22].
Synthetic Datasets. Thanks to 3D rendering [10] and
domain randomization [48], synthetic data with increased
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sample diversity can be generated for free now, facilitat-
ing various vision tasks. VisDA-2017 [32] is a large-scale
benchmark dataset for cross-domain object classification,
focusing on the simulation-to-reality shift, with 152K syn-
thetic images and 55K natural ones across 12 categories.
For cross-domain semantic segmentation, Ros et al. [37]
produce 9K synthetic images by rendering a virtual city us-
ing the Unity engine; many other works [36, 52–54] focus
on computer graphics simulations to synthesize outdoor or
indoor scene images. For retail detection, Hinterstoisser et
al. [19] densely render 64 retail objects and a large dataset
of 3D background models. For car detection, domain ran-
domization is also utilized and developed in [33, 50].
Domain Adaptation. Domain adaptation is a developing
field with a huge diversity of approaches. A popular strat-
egy is to explicitly model and minimize the distribution shift
between the source and target domains [7,13,31,40,46,57],
such that the domain-invariant features can be learned. Dif-
ferently, works of another emerging strategy [8, 28, 45, 47]
take steps towards implicit domain adaptation, without ex-
plicit feature alignment. In this work, we consider these rep-
resentative DA methods for the empirical study, and broader
introductions to the rich literature are provided in [39, 56].

3. Data Synthesis via Domain Randomization
We adopt the widely used 3D rendering [10] in a simu-

lator for data synthesis and generate synthetic RGB images
for model training. To increase sample diversity for better
generalization, we apply domain randomization [48] during
rendering, whose efficacy has been demonstrated in vari-
ous applications [32, 33, 50]. Specifically, we start by sam-
pling a 3D object model from one specific class of interest
from ShapeNet repository [5] and place it in a blank scene;
next, we set the lighting condition with a point source of
randomized parameters and place the camera at random po-
sitions on the surface of a sphere of random radius, which
has lens looking at the object and the intrinsic resolution
of 256×256; next, we apply random materials and textures
to the object; then, we use an RGB renderer to take pic-
tures from different camera viewpoints in the configured
scene; finally, the rendered images are composed over a
background image chosen at random from open resources.
The synthesized images with the automatically generated
ground truth class labels are used as low-cost training data.

The changing ranges of image variation factors in the 3D
scene are as follows. (1) The scale of the object in an image
depends on its distance to the camera, namely the radius of
a sphere on whose surface the camera is located. The radius
is ranged in [0.8, 2.4]. (2) The material texture of an object
is from CCTextures [20], which contains actual images. (3)
The point light is on a shell centered at [1, 2, 3], whose ra-
dius and elevation are ranged in [1, 7] and [15, 70] respec-
tively. (4) The camera lies on the surface of a sphere cen-

Figure 1. Sample images from the training (left) and validation
(middle) domains of VisDA-2017 and our synthesized data (right).

tered at [0, 0, 0] (also the object center) and its azimuth and
elevation are from 0◦ to 360◦. (5) The background images
are from Haven [21], which includes environment HDRs.
Remarks. It is noteworthy that VisDA-2017 [32] generates
synthetic images by rendering 3D models just under varied
camera angles and lighting conditions. Differently, we vary
the values of much more image variation factors, leading to
more realistic and diverse samples, as illustrated in Fig. 1.

4. Experiment and Evaluation
We empirically demonstrate the utility of our synthetic

data for supervised learning and downstream transferring
by exploring the answers to the following questions:
• Can we utilize synthetic data to verify typical theories
and expose new findings? What will we find when investi-
gating the learning characteristics and properties of our syn-
thesized new dataset comprehensively?
• Can a model trained on non-repetitive samples con-
verge? If it could, how will the new training strategy
perform when compared to fixed-dataset periodic training?
Can the comparison provide any significant intuitions for
shortcut learning and other insights?
• How will the image variation factors in domain random-
ization affect the model generalization? What new insights
can the study provide for 3D rendering?
• Can synthetic data pre-training be on par with real data
pre-training when applied to downstream synthetic-to-real
classification adaptation? How about large-scale synthetic
pre-training with a small amount of real data?
• Is our S2RDA benchmark more challenging and realis-
tic? How does it differ from VisDA-2017?

4.1. Empirical Study on Supervised Learning

Data Settings. We use the 10 object classes common in
ShapeNet and VisDA-2017 for the empirical study. We term
the synthetic and real domains of the 10 classes in VisDA-
2017 as SubVisDA-10. For the traditional fixed-dataset pe-
riodic training, we generate 12K synthetic images in each
class and train the model on the dataset with fixed size
epoch by epoch. For our used sample-unrepeatable training,
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we have mutually exclusive batches of synthesized samples
per iteration. At inference, we evaluate the learned model
on three types of test data: IID data of 6K samples per
class which follow the same distribution as the synthesized
training data, IID data of 60K images without background
to examine the dependency of network predictions on con-
texts, and OOD data, i.e., real images from SubVisDA-10.
For training, we consider three data augmentation strate-
gies with different strengths: no augmentation which has
only the center crop operation, weak augmentation based on
pixel positions such as random crop and flip [9], and strong
augmentation which transforms both position and value of
pixels in an image, e.g., random resized crop and color jit-
ter [6]. In the test phase, we use no augmentation.
Implemental Details. We adopt the standard cross-entropy
loss function for pattern learning. We do experiments using
ResNet-50 [18], ViT-B [12], and Mixer-B [49] as the back-
bone. We train the model from scratch for 200K iterations
and use the SGD optimizer with batch size 64 and the co-
sine learning rate schedule to update network parameters.
We report the overall accuracy (Acc. %) or mean class pre-
cision (Mean %) at the same fixed random seed across all
experiments. Other settings are detailed in the appendix.

4.1.1 Results

Fixed-Dataset Periodic Training vs. Training on Non-
Repetitive Samples. Under the ideal IID data condition
enabled by 3D rendering, we empirically verify significant
insights on shortcut learning [14], PAC generalization [41],
and variance-bias trade-off [11], by making comparisons
between fixed-dataset periodic training and training on non-
repetitive samples. Results are shown in Table 1 and Figs.
2 and A1 (learning process in the appendix). We highlight
several observations below. (1) With more training data of
increased sample diversity, the data-unrepeatable training
exhibits higher generalization accuracy and better conver-
gence performance than the fixed-dataset training. (2) To
intuitively understand what the models have learned, we vi-
sualize the saliency/attention maps in Figs. A2-A5. We
observe that all models attend to image regions from global
(context) to local (object) as the learning process proceeds;
the data-unrepeatable training achieves qualitative improve-
ments over the fixed-dataset training. (3) Our synthesized
data used for training yield higher OOD test accuracy than
SubVisDA-10 as they share more similarities to the real
data, as shown in Fig. 1. (4) The fixed-dataset training dis-
plays overfitting phenomenons whilst the data-unrepeatable
training does not (cf. (a-d) in Fig. A1), since the former
samples training instances from an empirical distribution
with high bias and low variance, and thus cannot perfectly
generalize to the unseen test instances sampled from the true
distribution. (5) With strong data augmentation, the data-

Data FD DA IID IID w/o BG OOD
Acc./Mean Acc./Mean Acc. Mean

Backbone: ResNet-50 (23.53M)
SubVisDA-10 T N 11.25 11.72 22.02 14.71
Ours T N 87.63 78.55 23.35 23.36
Ours F N 98.19 96.39 25.04 26.05

SubVisDA-10 T W 12.31 13.53 25.95 16.83
Ours T W 95.54 91.37 23.97 22.89
Ours F W 98.10 96.35 27.47 27.49

SubVisDA-10 T S 17.39 20.32 33.07 27.48
Ours T S 94.86 95.33 42.24 41.73
Ours F S 96.26 96.50 42.82 42.25

Backbone: ViT-B (85.78M) †: Training for 600K iterations
SubVisDA-10 T N 12.68 11.30 24.28 17.81
Ours T N 68.51 61.50 26.65 24.13
Ours† T N 70.58 62.15 26.57 24.23
Ours F N 76.34 71.46 30.10 26.93

SubVisDA-10 T W 11.77 11.20 26.53 19.22
Ours T W 72.79 67.46 30.04 26.45
Ours F W 73.93 68.59 29.92 26.80

SubVisDA-10 T S 14.45 12.89 31.52 23.74
Ours T S 62.85 63.96 31.79 26.56
Ours F S 64.26 64.30 30.89 26.28

Backbone: Mixer-B (59.12M)
SubVisDA-10 T N 12.85 15.17 21.56 17.02
Ours T N 66.05 57.66 21.85 21.22
Ours F N 90.22 85.86 28.54 27.98

SubVisDA-10 T W 13.99 23.12 27.67 19.86
Ours T W 78.43 71.48 27.15 26.01
Ours F W 90.32 86.13 29.11 29.49

SubVisDA-10 T S 14.88 24.85 33.19 26.12
Ours T S 81.72 83.06 36.57 33.43
Ours F S 84.16 85.25 36.50 33.75

Table 1. Training on a fixed dataset vs. non-repetitive samples.
FD: Fixed Dataset, True (T) or False (F). DA: Data Augmentation,
None (N), Weak (W), or Strong (S). BG: BackGround.

unrepeatable training has the test results on IID w/o BG data
not only at their best but also better than those on IID data,
implying that the trained models do not learn shortcut solu-
tions that rely on context clues in the background.
Evaluating Various Network Architectures. In addition
to Table 1, we also show the learning process of various
network architectures in Figs. 2d and A6. We take the fol-
lowing interesting observations. (1) On the fixed-dataset
training and IID tests, ViT-B performs surprisingly poorly
whatever the data augmentation is, when compared with
ResNet-50; even the triple number of training epochs does
not work as well as expected (e.g., in [12]). (2) When train-
ing on non-repetitive images without strong data augmenta-
tion, ViT-B and Mixer-B perform better than ResNet-50 in
OOD tests whereas they perform much worse with strong
data augmentation. Maybe they are more suitable for han-
dling data with a certain (or smaller) range of diversity.
Namely, different network architectures have different ad-
vantages for different data augmentations, suggesting that
neural architecture search (NAS) should also consider the
search for data augmentation. (3) With strong data augmen-
tation, ResNet-50 fits best and shows the best convergence,
though it has a more volatile learning process for the OOD
test (cf. Figs. 2d and A6). (4) ResNet-50 produces more
accurate saliency map visualizations, where the attended re-
gions are semantically related (cf. Figs. A2-A5).
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(a) Test loss (IID) (b) Test loss (IID) (c) Test loss (IID) (d) Test acc. (OOD)
Figure 2. Learning process. (a-c): Training ResNet-50 on a fixed dataset (blue) or non-repetitive samples (red) for no, weak, and strong data
augmentations. (d): Training ResNet-50 (red), ViT-B (green), and Mixer-B (blue) on non-repetitive samples with strong data augmentation.

Figure 3. Generalization accuracy w.r.t. model capacity (a/left) or
training data quantity (b/right).

Impact of Model Capacity. When Mixer is used as the
backbone for data-unrepeatable training with strong data
augmentation, we do experiments by varying the number
of layers in [8, 12, 24], i.e., Mixer-S (18.02M), Mixer-B
(59.12M), and Mixer-L (207.18M). The results are shown
in Fig. 3a. Although better results are achieved by higher
capacity models, the performance gain is less and less sig-
nificant. It also suggests that given a specific task, one
model always has a bottleneck, which may be broken by
adjusting the training data and learning algorithm.
Impact of Training Data Quantity. We do experiments by
doubling the number of training samples and the last 12.8M
is the upper bound. We use the fixed-dataset periodic train-
ing with ResNet-50 and no data augmentation, and show
the results in Fig. 3b. (1) In IID tests, as the number of
training samples is continuously doubled, the performance
gets better and is near perfect finally. (2) In real OOD tests,
the performance gain is slighter and along the last 4 num-
bers, the performance gain almost disappears under our data
regime. It demonstrates that simply generating more syn-
thesized images may get stuck at last and one can resort
to domain adaptation approaches to reduce the distribution
shift or more realistic simulation for image synthesis.
Impact of Data Augmentations. Data augmentation plays
an important role in deep learning and we separately ana-
lyze its impact. There are a few noteworthy findings in Ta-
ble 1. (1) For training ResNet-50 on a fixed dataset, weak
augmentation can enable the learnability from our synthe-
sized data to IID data (e.g., > 95%); from synthetic to IID
w/o BG, strong augmentation is necessary; from synthetic
to OOD, strong augmentation has the highest learnability.
These observations enlighten us: given a limited set of train-

Object Scale Material Texture
Value IID IID w/o BG Value IID IID w/o BG

1 68.77 58.00 Metal 79.58 68.78
1.5 80.80 72.22 Plastic 50.29 46.82
2 77.61 70.10 Fingerprints 50.35 62.27
Mix 87.12 77.55 Moss 68.62 63.93

Illumination Camera Viewpoint
Value IID IID w/o BG Value IID IID w/o BG

Location 1 86.48 76.02 Location 1 24.60 26.56
Location 2 86.60 76.75 Location 2 27.21 28.88
Radius 86.91 78.83 Location 3 32.82 32.76
Elevation 87.12 77.39 Location 4 33.79 33.07

Background Full Randomization
Value IID IID w/o BG Value IID IID w/o BG

No Background 17.68 94.75 Random 87.63 78.55

Table 2. Fix vs. randomize image variation factors (ResNet-50).

ing data, is there necessarily some kind of data augmenta-
tion that makes it learnable from training to test? (2) For
the data-unrepeatable training, the results in IID tests get
worse while those in OOD tests get better when strengthen-
ing the data augmentation, since the distribution of strongly
augmented training data differs from that of IID test data but
is more similar to that of OOD test data.

4.2. Assessing Image Variation Factors

To know how individual image variation factors in do-
main randomization affect the model generalization, we do
an ablation study by fixing one of them at a time. For each
variant, we accordingly synthesize 120K training images
and train a ResNet-50 from scratch with no data augmen-
tation. Other implementation details are the same as those
in Sec. 4.1. We compare the one-fixed variants with the
baseline of full randomization and report results in Table 2.
Object Scale. The scale of target object in an image is
changed by modifying the distance between the object and
camera in the virtual 3D scene, whose value is set as 1, 1.5,
2, or a mix of the three. We can observe that when the object
scale is fixed to one value, the recognition accuracy in IID
and IID w/o BG tests drops significantly, e.g., by 18.86%
and 20.55% respectively; setting the object-to-camera dis-
tance as 1.5 achieves the best performance among the three
scales; mixing the three scales restores most of the base-
line performance. The observations show that decreasing
the sample diversity would damage the generalization per-
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Pre-training Data # Iters # Epochs No Adaptation DANN MCD RCA SRDC DisClusterDA
Acc. Mean Acc. Mean Acc. Mean Acc. Mean Acc. Mean Acc. Mean

No Pre-training - - 23.89 14.21 22.30 17.72 17.99 16.20 19.15 15.19 19.58 15.92 20.87 17.31
Ours 200K 107 47.73 42.96 47.91 48.94 55.23 56.86 54.27 52.72 44.70 47.45 54.09 54.91
Ours w. SelfSup 200K 107 47.80 42.81 47.25 48.32 56.71 58.33 53.44 53.31 40.21 40.50 54.37 54.15

SynSL 200K 1 47.50 44.12 47.41 49.48 55.06 56.92 53.61 53.50 36.30 37.57 53.10 54.88
SynSL 1.2M 6 51.22 48.57 55.90 56.50 64.52 67.70 58.19 59.67 51.87 52.32 61.32 63.70
SynSL 2.4M 12 53.47 53.84 59.59 59.11 65.55 68.83 60.47 61.19 55.17 58.10 63.62 64.89
SynSL 4.8M 24 55.02 53.72 60.55 60.78 65.69 69.53 60.33 60.05 55.80 58.36 64.01 65.36

SubImageNet 200K 499 42.74 37.16 49.64 45.43 54.88 52.12 58.24 55.45 56.78 51.24 56.21 51.09
Ours+SubImageNet 200K 88 49.61 47.88 55.35 56.22 60.90 62.16 61.11 60.31 60.07 61.74 62.22 62.47
ImageNet-990 200K 10 31.91 26.31 34.68 32.29 39.48 37.84 45.10 43.10 43.69 40.95 41.56 39.40
ImageNet-990+Ours 200K 9 36.53 30.58 38.15 35.22 42.38 41.84 46.19 43.45 45.87 42.95 42.07 39.40

ImageNet 200K 10 40.37 33.25 42.57 40.22 49.04 47.86 52.36 47.90 51.62 47.88 49.29 46.17
ImageNet 1.2M 60 54.69 51.27 58.50 56.02 65.28 65.88 62.69 60.28 60.33 55.00 62.28 61.00
ImageNet 2.4M 120 53.84 47.55 58.45 55.38 65.27 65.38 61.65 60.82 61.65 56.30 62.02 60.46
ImageNet⋆ 600K 120 57.10 51.83 61.92 58.75 64.59 64.87 67.72 66.17 69.00 64.92 68.35 64.65

MetaShift 200K 5 38.18 30.31 38.29 34.04 45.39 43.63 45.93 42.67 42.83 38.02 40.17 35.09
MetaShift 1.2M 30 48.00 39.99 53.00 48.17 64.04 61.30 53.97 51.09 48.69 44.49 60.28 57.15
MetaShift 2.4M 60 47.24 39.21 58.41 53.85 61.10 58.52 58.64 55.35 51.71 47.29 62.71 60.18

Table 3. Domain adaptation performance on SubVisDA-10 with varied pre-training schemes (ResNet-50). ⋆: Official checkpoint. Green or
red: Best Acc. or Mean in each row (among compared DA methods). Ours w. SelfSup: Supervised pre-training + contrastive learning [6].

formance; different scales have different importance.
Material Texture. We fix the material texture of target ob-
ject in an image as metal, plastic, fingerprints, or moss. We
observe that compared to full randomization, fixing the ma-
terial texture degenerates the performance largely in IID and
IID w/o BG tests, e.g., by 37.34% and 31.73% respectively.
Illumination. We change the illumination by fixing the
light location to [5, −5, 5] or [4, 5, 6] or narrowing the
range of radius or elevation to [3, 4] and [20, 30]. We find
that the location of light source has a greater influence than
its radius and elevation. Compared with other factors, illu-
mination has much less impact on class discrimination.
Camera Viewpoint. Recall that the camera always looks
at the target object. We change the viewpoint of camera by
placing it in different 3D locations: [0, 1, 1], [0, -1, 1], [1, 0,
1], or [-1, 0, 1]. We can see that fixing the camera viewpoint
makes the results in IID and IID w/o BG tests deteriorate
greatly, e.g., by 63.03% and 51.99% respectively.
Background. When the background is lacking in an im-
age, the accuracy in the IID test suffers an abrupt decrease
of 69.95% while that in the IID w/o BG test improves by
16.2% due to reduced distribution shift. Among 5 factors,
the background is the most important for IID generalization.
Remarks. Different rendering variation factors and even
their different values have uneven importance to model gen-
eralization. It suggests that the under-explored direction of
weighted rendering [3] is worth studying, and our results in
Table 2 provide preliminary guidance/prior knowledge for
learning the distributions of variation factors.

4.3. Exploring Pre-training for Domain Adaptation

Data Settings. The data used for pre-training can be se-
lected in several datasets and their variants: (1) our syn-
thesized 120K images of the 10 object classes shared by
SubVisDA-10 (Ours), (2) our synthesized 12.8M images of

the 10 classes (for supervised learning, termed SynSL), (3)
the subset collecting examples of the 10 classes from Im-
ageNet [9] (25,686 images, termed SubImageNet), (4) our
synthesized 120K images combined with SubImageNet, (5)
ImageNet-990, where the fine-grained subclasses for each
of the 10 classes are merged into one, (6) ImageNet-990
combined with our 120K synthetic images, (7) the full set of
ImageNet (1K classes), and (8) MetaShift [26] (2.56M). For
fine-tuning, we use domain adaptation (DA) on SubVisDA-
10 as the downstream task, which comprises 130, 725 la-
beled instances in the source domain and 46, 697 unlabeled
ones in the target domain. We follow the standard DA train-
ing protocol [13, 40]. We report classification results of
overall accuracy (Acc. %) and mean class precision (Mean
%) on the target domain under a fixed random seed.
Implemental Details. For domain adaptation, we use
DANN [13], MCD [40], RCA [7], SRDC [45], and Dis-
ClusterDA [47] as baselines. We closely follow the specific
algorithms in the respective papers of these baselines. We
use a pre-trained ResNet-50 as the base model. We train the
model for 20 epochs with batch size 64 via SGD. Refer to
Sec. 4.1 and the appendix for other details.

4.3.1 Results and Discussions

To study the effects of pre-training on synthetic-to-real
adaptation, we examine several DA methods when varying
the pre-training scheme in terms of pre-training data and du-
ration. The results are reported in Table 3 and Figs. 4 and
A7. We emphasize several remarkable findings below.
The importance of pre-training for DA. DA fails with-
out pre-training. With no pre-training, the very baseline No
Adaptation that trains the model only on the labeled source
data, outperforms all compared DA methods in overall ac-
curacy, despite the worst mean class precision. It verifies
that pre-training is indispensable for DA and involving the
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Figure 4. Learning process (Mean) of MCD (left) and DisClus-
terDA (right) when varying the pre-training scheme.

target data in training may alleviate class imbalance.
Effects of different pre-training schemes. Different DA
methods exhibit different relative advantages under differ-
ent pre-training data. When pre-training on our synthesized
data, MCD achieves the best results; when pre-training on
Ours+SubImageNet, DisClusterDA outperforms the others;
when pre-training on ImageNet⋆, SRDC yields the best
performance. What’s worse, the reliability of existing DA
method evaluation criteria is unguaranteed. With differ-
ent pre-training schemes, the best performance is achieved
by different DA methods. When pre-training on ImageNet
for 10, 60, or 120 epochs, the best results are achieved
by RCA, MCD, and SRDC respectively; when pre-training
on MetaShift for 5, 30, or 60 epochs, the best results are
achieved by RCA, MCD, and DisClusterDA respectively.
Synthetic data pre-training vs. real data pre-training.
Synthetic data pre-training is better than pre-training on real
data in our study. With the same 200K pre-training itera-
tions, our synthetic data often bring more benefits than real
data from ImageNet or MetaShift, though the top-ranked
performance is achieved by extending the pre-training time
on real data. Under the same experimental configuration,
SynSL pre-training for 24 epochs is comparable to or better
than pre-training on ImageNet for 120 epochs and maybe
it’s because SynSL is 10 times ImageNet’s size. The ob-
servation indicates that with our 12.8M synthetic data pre-
training, the DA methods can yield the new state of the art.
Implications for pre-training data setting. Big
Synthesis Small Real is worth deeply researching.
Ours+SubImageNet augmenting our synthetic data with a
small amount of real data, achieves remarkable performance
gain over Ours, suggesting a promising paradigm of super-
vised pre-training — Big Synthesis Small Real. On the
other hand, pre-train with target classes first under limited
computing resources. With 200K pre-training iterations,
SubImageNet performs much better than ImageNet (10
Epochs), suggesting that one should consider pre-training
with target classes first in cases of low computation bud-
get, e.g., real-time deployment on low-power devices like
mobile phones, laptops, and smartwatches. Here, we have
two questions to be considered: do we have unlimited com-
puting resources for pre-training? Is the domain-specific
pre-training more suitable for some industrial applications?

Figure 5. Sample images from the synthetic (left) domain and the
real domains of S2RDA-49 (middle) and S2RDA-MS-39 (right).

The improved generalization of DA models. Real data
pre-training with extra non-target classes, fine-grained tar-
get subclasses, or our synthesized data added for tar-
get classes helps DA. ImageNet (120 Epochs) involving
both target and non-target classes in pre-training is bet-
ter than SubImageNet involving only target classes, in-
dicating that learning rich category relationships is help-
ful for downstream transferring. with 200K pre-training
iterations, ImageNet-990 performs much worse than Im-
ageNet, implying that pre-training in a fine-grained vi-
sual categorization manner may bring surprising benefits.
Ours+SubImageNet adding our synthesized data for tar-
get classes in SubImageNet, produces significant improve-
ments and is close to ImageNet (120 Epochs); ImageNet-
990+Ours improves over ImageNet-990, suggesting that
synthetic data may help improve the performance further.
Convergence analysis. In Figs. 4 and A7, the conver-
gence from different pre-training schemes for the same DA
method differs in speed, stability, and accuracy. In Fig. 4,
SynSL with 24 epochs outperforms ImageNet with 120
epochs significantly; notably, SynSL is on par with or better
than ImageNet⋆, supporting our aforementioned findings.

4.4. A New Synthetic-to-Real Benchmark

Dataset Construction. Our proposed Synthetic-to-Real
benchmark for more practical visual DA (termed S2RDA)
includes two challenging transfer tasks of S2RDA-49 and
S2RDA-MS-39 (cf. Fig. 5). In each task, source/synthetic
domain samples are synthesized by rendering 3D models
from ShapeNet [5] (cf. Sec. 3). The used 3D models
are in the same label space as the target/real domain and
each class has 12K rendered RGB images. The real domain
of S2RDA-49 comprises 60, 535 images of 49 classes, col-
lected from ImageNet validation set, ObjectNet [2], VisDA-
2017 validation set, and the web [1]. For S2RDA-MS-39,
the real domain collects 41, 735 natural images exclusive
for 39 classes from MetaShift [26], which contain complex
and distinct contexts, e.g., object presence (co-occurrence
of different objects), general contexts (indoor or outdoor),
and object attributes (color or shape), leading to a much
harder task. In Fig. A8, we show the long-tailed distribution
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(a) No Adaptation (b) SRDC (c) No Adaptation (d) DisClusterDA
Figure 6. The t-SNE visualization of target domain features extracted by different models on S2RDA-49 (a-b) and S2RDA-MS-39 (c-d).

Transfer Task No Adaptation DANN MCD RCA SRDC DisClusterDA
Acc. Mean Acc. Mean Acc. Mean Acc. Mean Acc. Mean Acc. Mean

S2RDA-49 51.89 42.19 47.06 47.64 42.51 47.77 47.07 48.46 61.52 52.98 53.03 52.34
S2RDA-MS-39 22.03 20.54 22.82 22.20 22.07 22.16 23.34 22.53 25.83 24.55 27.14 25.33

Table 4. Domain adaptation performance on S2RDA (ResNet-50).

of image number per class in each real domain. Compared
to VisDA-2017 [32], our S2RDA contains more categories,
more realistically synthesized source domain data coming
for free, and more complicated target domain data collected
from diverse real-world sources, setting a more practical,
challenging benchmark for future DA research.
Benchmarking DA Methods. We use ResNet-50 as the
backbone, initialized by the official ImageNet pre-trained
checkpoint [18]. Refer to Sec. 4.3 and the appendix for
other implementation details. We report the results on
S2RDA in Table 4 and show t-SNE [51] visualizations in
Fig. 6. In the overall accuracy (Acc.) on S2RDA-49, the
adversarial training based methods DANN, MCD, and RCA
perform worse than No Adaptation, demonstrating that ex-
plicit domain adaptation could deteriorate the intrinsic dis-
criminative structures of target domain data [45, 47], espe-
cially in cases of more categories; in contrast, SRDC pro-
duces significant quantitative and qualitative improvements,
14.45% and 8.49% higher than RCA and DisClusterDA re-
spectively, but 7.48% lower than Acc. on SubVisDA-10 (cf.
Table 3), indicating the difficulty of the S2RDA-49 task. On
S2RDA-MS-39, the classification accuracy is much worse
than that on S2RDA-49 (decrease of more than 20%), and
the compared methods show much less performance dif-
ference; the highest accuracy is only 27.14% achieved by
DisClusterDA, showing that S2RDA-MS-39 is a very chal-
lenging task. To summarize, domain adaptation is far from
being solved and we expect that our results contribute to
the DA community as new benchmarks, though more care-
ful studies in different algorithmic frameworks are certainly
necessary to be conducted.

5. Conclusions and Future Perspectives
This paper primarily aims to publish new datasets includ-

ing our synthetic dataset SynSL (12.8M) and S2RDA, and
benchmarks the datasets via supervised learning and down-

stream transferring. In the context of image classification,
our work is the first comprehensive study on synthetic data
learning, which is completely missing. We propose exploit-
ing synthetic datasets to explore questions on model gener-
alization and benchmark pre-training strategies for DA. We
build randomized synthetic datasets using a 3D rendering
engine and use this established system to manipulate the
generation of images by altering several imaging factors.
We find that synthetic data pre-training has the potential to
be better than pre-training on real data, our new benchmark
S2RDA is much more practical for synthetic-to-real DA, to
name a few. We expect that these results contribute to the
transfer learning community as new benchmarks, though
the research on more synthetic datasets, more models, and
more DA methods is certainly to be done.
Synthetic data as a new benchmark. Synthetic data are well
suited for use as toy examples to verify existing deep learn-
ing theoretical results or explore new theories.
Evaluation metrics robust to pre-training. The comparison
among various DA methods yields different or even oppo-
site results when using different pre-training schemes (cf.
Sec. 4.3). DA researchers should propose and follow evalu-
ation metrics enabling effective and fair comparison.
More realistic simulation synthesis. We will consider more
imaging parameters, e.g., randomizing the type and hue of
the light, including 77 physical objects with actual textures
from YCB [4], and using the flying distractor [23].
To explore deep learning based data generation. Our
proposed paradigm of empirical study can generalize to
any data generation pipeline. Our findings may be data
source specific and the generalizability to other pipelines
like GANs, NeRFs, and AutoSimulate [3] is to be explored.
Applicability to other vision tasks. Our new paradigm of
empirical study for image classification can also be applied
to other vision tasks of semantic analysis, e.g., Kubric [17]
and HyperSim [36] for segmentation and object detection.
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H. S. Torr, and Vibhav Vineet. Autosimulate: (quickly)
learning synthetic data generation. In Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm, editors,
Proc. Eur. Conf. Comput. Vis., pages 255–271, Cham, 2020.
Springer International Publishing. 2, 6, 8

[4] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srini-
vasa, Pieter Abbeel, , and Aaron M. Dollar. Benchmarking
in manipulation research: The ycb object and model set and
benchmarking protocols. In IEEE Robotics and Automation
Magazine, pages 36–52, 2015. 8

[5] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 3, 7

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In Proc. Int. Conf. Mach. Learn.,
2020. 4, 6

[7] S. Cicek and S. Soatto. Unsupervised domain adaptation via
regularized conditional alignment. In Proc. IEEE Int. Conf.
Comput. Vis., pages 1416–1425, 2019. 2, 3, 6

[8] Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qing-
ming Huang, and Qi Tian. Towards discriminability and di-
versity: Batch nuclear-norm maximization under label insuf-
ficient situations. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 3941–3950, 2020. 3

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., pages 248–255, 2009. 1, 2, 4, 6

[10] Maximilian Denninger, Martin Sundermeyer, Dominik
Winkelbauer, Youssef Zidan, Dmitry Olefir, Mohamad El-
badrawy, Ahsan Lodhi, and Harinandan Katam. Blender-
proc. arXiv preprint arXiv:1911.01911, 2019. 1, 2, 3

[11] Pedro Domingos. A few useful things to know about ma-
chine learning. Commun. ACM, 55:78–87, 2012. 2, 4

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In Proc. Int. Conf. on Learn. Rep., 2021. 2, 4

[13] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario

Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. Journ. of Mach. Learn. Res.,
17:2096–2030, 2016. 2, 3, 6

[14] R. Geirhos, JH. Jacobsen, C. Michaelis, Richard Zemel,
Wieland Brendel, Matthias Bethge, and Felix A. Wichmann.
Shortcut learning in deep neural networks. Nat. Mach. In-
tell., 2:665–673, 2020. 1, 2, 4

[15] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A. Wichmann, and Wieland Brendel.
Imagenet-trained CNNs are biased towards texture; increas-
ing shape bias improves accuracy and robustness. In Inter-
national Conference on Learning Representations, 2019. 2

[16] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., pages 580–587, 2014. 1

[17] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
Yilun Du, Daniel Duckworth, David J. Fleet, Dan Gnanapra-
gasam, Florian Golemo, Charles Herrmann, Thomas Kipf,
Abhijit Kundu, Dmitry Lagun, Issam Laradji, Hsueh-
Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Rad-
wan, Daniel Rebain, Sara Sabour, Mehdi S. M. Sajjadi,
Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun,
Suhani Vora, Ziyu Wang, Tianhao Wu, Kwang Moo Yi,
Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: A scal-
able dataset generator. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3749–3761, June 2022. 8

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., pages 770–778, 2016. 2, 4, 8

[19] Stefan Hinterstoisser, Olivier Pauly, Hauke Heibel, Marek
Martina, and Martin Bokeloh. An annotation saved is an an-
notation earned: Using fully synthetic training for object de-
tection. In Workshop of IEEE Conf. Comput. Vis., Oct 2019.
1, 3

[20] http://cc0textures.com. Cctextures dataset. In Creative Com-
mons CC0 1.0 Universal License. 3

[21] https://3dmodelhaven.com/. Haven dataset. In Creative
Commons CC0 1.0 Universal License. 3

[22] Drew A. Hudson and Christopher D. Manning. Gqa: A
new dataset for real-world visual reasoning and composi-
tional question answering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019. 2

[23] Mona Jalal, Josef Spjut, Ben Boudaoud, and Margrit Betke.
Sidod: A synthetic image dataset for 3d object pose recog-
nition with distractors. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 475–477, 2019. 8

[24] Donghyun Kim, Kaihong Wang, Stan Sclaroff, and Kate
Saenko. A broad study of pre-training for domain gener-
alization and adaptation, 2022. 2

[25] Jonathan Krause, Benjamin Sapp, Andrew Howard, Howard
Zhou, Alexander Toshev, Tom Duerig, James Philbin, and
Li Fei-Fei. The unreasonable effectiveness of noisy data for

15962



fine-grained recognition. In Proc. Eur. Conf. Comput. Vis.,
pages 301–320, 2016. 2

[26] Weixin Liang and James Zou. Metashift: A dataset of
datasets for evaluating contextual distribution shifts and
training conflicts. In Proc. Int. Conf. on Learn. Rep., 2022.
1, 2, 6, 7

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Proc. Eur. Conf. Comput. Vis., pages 740–755, 2014. 2

[28] Hong Liu, Mingsheng Long, Jianmin Wang, and Michael
Jordan. Transferable adversarial training: A general ap-
proach to adapting deep classifiers. In Proc. Int. Conf. Mach.
Learn., volume 97, pages 4013–4022, 2019. 3

[29] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., pages 3431–
3440, 2015. 1

[30] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE
Trans. Knowl. Data Eng., 22:1345–1359, 2010. 1

[31] Y. Pan, T. Yao, Y. Li, Y. Wang, C. Ngo, and T. Mei.
Transferrable prototypical networks for unsupervised do-
main adaptation. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 2234–2242, 2019. 3

[32] X. Peng, B. Usman, N. Kaushik, D. Wang, J. Hoffman, and
K. Saenko. Visda: A synthetic-to-real benchmark for visual
domain adaptation. In Workshop of IEEE Conf. Comput. Vis.
Pattern Recognit., 2018. 1, 2, 3, 8

[33] Aayush Prakash, Shaad Boochoon, Mark Brophy, David
Acuna, Eric Cameracci, Gavriel State, Omer Shapira, and
Stan Birchfield. Structured domain randomization: Bridging
the reality gap by context-aware synthetic data. In 2019 In-
ternational Conference on Robotics and Automation (ICRA),
pages 7249–7255, 2019. 3

[34] Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn
single domain generalization. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., June 2020. 2

[35] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi
Zelnik-Manor. Imagenet-21k pretraining for the masses. In
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1), 2021.
2

[36] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit
Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb,
and Joshua M. Susskind. Hypersim: A photorealistic syn-
thetic dataset for holistic indoor scene understanding. In
Proc. IEEE Int. Conf. Comput. Vis., 2021. 3, 8

[37] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M.
Lopez. The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., pages 3234–
3243, 2016. 1, 3

[38] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. Int. J. Comput. Vis.,
115:211–252, 2015. 1

[39] Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao,
Sang Michael Xie, Kendrick Shen, Ananya Kumar, Weihua
Hu, Michihiro Yasunaga, Henrik Marklund, Sara Beery, Eti-
enne David, Ian Stavness, Wei Guo, Jure Leskovec, Kate
Saenko, Tatsunori Hashimoto, Sergey Levine, Chelsea Finn,
and Percy Liang. Extending the WILDS benchmark for un-
supervised adaptation. In Proc. Int. Conf. on Learn. Rep.,
2022. 3

[40] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada. Maximum
classifier discrepancy for unsupervised domain adaptation.
In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages
3723–3732, 2018. 2, 3, 6

[41] Shai Shalev-Shwartz and Shai Ben-David. Understanding
Machine Learning: From Theory to Algorithms. Cambridge
University Press, 2014. 2, 4

[42] Connor Shorten and Taghi M. Khoshgoftaar. A survey on
image data augmentation for deep learning. J. Big Data, 6,
2019. 2

[43] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-
nav Gupta. Revisiting unreasonable effectiveness of data in
deep learning era. In Proc. IEEE Int. Conf. Comput. Vis., Oct
2017. 2

[44] Zeren Sun, Yazhou Yao, Xiu-Shen Wei, Yongshun Zhang,
Fumin Shen, Jianxin Wu, Jian Zhang, and Heng Tao
Shen. Webly supervised fine-grained recognition: Bench-
mark datasets and an approach. In Proc. IEEE Int. Conf.
Comput. Vis., pages 10602–10611, October 2021. 2

[45] Hui Tang, Ke Chen, and Kui Jia. Unsupervised domain adap-
tation via structurally regularized deep clustering. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., pages 8725–
8735, 2020. 2, 3, 6, 8

[46] Hui Tang and Kui Jia. Vicinal and categorical domain adap-
tation. Pattern Recognition, 115, 2021. 3

[47] Hui Tang, Yaowei Wang, and Kui Jia. Unsupervised do-
main adaptation via distilled discriminative clustering. Pat-
tern Recognition, 127:108638, 2022. 2, 3, 6, 8

[48] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-
ciech Zaremba, and Pieter Abbeel. Domain randomization
for transferring deep neural networks from simulation to the
real world. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 23–30, 2017.
1, 2, 3

[49] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario
Lucic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp ar-
chitecture for vision. In Proc. Neur. Info. Proc. Sys., vol-
ume 34, pages 24261–24272, 2021. 2, 4

[50] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark
Brophy, Varun Jampani, Cem Anil, Thang To, Eric Camer-
acci, Shaad Boochoon, and Stan Birchfield. Training deep
networks with synthetic data: Bridging the reality gap by
domain randomization. In Workshop of IEEE Conf. Comput.
Vis. Pattern Recognit., June 2018. 3

[51] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journ. of Mach. Learn. Res., 9:2579–2605,
2008. 8

15963



[52] VSR Veeravasarapu, Constantin Rothkopf, and Ramesh Vis-
vanathan. Adversarially tuned scene generation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017. 3

[53] VSR Veeravasarapu, Constantin Rothkopf, and Ramesh Vis-
vanathan. Model-driven simulations for computer vision. In
2017 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 1063–1071, 2017. 3

[54] V. S. R. Veeravasarapu, Rudra Narayan Hota, Constantin A.
Rothkopf, and Visvanathan Ramesh. Simulations for valida-
tion of vision systems. CoRR, abs/1512.01030, 2015. 3

[55] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang,
and Tao Qin. Generalizing to unseen domains: A survey
on domain generalization. In Zhi-Hua Zhou, editor, Proc.
Int. Jo. Conf. of Artif. Intell., pages 4627–4635. International
Joint Conferences on Artificial Intelligence Organization, 8
2021. Survey Track. 2

[56] Garrett Wilson and Diane J. Cook. A survey of unsupervised
deep domain adaptation. ACM Trans. Intell. Syst. Technol.,
11(5), Jul 2020. 2, 3

[57] Yabin Zhang, Hui Tang, Kui Jia, and Mingkui Tan. Domain-
symmetric networks for adversarial domain adaptation. In
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages
5026–5035, 2019. 3

15964


