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Abstract

In this work, we focus on the challenging problem of La-
bel Enhancement (LE), which aims to exactly recover label
distributions from logical labels, and present a novel Label
Information Bottleneck (LIB) method for LE. For the recov-
ery process of label distributions, the label irrelevant infor-
mation contained in the dataset may lead to unsatisfactory
recovery performance. To address this limitation, we make
efforts to excavate the essential label relevant information
to improve the recovery performance. Our method formu-
lates the LE problem as the following two joint processes:
1) learning the representation with the essential label rel-
evant information, 2) recovering label distributions based
on the learned representation. The label relevant informa-
tion can be excavated based on the “bottleneck” formed by
the learned representation. Significantly, both the label rel-
evant information about the label assignments and the label
relevant information about the label gaps can be explored in
our method. Evaluation experiments conducted on several
benchmark label distribution learning datasets verify the ef-
fectiveness and competitiveness of LIB. Our source codes
are available at https://github.com/qinghai-
zheng/LIBLE

1. Introduction

Learning with label ambiguity is important in computer
vision and machine learning. Different from the traditional
Multi-Label Learning (MLL), which employs multiple log-
ical labels to annotate one instance to address the label am-
biguity issue [20], Label Distribution Learning (LDL) con-
siders the relative importance of different labels and draws
much attention in recent years [6, 8, 14, 18, 26]. By distin-
guishing the description degrees of all labels, LDL anno-
tates one instance with a label distribution. Therefore, LDL
is a more general learning paradigm, MLL can be regarded
as a special case of LDL [8, 10, 12].

*Corresponding author, E-mail: zhujh@xjtu.edu.cn

Recently, many LDL methods are proposed and achieve
great success in practice [3, 9, 14, 18]. Instances with exact
label distributions are vital for the training process of LDL
methods. Nevertheless, annotating instances with label dis-
tributions is time-consuming [24,28]. We take the label dis-
tribution annotation process of SJAFFE dataset for example
here. SJAFFE dataset is the facial expression dataset, which
contains 213 grayscale images collected from 10 Japanese
female models, each facial expression image is rated by 60
persons on 6 basic emotions, including happiness, surprise,
sadness, fear, anger, and disgust, with a five-level scale from
1 - 5, the higher value indicates the higher emotion intensity.
Consequently, the average score of each emotion is served
as the emotion label distribution [14,28]. Clearly, the above
annotation process is costly and it is unpractical to annotate
data with label distributions manually, especially when the
number of data is large. Fortunately, most existing datasets
in the field of computer vision and machine learning are an-
notated by single-label or multi-labels [7, 29], therefore, a
highly recommended promising solution is Label Enhance-
ment (LE), which attempts to recover the desired label dis-
tributions exactly from existing logical labels [24, 28, 32].

Driven by the urgent requirement of obtaining label dis-
tributions and the convenience of LE, some LE methods are
proposed in recent years [5, 7, 11, 13, 15, 17, 21, 24, 28, 29].
Given a dataset X = {x1,x2, · · · ,xn} ∈ Rq×n, in which
q and n denote the number of dimensions and the number
of instances, the potential label set is {y1, y2, · · · , yc}. The
available logical labels and the desired distribution labels
of X are separately indicated by L = {l1, l2, · · · , ln} and
D = {d1,d2, · · · ,dn}, where li and di are:

li = (ly1

i , ly2

i , · · · , lyc

i )T ,di = (dy1

i , dy2

i , · · · , dyc

i )T . (1)

To be specific, LE aims to recover D based on the informa-
tion provided by X and L. For most existing LE methods,
their objectives can be concisely summarized as follows:

min
θ
∥fθ(X)−L∥2F + γreg(fθ(X)), (2)

in which D = fθ(X), fθ(·) indicates the mapping from
X to D, reg(·) denotes the regularization function, and γ
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Logical label
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Figure 1. Illustration of label relevant information. Excavating the
essential label relevant information directly is challenging and we
adopt a indirect way here. We jointly investigate the information
about the assignments of labels to the instance and the informa-
tion about the label gaps between logical labels and label distribu-
tions. Given the i-th instance xi, the label gap of the yj label is
δ
yj
i = l

yj
i − d

yj
i . The information contained in l

yj
i and δ

yj
i can

be amalgamated to form the essential label relevant information.
In other words, we employ l

yj
i to explore the label relevant infor-

mation about the label assignments and δ
yj
i to excavate the label

relevant information about the label gaps. To a certain degree, the
combination of δyji and l

yj
i is equivalent to d

yj
i . As depicted here,

l
yj
i indicates that y1 and y3 are related labels and δ

yj
i provides the

importance of y1 and y3.

is the trade-off parameter. Most existing LE methods vary
in reg(·). For example, GLLE [28] calculates the distance-
based similarity matrix of data and employs the smoothness
assumption [33] to construct reg(·); LESC [24] considers
the global sample correlations and introduces the low-rank
constraint as the regularization; PNLR [13] leverages reg(·)
to maintain positive and negative label relations during the
recovery process. Although a remarkable progress can be
made by aforementioned methods, they ignore the label ir-
relevant information contained in X , which prevents the
further improvement of recovery results. For example, in
the LE task of recovering facial age label distributions, the
label irrelevant information, such as specularities informa-
tion, cast shadows information, and occlusions information,
may result in the incorrect mapping process of fθ(·) and the
unsuitable regularization of reg(·), eventually leads to the
unsatisfactory recovery performance.

To overcome the aforementioned limitation, we present
a Label Information Bottleneck (LIB) method for LE. Con-
cretely, the core idea of LIB is to learn the latent representa-
tion H , which preserves the maximum label relevant infor-
mation, from X , and jointly recovers the label distributions
based on the latent representation. For the LE problem, the
label relevant information is the information that describes
the description degrees of labels. It is tough to explore the
label relevant information directly. As shown in Fig. 1, we

decompose the label relevant information into two compo-
nents, namely the assignments of labels to the instance and
the label gaps between label distributions and logical labels.
Inspired by Information Bottleneck (IB) [25], LIB utilizes
the existing logical labels to explore the information about
the assignments of labels to the instance. Unlike simply em-
ploying the original IB on the LE task, our method further
considers the information about the label gaps between la-
bel distributions and logical labels. It is noteworthy that the
above two components of the label relevant information are
jointly explored in our method, and that is why we term the
proposed method Label Information Bottleneck (LIB). The
main contributions can be summarized as follows:

• We decompose the label relevant information into the
information about the assignments of labels to instance
and the information about the label gaps between logi-
cal labels, both of which can be jointly explored during
the learning process of our method.

• We introduce a novel LE method, termed LIB, which
excavates the label relevant information to exactly re-
cover the label distributions. Based on the original IB,
which explores the label assignments information for
LE, LIB further explores the label gaps information.

• We verify the effectiveness of LIB by performing ex-
tensive experiments on several datasets. Experimental
results show that the proposed method can achieve the
competitive performance, compared to state-of-the-art
LE methods.

2. Related Work
2.1. Label Enhancement

To recover the label distributions from the existing logi-
cal labels, many efforts are made recently [24, 28]. In gen-
eral, most existing LE methods can be roughly divided into
two categories, namely, algorithm adaptation and special-
ized algorithm [8, 24].

Algorithm adaptation extends some existing methods to
achieve the goal of LE [5,15]. For example, FCM [5] recov-
ers the label distributions by utilizing the fuzzy clustering
and fuzzy relabeling. To be specific, FCM utilizes the fuzzy
C-means clustering to get different clusters and cluster pro-
totypes, then obtains membership degrees of each instance
with respect to different cluster prototypes, finally annotates
all instances with label distributions by employing the fuzzy
composition and softmax normalization. KM [15] leverages
the fuzzy SVM to achieve the membership function. Dur-
ing the recovery process, KM separates instances into two
clusters and employs the nonlinear function to get the radius
and distances between centers and kernelized instances, and
then gets the label distributions with the help of the softmax
normalization.
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Specialized algorithm is specially designed to deal with
the LE problem. Most existing LE methods belong to the
category of specialized algorithm and have the basic objec-
tive Eq. (2). By using different constraints, different meth-
ods adopt different reg(·) in Eq. (2). For example, based
on the assumption that instances closed in the feature space
are more likely to share the same label, GLLE [28] employs
the following local graph information in the feature space
to boost the recovery performance:

qi,j =

 exp

(
−∥xi − xj∥2

2ε2

)
, if xj ∈ k (i) ,

0, otherwise,

(3)

where k (i) denotes the k-nearest neighbours of xi. reg(·)
in GLLE is constructed as follows:

reg(fθ(X)) =
∑
i,j

qi,j ∥fθ(xi)− fθ(xj)∥22. (4)

Unlike GLLE, LESC [24] considers the global graph infor-
mation and uses the low-rank representation learning [19]:

min
G,E

∥G∥∗ + λ2∥E∥2,1, s.t.,X = XG+E, (5)

where G indicates the low-rank representation of instances
in the feature space. The regularization function in LESC is
written as follows:

reg(fθ(X)) = ∥fθ(X)− fθ(X)G∥2F . (6)

For these aforementioned LE methods, they all neglect
the label irrelevant information contained in X , the nega-
tive effect of which can result in the unsatisfactory recovery
results. Taking the recovery of facial emotion label distribu-
tions for example, the inaccurate graph information would
be obtained in GLLE and LESC with the presence of la-
bel irrelevant information, such as the identity information,
hindering the further improvement of recovery results.

2.2. Information Bottleneck

Information bottleneck (IB) [1, 25, 25] is an information
theoretic principle, which describes the relevant informa-
tion in data formally. To be concrete, IB has the following
objective:

min
B
− I(B,C), s.t., I(A,B) ⩽ Ic, (7)

where I(·, ·) measures the mutual information and Ic is the
information constraint. Clearly, IB aims to learn the repre-
sentation B, which preserves the relevant information about
C, from A. Considering the scenario of LE, it is natural to
get the following formula:

min
H
− I(H,L), s.t., I(X,H) ⩽ Ic. (8)

X

H

Label gaps information 

Irrelevant information

Label assignments information 

LIB

L:  {0,1}c

X

+

D

Figure 2. Framework of the proposed LIB. Since the way that di-
rectly explores the label relevant information is challenging, LIB
decomposes the label relevant information into two components,
namely the assignments of labels to the instance and the label
gaps between label distributions and logical labels, and adopts an
indirect path, which explores the information about label assign-
ments and label gaps simultaneously. By minimizing Las, LIB ex-
plores the information about assignments of labels to the instance.
Meanwhile, by minimizing Lgap, LIB explores the information
about the label gaps between logical labels and label distributions.
Consequently, the label relevant information can be effectively ex-
plored and the label distributions can be exactly recovered.

As discussed in Section 1, the information merely about the
assignments of labels to the instance can be explored based
on Eq. (8), which neglects the vital information about the
label gaps between logical labels and label distributions.

Recently, IB has been successfully utilized in many real-
world applications [1, 2, 22, 27, 30, 31]. To the best of our
knowledge, the method introduced in this paper is the first
work that leverages IB to deal with the LE problem. More
notably, rather than using IB simply (as shown in Eq. (8)),
our method conducts more in-depth exploration to exactly
recover label distributions based on IB.

3. The Proposed Method
3.1. The Objective Construction

Generally, the basic idea can be written as follows:

min
H
Las + αLgap, s.t., I(X,H) ⩽ Ic, (9)

where Las excavates the information about the assignments
of labels to the instance, Lgap investigates the information
about the label gaps between the logical labels and distribu-
tion labels, α is the trade-off parameter, the constraint aims
to remove the label irrelevant information. The framework
of our method is depicted in Fig. 2. It’s worth noting that
employing the original IB for LE merely explores the infor-
mation about the label assignments. While our LIB makes
attempts to capture the information about both the label as-
signments and the description degrees of labels.
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3.1.1 Label assignmens information modeling

For Las, inspired by IB, we have the following formula:

Las = −I(H,L). (10)

According to the concept of mutual information, Las can be
rewritten out in full as follows:

Las = −
∑
h

∑
l

p(h, l) log
p(l|h)
p(l)

. (11)

For the convenience of optimization, we introduce the vari-
ational approximation q(l|h) to p(l|h). Since both the Kull-
back Leibler divergence and the entropy are positive:

KL(p(l|h)||q(l|h)) =
∑
l

p(l|h) log p(l|h)
q(l|h)

⩾ 0

⇒
∑
l

p(l|h) log p(l|h) ⩾
∑
l

p(l|h) log q(l|h),
(12)

Ep(l)[− log p(l)] = −
∑
l

p(l) log p(l) ⩾ 0, (13)

based on Markov chain that L←X →H , we can get:

Las ⩽ −
∑
x

∑
l

∑
h

p(x, l)p(h|x) log q(l|h). (14)

3.1.2 Label gaps information modeling

To investigate the label-relevant information about the de-
scription degrees of labels, we introduce the label gaps be-
tween logical labels and label distributions ∆, and consider
the conditional self-information, i.e., I(∆|H). Therefore,
we construct Lgap

1 as follows:

Lgap = I(∆|H) = − log p(∆|H)

= −
∑
δ

∑
h

log p(δ|h)

= −
∑
l

∑
h

log p(l− d̂|h).

(15)

where δ = l − d̂, d̂ is the label distribution recoveried in
our method.

3.1.3 Label irrelevant information modeling

Regarding the label irrelevant information, LIB employs the
constraint in Eq. (9) to discard it during the learning pro-
cess. I(X,H) can be formulated as follows:

I(X,H) =
∑
x

∑
h

p(x,h) log
p(h|x)
p(h)

. (16)

1It can be also interpreted and derived from the view of the probability
distribution: max

∆
log p(H,∆) ⇒ max

∆
log p(∆|H) + log p(H) ⇒

max
∆

log p(∆|H). We appreciate reviewers for their helpful comments.

Since it is difficult to calculate p(h) directly, we also intro-
duce the variational approximation q(h) to p(h). Similar to
Eq. (12), based on KL(p(h)||q(h)) ⩾ 0, we have:∑

h

p(h) log p(h) ⩾
∑
h

p(h) log q(h). (17)

Subsequently, the following formula can be written:

I(X,H) ⩽
∑
x

∑
h

p(x,h) log
p(h|x)
q(h)

=
∑
x

∑
l

p(x, l)KL(p(h|x)||q(h)).
(18)

3.1.4 Objective of LIB

By employing the Lagrange multiplier method and combin-
ing Eq. (9), (14), (15), and (18), we have:

L = Las + αLgap + βI(X,H)

⩽ −
∑
x

∑
l

∑
h

p(x, l)p(h|x, l) log q(l|h)

− α
∑
l

∑
h

log p(l− d̂|h)

+ β
∑
x

∑
l

p(x, l)KL(p(h|x)||q(h)).

(19)

where β is the Lagrange multiplier. Considering the bound
of L and using the empirical Monte Carlo approximation of
sampling [23], we have the following objective of LIB:

LLIB =
1

n

n∑
i=1

[−
∑
h

p(h|xi) log q(li|h)

+βKL(p(h|xi)||q(h))]− α
∑
l

∑
h

log p(l− d̂|h).
(20)

3.2. The Optimization of LIB

To minimize the objective of LLIB , we use the reparam-
eterization trick [16, 23]. For p(h|x), we assume that:

p(h|x) ∼ N (µh|x,σ
2
h|xI), (21)

where µh|x and σh|x are obtained by using the encoder
network fθen(·), i.e., µh|x = fµ

θen
(x) and σh|x = fσ

θen
(x).

Subsequently, we have that:

h = µh|x + σh|x ⊙ ϵ, (22)

where ϵ ∼ N (0, I) and ⊙ is the element-wise product. For
q(l|h), we assume:

q(l|h) ∼ N (µl|h, I), (23)
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where µl|h is learned by using the decoder network fθde(·),
namely, µl|h = fθde(h). For q(h), we assume that:

q(h) ∼ N (0, I). (24)

For p(l− d̂|h), the following assumption is adopted:

p(l− d̂|h) ∼ N (0,σ2
δ|hI), (25)

where σδ|h can be achieved by introducing the gap devia-
tion network fθgd(·), i.e., σδ|h = fθgd(h). For the recov-
ered label distribution d̂, we introduce the label distribution
network fθld(·) and has the following formula:

d̂ = fθld(h). (26)

Consequently, based on Eq. (21)-(26), we have:

min
θen,θde,θgd,θld

LLIB

⇒ min
θen,θde,θgd,θld

1

n

∑
l

[
1

2

∥∥µl|h − l
∥∥2
2

+α(
1

2
(l− d̂)T (σ−2

δ|hI)(l− d̂) + log det(σ2
δ|hI))]

+
β

2

∑
x

[µT
h|xµh|x + tr(σ2

h|xI)− log det(σ2
h|xI)].

(27)

When the problem of Eq. (27) is optimized, we can ef-
fectively recover the desired label distributions. To be spe-
cific, given {X,L}, we can obtain H according to Eq. (22)
and achieve the recovery results based on Eq. (26), namely,
D̂ = fθld(H).

3.3. Comparison with Existing LE Methods

The main difference between LIB and existing methods
is that our method deals with the problem of LE from the
perspective of information bottleneck. Considering the first
term in Eq. (2), it aims to minimize ∥d− l∥22 under the as-
sumption that information in the label distributions is inher-
ited from the initial logical labels [24, 28, 29]. For LIB, the
more reasonable term:

1

2
(l− d̂)T (σ−2

δ|hI)(l− d̂) + log det(σ2
δ|hI) (28)

which can be deduced by excavating the label relevant in-
formation about the label gaps between logical labels and
label distributions.

Besides, we compare our method with the recently pro-
posed LEVI [29] further. Although the objectives of LEVI
and LIB are somewhat similar in form, they are essentially
different as follows: 1) LIB makes attempts from the per-
spective of information bottleneck, while LEVI from the
view of variational inference; 2) The formulas of LEVI and
LIB are just partially similar in form, since the variational

Dataset # dimension q # instance n # labels c

Artificial toy 3 2601 3
Movie 1869 7755 5

SBU-3DFE 243 2500 6
SJAFFE 243 213 6

Yeast-alpha 24 2465 18
Yeast-cdc 24 2465 15

Yeast-cold 24 2465 4
Yeast-diau 24 2465 7

Yeast-dtt 24 2465 4
Yeast-elu 24 2465 14

Yeast-heat 24 2465 6
Yeast-spo 24 2465 6

Yeast-spo5 24 2465 3
Yeast-spoem 24 2465 2

Table 1. Details of datasets. The numbers of dimension q, instance
n, and labels c are provided here.

inference is employed as the optimization tool in LIB. The
details of these two formulas are totally different; 3) LEVI
requires an extra regularizer, i.e., ∥d− l∥22, to constrain the
recovery process, while LIB achieves d based on the more
reasonable term, i.e., Eq. (28).

4. Experiments

To verify the effectiveness and competitiveness of LIB,
extensive experiments are conducted in this section.

4.1. Experimental Setup

As shown in Table 1, we use both one toy dataset and 13
real-world datasets for evaluation2. For the toy dataset, i.e.,
Artificial dataset, it is utilized to vividly show the recovery
performance [28]. Movie dataset is collected from movies,
SBU-3DFE and SJAFFE datasets are two facial expression
datasets. Yeast datasets (alpha to spoem) are collected from
10 biological experiments on the budding yeast genes [4]. It
is important to note that only the ground-truth label distri-
butions are provided by these datasets. Therefore, we adopt
the binarization strategy, which is also used in existing LE
works [24, 28, 29], to ensure the consistency of evaluation.

We compare our method LIB to 7 LE methods, includ-
ing FCM [5], KM [15], LP [17], ML [11], GLLE [28],
LESC [24], and LEVI [29]. The first two methods belong to
the algorithm adaption, and the rest methods are specialized
algorithms. For the sake of fairness, we utilize the param-
eter settings recommended in their original works. Specif-
ically, for FCM, we set the parameter β = 2. For KM, we
leverage the Gaussian kernel. For LP, we set the parameter
α = 0.5. For ML, we set the number of neighbors k = c+1.
For GLLE, we select λ from {0.01, 0.1, ..., 100} and set the
number of neighbors k to c + 1. For LESC, λ1 and λ2 are
selected from {0.0001, 0.1, ..., 10}. For LEVI, MLPs with

2http://palm.seu.edu.cn/xgeng/LDL/index.htm
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two hidden layers and softplus activation functions are uti-
lized, and the results are reported after 150 training epochs.
For LIB, we select α and β from {0.001, 0.01, ..., 10}, and
the fully connected networks with 3 layers and sigmoid ac-
tivation function are leveraged in the proposed method.

To evaluate the recovery performance, we adopt 6 met-
rics, namely Chebyshev, Canberra, Clark, Kullback-Leibler,
Cosine, and Intersection [8, 24, 28]. Given the ground-truth
label distribution d and the recovered label distribution d̂,
the first four metrics and the rest two metrics respectively
measure the distance and similarity between d and d̂:

DChebyshev(d, d̂) = maxi

∣∣∣dyi − d̂yi

∣∣∣ , (29)

DCanberra(d, d̂) =

c∑
i=1

∣∣∣dyi − d̂yi

∣∣∣
dyi + d̂yi

, (30)

DClark(d, d̂) =

√√√√√√ c∑
i=1

(
dyi − d̂yi

)2
(
dyi + d̂yi

)2 , (31)

DKullback−Leibler(d, d̂) =

c∑
i=1

dyi ln
dyi

d̂yi

, (32)

SCosine(d, d̂) =

c∑
i=1

dyi d̂yi√
c∑

i=1

(dyi)
2

√
c∑

i=1

(
d̂yi

)2 , (33)

SIntersection(d, d̂) =

c∑
i=1

min
(
dyi , d̂yi

)
. (34)

The smaller values of distance metric and similarity metric
indicate the better and the worse results, respectively.

4.2. Visualization Results on Toy Dataset

The recovery results on the Artificial dataset are vividly
presented in Fig. 3, which shows the three-dimensional la-
bel distributions by the RGB color channels separately. The
more similar the color patterns of the recovered results and
the ground-truth are, the better the recovery results are.

It can be seen that FCM, GLLE, LESC, LEVI, and LIB
can obtain the similar color pattern, while KM, LP, and ML
are incapable to obtain the promising recovery performance
on Artificial dataset. Regarding the visualization results of
FCM, GLLE, LESC, LEVI, and LIB, the color pattern that
is most close to the ground-truth is achieved by our LIB.

4.3. Comparison Results on Real-world Datasets

We provide the detailed comparison results on 13 real-
world datasets in Table 2. Overall, LIB has the competitive
recovery performance. We have the following observations:
1) Compared with FCM and KM, which belong to the cat-
egory of algorithm adaption, remarkable improvements can

(a) FCM (b) KM (c) LP

(d) ML (e) GLLE (f) LESC

(g) LEVI (h) LIB (i) Ground-truth

Figure 3. Visualization results of the label distributions recovered
by different methods ((a)-(h)) and the ground-truth ((i)) on Artifi-
cial dataset. (Best viewed in color.)

be achieved by our method; 2) Compared with the methods
belonging to the category of specialized algorithm, LIB can
also obtain better recovery results in most cases. For exam-
ple, LIB obtains the best recovery results on Movie datasets
in all metrics. Moreover, although LESC can obtain slightly
favorable results in some cases, the corresponding recov-
ery results of LIB are also promising and competitive. The
underlying reason may be that LESC further considers the
sample correlations during the recovery process; 3) The re-
covery performance of all methods can be roughly ranked
as LIB>LESC≈LEVI>GLLE>LP≈FCM>ML>KM. We
can conclude that LIB is suitable for the LE problem. The
underlying reason for the significant improvement is that the
label relevant information, including the information about
label assignments and the information about label gaps, can
be effectively investigated by LIB.

4.4. Analysis and Discussion of LIB

We analyze the parameter sensitivity of LIB firstly, and
then we conduct the ablation studies as well.

4.4.1 Sensitivity of LIB

In the proposed method, we choose the values of α and β
from {0.001, 0.01, ..., 10}. To show the parameter sensitiv-
ity of LIB, we conduct experiments on SBU-3DFE datasets
with different values of α and β. Regarding the dimension
of the learned latent representation, we set it to 256 for all
datasets. The experimental results in metrics of Chebyshev
distance, Cosine coefficient, and Intersection similarity are
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Metric Chebyshev ↓ Clark ↓
Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.230 0.234 0.161 0.164 0.122 0.121 0.110 0.107 0.859 1.766 0.913 1.140 0.569 0.564 0.551 0.517
SUB-3DFE 0.135 0.238 0.123 0.233 0.126 0.122 0.095 0.094 0.482 1.907 0.580 1.848 0.391 0.378 0.303 0.297

SJAFFE 0.132 0.214 0.107 0.186 0.087 0.069 0.075 0.071 0.522 1.874 0.502 1.519 0.377 0.276 0.290 0.262
Yeast-alpha 0.044 0.063 0.040 0.057 0.020 0.015 0.012 0.017 0.821 3.153 1.185 3.088 0.337 0.253 0.319 0.275

Yeast-cdc 0.051 0.076 0.042 0.071 0.022 0.019 0.016 0.017 0.739 2.885 1.014 2.825 0.306 0.251 0.323 0.242
Yeast-cold 0.141 0.252 0.137 0.242 0.066 0.056 0.082 0.054 0.433 1.472 0.503 1.440 0.176 0.152 0.269 0.146
Yeast-diau 0.124 0.152 0.099 0.148 0.053 0.042 0.044 0.049 0.838 1.886 0.788 1.844 0.296 0.224 0.295 0.273

Yeast-dtt 0.097 0.257 0.128 0.244 0.052 0.043 0.084 0.034 0.329 1.477 0.499 1.446 0.143 0.119 0.294 0.092
Yeast-elu 0.052 0.078 0.044 0.072 0.023 0.019 0.017 0.018 0.579 2.768 0.973 2.711 0.295 0.241 0.317 0.224

Yeast-heat 0.169 0.175 0.086 0.165 0.049 0.046 0.052 0.039 0.580 1.802 0.568 1.764 0.213 0.199 0.288 0.165
Yeast-spo 0.130 0.175 0.090 0.171 0.062 0.060 0.055 0.053 0.520 1.811 0.558 1.768 0.266 0.258 0.277 0.224

Yeast-spo5 0.162 0.277 0.114 0.273 0.099 0.092 0.091 0.076 0.395 1.059 0.274 1.036 0.197 0.185 0.209 0.158
Yeast-sopem 0.233 0.408 0.163 0.403 0.088 0.087 0.115 0.069 0.401 1.028 0.272 1.004 0.132 0.129 0.182 0.104

Avg.Rank 6.077 8.000 5.000 6.846 3.769 2.308 2.463 1.538 5.385 8.000 5.615 7.000 3.385 1.923 3.462 1.231

Metric Canberra ↓ Kullback-Leibler ↓
Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 1.664 3.444 1.720 1.934 1.045 1.034 0.974 0.920 0.381 0.452 0.177 0.218 0.123 0.120 0.082 0.077
SUB-3DFE 1.020 4.121 1.245 4.001 0.820 0.799 0.637 0.611 0.094 0.603 0.105 0.565 0.069 0.064 0.042 0.041

SJAFFE 1.081 4.010 1.064 3.138 0.781 0.561 0.600 0.531 0.107 0.558 0.077 0.391 0.050 0.029 0.032 0.027
Yeast-alpha 2.883 11.809 4.544 11.603 1.134 0.846 1.249 0.893 0.100 0.630 0.121 0.602 0.013 0.008 0.011 0.009

Yeast-cdc 2.415 9.875 3.644 9.695 0.959 0.765 1,148 0.747 0.091 0.630 0.111 0.601 0.014 0.010 0.014 0.008
Yeast-cold 0.734 2.566 0.924 2.519 0.305 0.263 0.501 0.250 0.113 0.586 0.103 0.556 0.019 0.015 0.035 0.012
Yeast-diau 1.895 4.261 1.748 4.180 0.671 0.480 0.689 0.621 0.159 0.538 0.127 0.509 0.027 0.017 0.023 0.022

Yeast-dtt 0.501 2.594 0.941 2.549 0.248 0.206 0.562 0.158 0.065 0.617 0.103 0.586 0.013 0.010 0.042 0.005
Yeast-elu 1.689 9.110 3.381 8.949 0.902 0.727 1.093 0.670 0.059 0.617 0.109 0.589 0.013 0.009 0.014 0.008

Yeast-heat 1.157 3.849 1.293 3.779 0.430 0.401 0.646 0.327 0.147 0.586 0.089 0.556 0.017 0.015 0.027 0.011
Yeast-spo 0.998 3.854 1.231 3.772 0.548 0.533 0.605 0.454 0.110 0.562 0.084 0.532 0.029 0.028 0.025 0.019

Yeast-spo5 0.563 1.382 0.401 1.355 0.305 0.284 0.311 0.241 0.123 0.334 0.042 0.317 0.034 0.031 0.028 0.021
Yeast-sopem 0.534 1.253 0.365 1.226 0.183 0.180 0.248 0.144 0.208 0.531 0.067 0.503 0.027 0.027 0.036 0.018

Avg.Rank 5.231 8.000 5.692 7.000 3.231 2.00 3.692 1.154 5.692 8.000 5.385 6.923 3.462 2.154 3.077 1.154

Metric Cosine ↑ Intersection ↑
Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.773 0.880 0.929 0.919 0.936 0.937 0.954 0.955 0.677 0.649 0.778 0.779 0.831 0.833 0.849 0.859
SUB-3DFE 0.912 0.812 0.922 0.815 0.927 0.932 0.956 0.958 0.827 0.579 0.810 0.587 0.850 0.855 0.882 0.887

SJAFFE 0.906 0.827 0.941 0.857 0.958 0.973 0.969 0.974 0.821 0.593 0.837 0.661 0.872 0.905 0.897 0.909
Yeast-alpha 0.922 0.751 0.911 0.756 0.987 0.992 0.989 0.992 0.844 0.532 0.774 0.537 0.938 0.953 0.932 0.951

Yeast-cdc 0.929 0.754 0.916 0.759 0.987 0.991 0.987 0.992 0.847 0.533 0.779 0.538 0.937 0.950 0.925 0.951
Yeast-cold 0.922 0.779 0.925 0.784 0.982 0.986 0.970 0.988 0.833 0.559 0.794 0.565 0.924 0.935 0.881 0.938
Yeast-diau 0.882 0.799 0.915 0.803 0.975 0.985 0.980 0.979 0.760 0.588 0.788 0.593 0.906 0.933 0.908 0.913

Yeast-dtt 0.959 0.759 0.921 0.763 0.988 0.991 0.965 0.995 0.894 0.541 0.786 0.546 0.939 0.949 0.866 0.961
Yeast-elu 0.950 0.758 0.918 0.763 0.987 0.991 0.987 0.992 0.883 0.539 0.782 0.544 0.936 0.949 0.924 0.952

Yeast-heat 0.883 0.779 0.932 0.783 0.984 0.986 0.977 0.990 0.807 0.559 0.805 0.564 0.929 0.934 0.897 0.946
Yeast-spo 0.909 0.800 0.939 0.803 0.974 0.975 0.978 0.982 0.836 0.575 0.819 0.580 0.909 0.912 0.903 0.925

Yeast-spo5 0.922 0.882 0.969 0.884 0.971 0.974 0.979 0.983 0.838 0.724 0.886 0.727 0.901 0.908 0.909 0.924
Yeast-sopem 0.878 0.812 0.950 0.815 0.978 0.978 0.972 0.985 0.767 0.592 0.837 0.597 0.912 0.913 0.885 0.931

Avg.Rank 5.846 7.923 5.308 6.923 3.462 2.154 2.923 1.231 5.385 8.000 5.692 6.846 3.385 2.007 3.462 1.154

Table 2. Recovery results on 13 real-world datasets. ↓ indicates that “the smaller the better” and ↑ means that “the larger the better”. The
average ranks (Avg.Rank) on all datasets are also reported for all methods. We highlight the best recovery results.

provided in Fig. 4. It can be observed that LIB method can
get promising recovery results and is robust with respect to
different values of α and β in a large range.

4.4.2 Ablation studies of LIB

The ablation studies are conducted to further verify the ef-
fectiveness of introducing the label information bottleneck
framework for LE. In the proposed objective Eq. (9), Las

and Lgap explore the label assignments information and la-
bel gaps information during the recovery process. As can be
observed from Eq. (14) and Eq. (15), only the latent repre-
sentation H can be learned if we employLas merely during
the recovery process. Consequently, considering the goal of
LE, we compare the proposed LIB with the method termed
LIBgap, which only employs Lgap to achieve the recovery
results. In other words, LIBgap investigates the label gaps
information in the case of not considering the label assign-
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(a) Chebyshev ↓ (b) Cosine ↑ (c) Intersection ↑

Figure 4. The recovery results in metrics of (a) Chebyshev distance, (b) Cosine coefficient, and (c) Intersection similarity with different
values of α and β. ↓ indicates that “the smaller the better” and ↑ means that “the larger the better”. The experimental results demonstrate
that LIB is robust with respect to different values of λ and β. (Best viewed in color.)

Metric Chebyshev ↓ Clark ↓ Canberra ↓ Kullback-Leibler ↓ Cosine ↑ Intersection ↑
Method LIBgap LIB LIBgap LIB LIBgap LIB LIBgap LIB LIBgap LIB LIBgap LIB

Movie 0.120 0.107 0.563 0.517 1.029 0.920 0.099 0.077 0.938 0.955 0.834 0.859
SUB-3DFE 0.130 0.094 0.395 0.297 0.849 0.611 0.079 0.041 0.923 0.958 0.846 0.887

SJAFFE 0.113 0.071 0.391 0.262 0.816 0.531 0.066 0.027 0.938 0.973 0.860 0.909
Yeast-alpha 0.018 0.017 0.281 0.275 0.920 0.893 0.010 0.009 0.991 0.992 0.950 0.951

Yeast-cdc 0.019 0.017 0.254 0.242 0.782 0.747 0.009 0.008 0.991 0.992 0.948 0.951
Yeast-cold 0.061 0.017 0.162 0.146 0.280 0.250 0.016 0.012 0.985 0.988 0.930 0.938
Yeast-diau 0.050 0.049 0.288 0.273 0.659 0.621 0.025 0.022 0.977 0.979 0.908 0.913

Yeast-dtt 0.045 0.034 0.124 0.092 0.217 0.158 0.010 0.005 0.991 0.995 0.946 0.961
Yeast-elu 0.019 0.018 0.237 0.224 0.714 0.670 0.009 0.008 0.992 0.992 0.949 0.952

Yeast-heat 0.045 0.039 0.193 0.165 0.388 0.327 0.014 0.011 0.986 0.990 0.936 0.946
Yeast-spo 0.059 0.053 0.253 0.224 0.523 0.454 0.025 0.019 0.976 0.982 0.914 0.925

Yeast-spo5 0.097 0.076 0.193 0.158 0.300 0.241 0.032 0.021 0.971 0.983 0.903 0.924
Yeast-sopem 0.088 0.069 0.130 0.104 0.181 0.144 0.027 0.018 0.977 0.985 0.912 0.931

Table 3. Recovery results of LIBgap and LIB on 13 real-world datasets. ↓ indicates that “the smaller the better” and ↑ means that “the
larger the better”. We highlight the best recovery results.

ments information during the recovery process.
To be specific, LIBgap has with the following objective:

min
θgd,θld

1

2

∑
x

[(l− d̂)T (σ−2
δ|xI)(l− d̂) + log det(σ2

δ|xI)].

(35)
Notably, σδ|x = fθgd(x) and d̂ = fθld(x), which are dif-
ferent from the objective Eq. (27) utilized in LIB. Only the
partial label relevant information, i.e., the information about
the label gaps, is explored in LIBgap.

Table 3 provides the recovery results of LIBgap and LIB.
It can be observed that LIB outperforms LIBgap in all cases.
Compared with LIB, LIBgap merely makes the effort to ex-
plore the label gap information to boost the recovery perfor-
mance, while LIB excavates both the information about the
label assignments and the information about the label gaps
jointly. Therefore, the promising recovery performance can
be achieved by LIB. Furthermore, according to the results
provided in Table 2 and 3, the recovery results of LIBgap

seem to be competitive, which also indicates that the explo-
ration of information about label gaps is beneficial for LE.

5. Conclusion
In this paper, we present a new perspective to deal with

the Label Enhancement (LE) problem and introduce the
novel Label Information Bottleneck (LIB) method. The la-
bel relevant information is decomposed into the informa-
tion about label assignments and the information about label
gaps. Consequently, our method transform the LE problem
into simultaneously learning the latent representation and
modeling the label gaps. Extensive experiments carried on
both the toy dataset and real-world datasets verify the com-
petitiveness of LIB.
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