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Abstract

Recent studies suggest that computer vision models come
at the risk of compromising fairness. There are exten-
sive works to alleviate unfairness in computer vision using
pre-processing, in-processing, and post-processing meth-
ods. In this paper, we lead a novel fairness-aware learning
paradigm for in-processing methods through the lens of the
lottery ticket hypothesis (LTH) in the context of computer
vision fairness. We randomly initialize a dense neural net-
work and find appropriate binary masks for the weights to
obtain fair sparse subnetworks without any weight training.
Interestingly, to the best of our knowledge, we are the first
to discover that such sparse subnetworks with inborn fair-
ness exist in randomly initialized networks, achieving an
accuracy-fairness trade-off comparable to that of dense
neural networks trained with existing fairness-aware in-
processing approaches. We term these fair subnetworks
as Fair Scratch Tickets (FSTs). We also theoretically pro-
vide fairness and accuracy guarantees for them. In our
experiments, we investigate the existence of FSTs on var-
ious datasets, target attributes, random initialization meth-
ods, sparsity patterns, and fairness surrogates. We also find
that FSTs can transfer across datasets and investigate other
properties of FSTs.

1. Introduction

In recent years, deep neural networks (DNN) has become

one of the core technologies in computer vision (CV). How-

ever, it has been observed that CV models learn spurious

age, gender, and race correlations when trained for seem-

ingly unrelated tasks [7, 67]. There are growing appeals

for fairness-aware learning [58]. A model should not dis-

criminate against any demographic group with sensitive at-

tributes [3, 15, 60, 63, 76].

†Equal Contribution. ∗Corresponding author.

Extensive work has been done to alleviate unfairness

in CV using pre-processing [37, 54, 64, 66], in-processing

[5, 6, 12, 57], and post-processing methods [39, 74]. Only

in-processing approaches can optimize notions of fairness

during model training. Such methods have direct con-

trol over the optimization function of the model [8] and

have attracted great attention in the research community.

Popular in-processing ideas include fairness regularization

[5, 12, 13, 33, 49, 52, 57, 69] and fairness-aware adversarial

training [6, 19, 44, 72]. Fairness regularization is to intro-

duce regularization terms to penalize unfairness. Fairness-

aware adversarial training uses an adversary to predict the

sensitive attribute and enforces the main classifier to pre-

vent the adversary from predicting successfully. However,

most in-processing methods leverage deep and dense neural

networks so that they are computationally intensive during

the inference phase [28]. But model compression methods

which scale down overparameterized models will introduce

or exacerbate unfairness [34, 35, 63].

In this paper, to fill the research gap, we raise an intrigu-

ing and challenging question: Is there a learning paradigm
without weight training that is plug-and-play for bias mit-
igation approaches in computer vision? Intuitively, the re-

cently proposed Lottery Ticket Hypothesis (LTH) [20] is

a natural fit for our needs. LTH focuses on finding sparse

trainable subnetworks (winning tickets) that reach test accu-

racy comparable to the original dense neural network. The

primal training method in [20] is iteratively pruning and re-

training the neural network. Interestingly, some researchers

empirically discover that winning tickets can be found with-

out weight training [53,75], which is theoretically validated

in [14, 45, 48, 50]. Both empirical observations and theoret-

ical results have verified the feasibility of finding winning

tickets without training the weights of the neural networks.

Motivated by the above, we break down the original ques-

tion into three sub-questions instead:

• Q1: Is there a fair winning ticket?

• Q2: How can we find it without weight training?
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• Q3: Is it easy to generalize on various datasets, tar-

get attributes, random initialization methods, sparsity

patterns and fairness surrogates?

For the first question, Proposition 1 states that a suf-

ficiently over-parameterized neural network with random

weights contains a subnetwork that can approximate any

target neural network with high probability under some con-

ditions. Furthermore, our Theorem 1 shows that if we suc-

cessfully find a sparse neural network that approximates a

fair and accurate neural network well, then the sparse neu-

ral network is also fair and accurate. Combining the results

of Proposition 1 and Theorem 1, they answer our first ques-

tion by clarifying the possibility of finding fair and accurate

winning tickets without any weight training. To our best

knowledge, LTH remains poorly understood in the context

of fairness. For the second question, note that the proof

of Theorem 2.1 in [45] follows a constructive routine for

masking. Therefore, it sheds light on the feasibility of find-

ing fair winning tickets without any weight training by de-

signing an appropriate masking scheme, and that is exactly

what we do. We randomly initialize a DNN and search

for masks to iteratively find Fair Scratch Tickets (FSTs).

In particular, following [53], we search for the best bi-

nary masks by optimizing a continuously updated learnable

score for each weight. For the third question, to verify

the generality of FST, we demonstrate its effectiveness in

two famous types of in-processing approaches in CV fair-

ness: fairness regularization [5] and fairness-aware adver-

sarial training [72]. Extensive experiments verify the exis-

tence of FSTs on various datasets, target attributes, random

initialization methods, sparsity patterns and fairness surro-

gates. We further show the properties of fine-tuning and

transferability of FSTs.

Overall, our contributions are threefold:

• We theoretically and empirically confirm the existence

of winning tickets with inborn fairness. And we extend

the application scenario of LTH to CV fairness.

• We propose a brand new plug-and-play learning

paradigm that does not require weight training for the

CV fairness community.

• Extensive experiments verify the existence of FSTs

on various datasets, target attributes, random initial-

ization methods, sparsity patterns and fairness surro-

gates. Furthermore, we show the properties of fine-

tuning and transferability of FSTs.

2. Related Work
2.1. Fairness in Computer Vision

In the past few years, based on the observation that fa-

cial image analysis systems cause substantial accuracy dis-

parities for different sensitive groups [7], there has been

a growing number of papers on fairness in computer vi-

sion [61, 62]. Most of the existing work in this field falls

into three categories: pre-processing, in-processing, and

post-processing. Similar categories also appear in the fair

machine learning literature, which is exhaustively surveyed

in [8, 46].

Pre-processing methods are data operations that focus

on changing the data itself to mitigate unwanted bias. Most

of them use deep models to incorporate techniques such

as image generation [17, 37, 54, 73], sampling [56, 59],

reweighing [2, 38], masking [64], perturbation [66], etc. As

a result, the pre-processed or augmented images can be used

to train fairer models. Post-processing methods try to mod-

ify the prediction results to satisfy the fairness definitions,

e.g., [30, 39, 74]. In-processing is the research emphasis

of this paper. Such approaches learn sensitive-free fea-

tures from data during training. Popular ideas include fair-

ness regularization [5,12,13,33,49,52,57,69] and fairness-

aware adversarial training [6, 19, 44, 72]. Fairness regular-
ization incorporates unfairness penalty terms into the ob-

jective. The penalty can be designed according to intuitions

from a specific fairness criterion [5, 12, 69], disentangling

meaningful and sensitive representations [13,49,52,57], and

others like [1,33]. Fairness-aware adversarial training uses

an adversary [6, 19, 44, 72] to predict the sensitive attribute

of the training set. Then the main classifier should act in

opposition to fool the adversary and at the same time ac-

complish the main prediction task. Among pre-processing,

in-processing, and post-processing, a key advantage of in-

processing is that it can easily incorporate fairness consider-

ations into the optimization objective. Consequently, there

is a high flexibility in picking the accuracy-fairness trade-

off, and in-processing has attracted great attention in the

research community. However, deep and dense neural net-

works are commonly used in in-processing models and thus

making the inference phase time-consuming.

In contrast to many methods mentioned above that re-

quire training a neural network from scratch, our FSTs suf-

fer from less computational burden because they are sparse

and do not require any weight training. Furthermore, FSTs

also serve as a universally adaptable plug-in for any DNN-

based approaches in CV fairness so that it can be naturally

combined with existing DNN-based fair CV models.

2.2. Lottery Ticket Hypothesis

A recently proposed technique called Lottery Tickets

Hypothesis (LTH) [20] leads a fast-rising field that inves-

tigates sparse trainable subnetworks within fully dense net-

works [14, 21–23, 41, 43, 45, 48, 50, 55, 65, 75]. The orig-

inal lottery ticket hypothesis states that in a randomly ini-

tialized dense neural network, there is a sparse subnetwork

that can achieve similar test accuracy when trained in isola-
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tion [20]. The sparse neural network is called “winning tick-

ets” and can be found by iteratively pruning the dense net-

work. In the follow-up work [22, 55], the authors introduce

LTH with rewinding to enable LTH for deeper models and

larger datasets. The robustness, learning dynamics, and un-

derlying condition of LTH are also dissected in [21,23,41],

respectively. LTH has been extensively explored in vari-

ous application scenarios like image classification [9, 25],

natural language processing [10, 51] and graph neural net-

works [11]. In addition, winning tickets can be found with

some inborn characteristics, such as robustness [24] and dif-

ferential privacy [27].

Going a step further, in particular, there is a refresh-

ing line of work empirically discovering that winning tick-

ets can be found with little training [70] or even no train-

ing [53, 75]. From a theoretical perspective, the researchers

even prove that winning tickets can be found without any

training under some conditions [45]. And this result is fur-

ther improved by [48, 50], which shows that logarithmic

over-parameterization is sufficient. It is extended to con-

volutional neural networks in the follow-up work [14]. In

general, both empirical observations and theoretical results

have verified the feasibility of finding winning tickets with-

out weight training. In support of the above observations

and theory, an orthogonal work [24] to ours successfully

finds robust winning tickets without training the weights.

A piece of related work is [29]. They empirically study

the impact of some pruning strategies on fairness in natu-

ral language processing. Distributionally robust optimiza-

tion loss [40] is considered to find a fair winning ticket. By

comparison, our approach differs from their work in that

our FSTs do not require training the weights of the neural

network, and we focus more on CV fairness.

Notably, although extensive research has been done on

LTH, to the best of our knowledge, there has been no pre-

vious research that provides evidence for fair winning tick-

ets without weight training in the field of computer vision.

Therefore, from the perspective of application scenario of

LTH, we motivate the research community that it is possi-

ble to obtain such a fair winning ticket in computer vision.

3. Preliminaries

3.1. Fair Classification

X is the feature space. Y = {−1, 1} and S = {a, b}
represent the space of class labels and sensitive attributes,

respectively. The training set D̂Z = {(xi, si, yi)}Ni=1 is

drawn from the distribution DZ over Z = X × S × Y .

It consists of three parts: predictive features x ∈ X , sen-

sitive attribute s ∈ S and target attribute y ∈ Y . There

are Nsy data with sensitive attribute s and label y, Ns· data

with sensitive attribute s and any label, and N·y data with

label y and any group. The predicted target label is ŷ ∈ Y .

A classifier f(θ, x) : X �→ R is parameterized by θ. If

f(θ, x) > 0, then ŷ = 1. The training set accuracy is

ACC(f) =
1

N

∑
(x,s,y)∼D̂Z

Iy=ŷ,

where I[·] is the indicator function.

In this paper, we focus on two widely used fairness met-

rics: demographic parity (DP) [18] and equality of opportu-

nity (EO) [30]. The difference in demographic parity (DDP)

is P(ŷ = 1|s = a)− P(ŷ = 1|s = b). We use the empirical

version of DDP to indicate the violation of DP:

D̂DP(f) =
1

Na·

∑
(x,s,y)∼D̂Z

s=a

If(x)>0− 1

Nb·

∑
(x,s,y)∼D̂Z

s=b

If(x)>0.

Similarly, the difference in equality of opportunity (DEO) is

P(ŷ = 1|s = a, y = 1) − P(ŷ = 1|s = b, y = 1). And its

empirical version is

D̂EO(f) =
1

Na1

∑
(x,s,y)∼D̂Z

s=a
y=1

If(x)>0− 1

Nb1

∑
(x,s,y)∼D̂Z

s=b
y=1

If(x)>0.

For a fairness threshold δ > 0, the fair classification

task is to find a classifier f such that
∣∣∣D̂DP(f)

∣∣∣ ≤ δ (or∣∣∣D̂EO(f)
∣∣∣ ≤ δ). In the experiments, D̂DP and D̂EO are

indicators to measure the violation of specific fairness met-

rics.

3.2. LTH without Weight Training

The original LTH iteratively prunes a small fraction of

weights and retrains the remaining weights. However, in

this work, we focus on finding winning tickets that do not

require weight training. As a consequence, once the neural

network f(θ) is randomly initialized, the weights θ ∈ Rd

are fixed. We search for binary masks m ∈ {0, 1}d to find

a winning ticket f(θ � m), where � is the element-wise

product.

Previous theoretical work proves that winning tickets can

be found without any weight training under some conditions

[14, 45]. We briefly review their conclusions below.

Proposition 1. To approximate any target neural network
f∗(θ∗), from a randomly initialized deep and wide enough
neural network f(θ), we can find a sparse subnetwork
f(θ � m) such that ∀xi ∈ X and some ε > 0, the in-
equality |f∗(θ∗, xi)− f(θ �m,xi)| ≤ ε holds with high
probability.

Proposition 1 is an informal version of the conclusions

in [14, 45]. The detailed theorem and proof can be found
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in their papers. Thus, to approximate f∗(θ∗), it is quite

possible to find a good approximation f(θ�m) from a deep

and wide enough f(θ) without weight training.

4. Drawing Fair Scratch Tickets
4.1. Do FSTs Exist?

In Theorem 1, we extend the results in Proposition 1 and

validate the existence of FSTs. We demonstrate that the

FSTs are both fair and accurate.

Theorem 1. Given the training set D̂Z = {(xi, si, yi)}Ni=1,
approximation error threshold ε > 0, fairness tolerance
δf∗ > 0, δf ′ > 0, accuracy lower bound δacc > 0. As-
sume that the following conditions hold:

(A) a sufficiently large training set: N ≥
∑N

i=1 I|f∗(xi)|≤ε

δf′ ,

(B) a fair and accurate neural network f∗ that satisfies∣∣∣D̂DP(f∗)
∣∣∣ ≤ δf∗ and ACC(f∗) ≥ δacc,

(C) a neural network f ′ = f(θ � m) such that ∀xi ∈ X ,
there holds |f∗(xi)− f ′(xi)| ≤ ε.

Then f ′ is fair and accurate:{ ∣∣∣D̂DP(f ′)
∣∣∣ ≤ δf∗ + δf ′ , (Fairness)

ACC(f ′) ≥ δacc − δf ′ .(Accuracy)

The proof and EO version of this theorem are given in

the supplementary. Theorem 1 ensures that if a fair and

accurate neural network f∗ and f(θ � m) share similar

results for any input feature, then for a sufficiently large

training set, there are fairness and accuracy guarantees for

the winning ticket f(θ � m), which is our FST. Notice

that all of the three conditions are natural and not restric-

tive. For assumption (A),
∑N

i=1 I|f∗(xi)|≤ε is the number

of points that are close to the decision boundary. When ε
is small, there holds

∑N
i=1 I|f∗(xi)|≤ε 	 N . So the con-

dition N ≥
∑N

i=1 I|f∗(xi)|≤ε

δf′ can be satisfied. For assump-

tion (B), although f∗ is an ideal neural network, at least

any fair and accurate neural networks in previous fairness-

aware methods can be cases of f∗. So this assumption is

naturally satisfied based on existing works. For assumption

(C), its reasonability has been validated by Proposition 1

and theoretical justifications [14,45], which means that this

assumption is also a mild one for our theorem.

In summary, we now establish the relation between our

analysis and FST. We initialize f(θ) with random weights

θ. We keep θ unchanged and only search for masks m to

find the winning ticket f(θ�m). It can be found with high

probability because of Proposition 1. According to Theo-

rem 1, when we find the winning ticket, it is guaranteed to

be fair and accurate. The fair and accurate winning ticket

f(θ �m) is just our FST.

4.2. How to Search for FSTs?

Our method operates on each convolutional layer. In

a randomly initialized dense network f(θ), θl denotes the

weights of l-th layer of f(θ) and ml denotes the binary

masks associated with θl. Given a pre-defined weight re-

maining ratio η (0 < η < 1), FST search is equivalent to

finding appropriate binary masks m for untrained weights

θ. Generally, FST search can be formulated as

m̂ ∈ argmin
m

1

N

∑
i

�(f(θ �m,xi), yi, si),

s.t.‖ml‖0 = η · nl, l = 1, . . . , L

(1)

where m̂ is the winning binary masks of FST, � is the fair-

ness loss function, nl is the number of weights in layer l and

L is the number of layers in f(θ).
Motivated and guided by prior works [24,53] which find

winning scratch tickets in randomly initialized neural net-

works, we search for winning binary masks m by iteratively

updating learnable scores r attached to each randomly ini-

tialized weight. Given a pre-defined remaining ratio η, we

obtain winning scratch tickets by retaining the weights in

each layer which own the top-η highest scores and discard-

ing the other weights. The learnable scores r is updated by

gradient descent, which is written as

r = r − ∂ 1
N

∑
i �(f(θ �m,xi), yi, si)

∂r
.

After each updating of r, the binary masks ml of layer l are

correspondingly updated by

mi,l =

{
1, ri,l ≥ rη,l
0, ri,l < rη,l

,

where ri,l denotes the i-th weight in layer l and rη,l repre-

sents the value of the score ranking exactly top-η in layer

l. Our search only learns the attached scores r by gradi-

ent descent and obtains winning scratch tickets without any

weight training.

Next, we introduce two specific search methods for FSTs

under fairness regularization and fair adversarial training.

4.3. FST Search under Fairness Regularization

Fairness regularization improves the fairness of predic-

tion by incorporating a fairness penalty into the objective

function, which is formulated as

argmin
m̂

1

N

∑
i

�c(f(θ �m,xi)), yi) + λRg(xi, yi, si),

s.t.‖ml‖0 = η · nl, l = 1, . . . , L

(2)

where Rg denotes the fairness regularization, �c is loss func-

tion and λ is the regularization coefficient.
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Following [5], to optimize DDP and DEO, the regular-

ization is given by

Rddp(x, y, s) =

{
u(f(θ,x))

pa
, s = a

u(−f(θ,x))
pb

, s = b
, (DDP ) (3)

Rdeo(x, y, s) =

⎧⎪⎨⎪⎩
u(f(θ,x))

pa1
, s = a, y = 1

u(−f(θ,x))
pb1

, s = b, y = 1

0, otherwise

, (DEO)

(4)

where u(·) is a smooth surrogate of the indicator function.

4.4. FST Search under Adversarial Training

Fairness-aware adversarial training aims to mitigate bias

by avoiding the prediction of sensitive attributes from the

representation or target output. We adopt the method pro-

posed in [6] to verify the existence of FSTs under ad-

versarial debiasing methods. The network in this method

has three sub-components, including a shared representa-

tion encoder e, a target prediction head t, and an adver-

sarial head o. We denote the parameters of these three

sub-components as θe, θt and θo, respectively. The binary

masks m also include three corresponding sub-components,

i.e., me , mt and mo. The goal of this method is to make

e(θe, x) produce a fair representation, t(θt, e(θe, x)) can

predict the targets , o(θo, e(θe, x)) can predict the sensi-

tive attributes. This method adopts a special identity func-

tion Jλ(·) with negative gradient where Jλ(x) = x and
∂Jλ(e(θe,x))

∂x = −λ∂e(θe,x)
∂x . The objective function of the

adversarial method can be formulated as

argmin
m̂

[
1

N

∑
(xi,yi)

�y(t(θt �mt, e(θe �me, xi)), yi)

+λ
1

N

∑
(xi,yi,si)

�z(o(θo �mo, Jλ(e(θe �me, xi))), si)],

s.t.‖ml‖0 = η · nl, l = 1, . . . , L

(5)

where both �y and �z are loss functions, and λ is the trade-

off coefficient.

5. Experiments
5.1. Experimental Setup

We briefly introduce some necessary experimental setup

here. More details are provided in the supplementary.

Datasets. We evaluate the existence and property of FSTs

on two real-world face image datasets, i.e., CelebA [42] and

LFW [36]. We adopt gender as the sensitive attribute. We

Accuracy

D
D

P

Signed Kaiming Constant
Dense

(a) CelebA with Smiling targets

Accuracy

D
D

P

FST
Dense

(b) CelebA with Blond Hair targets

Accuracy

D
D

P

FST
Dense

(c) LFW with Smiling targets

Accuracy

D
D

P

FST
Dense

(d) LFW with Wary Hair targets

Figure 1. FSTs exist under Rddp regularization on CelebA and

LFW datasets with remaining ratio η = 10%.

use Smiling and Blond Hair as the target labels on CelebA

and take Smiling and Wary Hair as the target labels on LFW.

Model initialization. In our experiments, we consider

four widely used initialization methods, i.e., Kaiming Uni-

form [31], Kaiming Normal [31], Signed Kaiming Con-

stant [53], Xavier Normal [26]. We use the Signed Kaiming

Constant as the default initialization method.

Implementation details. We use ResNet18 [32] as the net-

work architecture in our experiments. We train a network

with training set, select the network weights with the best

accuracy in validation set, and report the accuracy and un-

fairness in test set. The reported results are the average of

three trials with different random seeds.

Evaluation metrics. For evaluation, we use the accuracy-

fairness trade-off by varying the coefficient λ in the objec-

tive. A better accuracy-fairness trade-off means higher ac-

curacy and fairness metrics closer to zero. We take accuracy

as the x-axis and fairness metrics as the y-axis. In the ex-

periments in our main paper, we only consider D̂DP. The

corresponding experiments for D̂EO are deferred to the sup-

plementary.

5.2. The Existence of Fair Scratch Tickets

We call the fair dense networks trained with exist-

ing fairness-aware in-processing methods “dense counter-
parts” for short. We plot the results of FSTs and their vari-

ants using solid lines and the results of dense counterparts

using dashed lines.

In Fig. 1, we show the empirical existence of FSTs under

Rddp regularization on CelebA and LFW with a widely used

remaining ratio η = 10%. The corresponding experiments

for adversarial training are deferred to the supplementary.

We can see that: (1) in Figs. 1a to 1d, the accuracy-fairness

trade-off of FSTs are very close to the trade-off of the dense
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Figure 2. FSTs exist under Rddp regularization with four initial-

ization methods on CelebA with Smiling targets.
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Figure 3. FSTs exist under adversarial training with four initial-

ization methods on CelebA with Blond Hair targets.

counterparts; (2) the accuracy-fairness trade-off of FSTs

can outperform the dense counterparts in some cases; (3) in

Fig. 1d, FSTs can even consistently outperform the dense

counterparts.

Overall, it verifies that sparse subnetworks with inborn

fairness do exist in randomly initialized dense networks and

have comparable or even better accuracy-fairness trade-off

than the dense counterparts, without any weight training.

5.3. FSTs Exist under Different Remaining Ratios

In Figs. 2 and 3, we show the accuracy-fairness trade-off

of FSTs on CelebA with Smiling targets (for fairness regu-

larization) and Blond Hair targets (for adversarial training)

under a wide range of remaining ratios (i.e., η = 5% ∼
80%) with four different initialization methods.

In Fig. 2, under Rddp regularization, we can observe that:
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P

Element_wise
Row_wise
Kernel_wise
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(d) η = 80%

Figure 4. FSTs exist under Rddp regularization with different spar-

sity patterns on CelebA with Smiling targets.
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Kernel_wise
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Figure 5. FSTs exist under adversarial training with different spar-

sity patterns on CelebA with Blond Hair targets.

(1) FSTs have comparable accuracy-fairness trade-off to the

dense counterparts under a wide range of weight remain-

ing ratios (i.e., η = 5% ∼ 80%), even without any weight

training; (2) FSTs perform best under the remaining ratio

η = 10%, indicating that an appropriate remaining ratio

plays an important role in FSTs. It shows that FSTs with

low or high remaining ratio have relatively worse perfor-

mance than FSTs with the best appropriate remaining ra-

tio. When the weight remaining ratio is low, FSTs suffer

from being under-parameterized due to the small capacity

of the subnetworks. While the original randomly initialized

weights are retained at high ratio level, FSTs are close to the

randomly initialized networks and incline to make random

predictions. Moreover, in the supplementary, we also study
how FSTs exist using linear [4, 16, 71], hinge [68], and lo-
gistic [5] fairness surrogates in Rddp. And the results also
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fit in well with the observations above.

In Fig. 3, the results also follow a similar trend under

adversarial training: although some FSTs can outperform

the dense in all reported remaining ratios, FSTs still suffer

from performance drop when the remaining ratios are low

(e.g., η = 5%) or high (e.g., η = 80%). We can search an

appropriate remaining ratio for FSTs by taking full use of

this rule.

In summary, FSTs have comparable or even superior per-

formance to the dense counterparts, and less inference time

makes FSTs more advantageous.

5.4. FSTs Exist under Different Initialization

As shown in Figs. 2 and 3, when applying four different

widely used distributions to randomly initialize the dense

networks, FSTs consistently exist and achieve comparable

or even better accuracy-fairness trade-off, showing that our

FST search method is generally effective for commonly

used initialization methods.

5.5. FSTs Exist under Different Sparsity Patterns

We investigate the impact of structured sparsity patterns

of FSTs and visualize their accuracy-fairness trade-off in

Figs. 4 and 5. Besides element-wise sparsity, we consider

other two structured sparsity patterns: row-wise sparsity

and kernel-wise sparsity. We can observe that FSTs do exit

under different sparsity patterns. Moreover, Fig. 4 shows

that a more structured sparsity pattern leads to FSTs with

more inferior performance under fairness regularization. In

Fig. 5, the element-wise sparsity also suffers from a perfor-

mance drop when the remaining ratio is low or high. How-

ever, the structured sparsity patterns (i.e., row-wise sparsity

and kernel-wise sparsity) show a different trend that FSTs

can outperform the dense counterparts with considerably

high remaining ratios (e.g., even η = 80%).

6. The Properties of FSTs

6.1. Fine-tuned Random Tickets and Fine-tuned
FSTs

In this section, following [24], we conduct ablation study

on fine-tuned FSTs to investigate the effect of initializa-

tion and network architectures from the vanilla FSTs. We

consider three settings: (1) fine-tuned FSTs with inher-

ited weights (i.e., FSTs with plain re-learning), which in-

herit both initialization and network architectures from the

vanilla FSTs; (2) fine-tuned FSTs with randomly reinitial-

ized weights, which only inherit the network architecture

from the vanilla FSTs; (3) fine-tuned random tickets, which

inherit nothing from the vanilla FSTs.

Firstly, in Figs. 6 and 7, we compare the fine-tuned ran-

dom tickets with the dense counterparts. We can observe
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Figure 6. Comparisions of FST variants under Rddp regularization

on CelebA with Smiling targets.
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Figure 7. Comparisions of FST variants under adversarial training

on CelebA with Smiling targets.

that: (1) fine-tuned random tickets suffer from model col-

lapse under very low remaining ratios (e.g., Figs. 6a and 7a);

(2) fine-tuned random tickets can have comparable perfor-

mance to the dense counterparts under relatively high re-

maining ratios (e.g., Figs. 6d and 7d), which is expected

due to the large capacity of subnetworks under relatively

high remaining ratios. Thus, when studying the fine-tuning

properties, we only consider the relatively low remaining

ratios (e.g., η ≤ 10% in Fig. 6 and η ≤ 40% in Fig. 7).

Secondly, we mainly compare fine-tuned random tickets

and fined-tuned FSTs on fairness regularization. In Fig. 6,

under fairness regularization, we can find: (1) fine-tuned

FSTs can improve the performance of vanilla FSTs under

relatively high remaining ratios (e.g., η ≥ 0.5%); (2) fine-

tuned FSTs under high remaining ratios (e.g., η = 5%
and 10%) have performance very close to the dense coun-
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Figure 8. Comparisons between fine-tuned transferred FSTs and

other methods under Rddp on LFW with Smiling targets.

terparts, which is expected due to large capacity of net-

works; (3) fine-tuned FSTs with inherited weights outper-

form fine-tuned FSTs with randomly reinitialized weights

when weights remaining ratios are low (e.g., η = 0.1% and

η = 0.5%) and these two fine-tuned FSTs have compara-

ble performance when the remaining ratios are high (i.e.,
η ≥ 5%), indicating that FSTs can find initialization partic-

ularly adept at further fairness learning; (4) fine-tuned FSTs

outperform fine-tuned random tickets under low remaining

ratios, i.e., under-parameterization, showing that FSTs find

good network architectures that are adept at fairness-aware

learning.

Thirdly, in Fig. 7, under adversarial training, fine-tuned

FSTs have different properties: although fine-tuned FSTs

can improve the performance of FSTs under low remaining

ratios (e.g., η = 10% and η = 0.5%), the fine-tuned FSTs

even have inferior performance to the vanilla FSTs (e.g.,
η = 5% and η = 10%). It shows that under fair adversar-

ial training, FSTs without weight training is really a good

approach to fairness.

Overall, FSTs can find combinations of sparse architec-

tures and initialization that are with inborn fairness and even

particularly adept at further fair learning.

6.2. FTTs Drawn from Trained Dense Networks

Here, we investigate the winning tickets drawn from

dense networks trained with existing in-processing fair-

ness method, which is called Fair Trained Tickets (FTTs).

The accuracy-fairness trade-off of FTTs are also shown

in Figs. 6 and 7. We can find that FTTs have inferior perfor-

mance to the fine-tuned FSTs in the vast majority of cases,

except Figs. 7c and 7d, suggesting that firstly finding un-

trained tickets from randomly initialized networks then fine-

tuning the remaining weights is better than firstly training

weights then finding tickets from the trained networks.

6.3. Transferability of FSTs across Datasets

Inspired by [47], we conduct experiments to study the

transferability of FSTs. As shown in Fig. 8, we fine-tune

the FSTs drawn from large dataset to small dataset, i.e.,
from CelebA with Smiling targets to LFW also with Smiling
targets. We can see that when the remaining ratios are rel-

atively high (e.g., η = 0.5%, 5% and 10%), the fine-tuned

transferred FSTs perform better than other methods, includ-

ing the vanilla FSTs and the fine-tuned FSTs, and even bet-

ter than the dense counterparts (e.g., η = 5%, 10%). It veri-

fies that our FSTs have good transferability. This is because

FSTs drawn from large datasets are less likely to suffer from

overfitting, which is consitent with [47].

7. Conclusion

In this work, we propose a novel fairness-aware learn-

ing paradigm for in-processing methods in computer vision

from the perspective of lottery ticket hypothesis. We both

theoretically and empirically verify that subnetworks drawn

from randomly initialized neural networks can achieve

comparable or even better accuracy-fairness trade-off than

existing in-processing methods, without any weight train-

ing. Extensive experiments also show that FSTs can gen-

eralize on various datasets, target attributes, random ini-

tialization methods, sparsity patterns, and fairness surro-

gates. Furthermore, we study the properties of fine-tuning

and transferability of FSTs. Throughout the theoretical jus-

tification and extensive experiments, we show that our FSTs

are effective, and we believe that our study can provide new

insights into the CV fairness community.
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