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Abstract

Fully test-time adaptation aims to adapt the network
model based on sequential analysis of input samples dur-
ing the inference stage to address the cross-domain per-
formance degradation problem of deep neural networks.
We take inspiration from the biological plausibility learn-
ing where the neuron responses are tuned based on a lo-
cal synapse-change procedure and activated by competi-
tive lateral inhibition rules. Based on these feed-forward
learning rules, we design a soft Hebbian learning process
which provides an unsupervised and effective mechanism
for online adaptation. We observe that the performance
of this feed-forward Hebbian learning for fully test-time
adaptation can be significantly improved by incorporating
a feedback neuro-modulation layer. It is able to fine-tune
the neuron responses based on the external feedback gener-
ated by the error back-propagation from the top inference
layers. This leads to our proposed neuro-modulated Heb-
bian learning (NHL) method for fully test-time adaptation.
With the unsupervised feed-forward soft Hebbian learning
being combined with a learned neuro-modulator to capture
feedback from external responses, the source model can be
effectively adapted during the testing process. Experimen-
tal results on benchmark datasets demonstrate that our pro-
posed method can significantly improve the adaptation per-
formance of network models and outperforms existing state-
of-the-art methods.

1. Introduction
Although deep neural networks have achieved great

success in various machine learning tasks, their perfor-
mance tends to degrade significantly when there is data
shift [27, 55] between the training data in the source do-
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main and the testing data in the target domain [40]. To ad-
dress the performance degradation problem, unsupervised
domain adaptation (UDA) [16,38,50] has been proposed to
fine-tune the model parameters with a large amount of un-
labeled testing data in an unsupervised manner. Source-free
UDA methods [33, 35, 67] aim to adapt the network model
without the need to access the source-domain samples.

There are two major categories of source-free UDA
methods. The first category needs to access the whole test
dataset on the target domain to achieve their adaptation per-
formance [35, 67]. Notice that, in many practical scenarios
when we deploy the network model on client devices, the
network model does not have access to the whole dataset in
the target domain since collecting and constructing the test
dataset on the client side is very costly. The second type of
method, called fully test-time adaptation, only needs access
to live streams of test samples [41, 64, 66], which is able to
dynamically adapt the source model on the fly during the
testing process. Existing methods for fully test-time adap-
tation mainly focus on constructing various loss functions
to regulate the inference process and adapt the model based
on error back-propagation. For example, the TENT method
[66] updates the batch normalization module by minimizing
an entropy loss. The TTT method [64] updates the feature
extractor parameters according to a self-supervised loss on
a proxy learning task. The TTT++ method [37] introduces a
feature alignment strategy based on online moment match-
ing.

1.1. Challenges in Fully Test-Time UDA

We recognize that most of the domain variations, such
as changes in the visual scenes and image transformations
or corruptions, are early layers of features in the semantic
hierarchy [66]. They can be effectively captured and mod-
eled by lower layers of the network model. From the per-
spective of machine learning, early representations through
the lower layer play an important role to capture the pos-
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terior distribution of the underlying explanatory factors for
the observed input [1]. For instance, in deep neural network
models, the early layers of the network tend to respond to
corners, edges, or colors. In contrast, deeper layers respond
to more class-specific features [72]. In the corruption test-
time adaptation scenario, the class-specific features are al-
ways the same because the testing datasets are the corrup-
tion of the training domain. However, the early layers of
models can be failed due to corruption.

Therefore, the central challenge in fully test-time UDA
lies in how to learn useful early layer representations of the
test samples without supervision. Motivated by this obser-
vation, we propose to explore neurobiology-inspired Heb-
bian learning for effective early-layer representation learn-
ing and fully test-time adaptation. It has been recognized
that the learning rule of supervised end-to-end deep neural
network training using back-propagation and the learning
rules of the early front-end neural processing in neurobiol-
ogy are unrelated [28]. The responses of neurons in bio-
logical neural networks are tuned by local pre-synaptic and
post-synaptic activity, along with global variables that mea-
sure task performance, rather than the specific activity of
other neurons [69].
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Figure 1. The feature map visualization after the first convolution
layer obtained by different learning methods.

1.2. Hebbian Learning

Hebbian learning aims to learn useful early layer rep-
resentations without supervision based on local synaptic
plasticity rules, which is able to generate early representa-
tions that are as good as those learned by end-to-end super-
vised training with back-propagation [28, 52]. Drastically
different from the current error back-propagation methods
which require pseudo-labels or loss functions from the top
network layers, Hebbian learning is a pure feed-forward
adaptation process and does not require feedback from the
distant top network layers. The responses of neurons are
tuned based on a local synapse-change procedure and ac-
tivated by competitive lateral inhibition rules [28]. Dur-
ing the learning process, the strength of synapses under-
goes local changes that are proportional to the activity of

the pre-synaptic cell and dependent on the activity of the
post-synaptic cell. It also introduces local lateral inhibition
between neurons within a layer, where the synapses of hid-
den units with strong responses are pushed toward the pat-
terns that drive them, while those with weaker responses are
pushed away from these patterns.

Existing literature has shown that early representa-
tions learned by Hebbian learning are as well as back-
propagation and even more robust in testing [28, 29, 52].
Figure 1 shows the feature maps learned by different meth-
ods. The first row shows the original image. The second
row shows the images in the target domain with significant
image corruption. The third row shows the feature maps
learned by the network model trained in the source domain
for these target-domain images. The fourth row shows the
feature maps learned by our Hebbian learning method. The
last row (“oracle”) shows the feature maps learned with true
labels. We can see that the unsupervised Hebbian learning
is able to generate feature maps which are as good as those
from supervised learning.

1.3. Our Major Idea

In this work, we observe that Hebbian learning, although
provides a new and effective approach for unsupervised
learning of early layer representation of the image, when
directly applied to the network model, is not able to achieve
satisfactory performance in fully test-time adaptation. First,
the original hard decision for competitive learning is not
suitable for fully test-time adaptation. Second, the Hebbian
learning does not have an effective mechanism to consider
external feedback, especially the feedback from the top net-
work layers. We observe that, biologically, the visual pro-
cessing is realized through hierarchical models considering
a bottom-up early representation learning for the sensory
input, and a top-down feedback mechanism based on pre-
dictive coding [15, 56].

Motivated by this, in this work, we propose to develop
a new approach, called neuro-modulated Hebbian learn-
ing (NHL), for fully test-time adaptation. We first incor-
porate a soft decision rule into the feed-forward Hebbian
learning to improve its competitive learning. Second, we
learn a neuro-modulator to capture feedback from exter-
nal responses, which controls which type of feature is con-
solidated and further processed to minimize the predictive
error. During inference, the source model is adapted by
the proposed NHL rule for each mini-batch of testing sam-
ples during the inference process. Experimental results on
benchmark datasets demonstrate that our proposed method
can significantly improve the adaptation performance of
network models and outperforms existing state-of-the-art
methods.
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1.4. Summary of Major Contributions

To summarize, our major contributions include: (1)
we identify that the major challenge in fully test-time
adaptation lies in effective unsupervised learning of early
layer representations, and explore neurobiology-inspired
soft Hebbian learning for effective early layer representa-
tion learning and fully test-time adaptation. (2) We develop
a new neuro-modulated Hebbian learning method which
combines unsupervised feed-forward Hebbian learning of
early layer representation with a learned neuro-modulator
to capture feedback from external responses. We analyze
the optimal property of the proposed NHL algorithm based
on free-energy principles [14, 15]. (3) We evaluate our pro-
posed NHL method on benchmark datasets for fully test-
time adaptation, demonstrating its significant performance
improvement over existing methods.

2. Related Work
In this section, we review existing methods related to our

work including test-time adaptation, source-free UDA, do-
main generalization, and unsupervised Hebbian learning.

2.1. Test-time Adaptation

Test-time adaptation aims to online adapt the trained
model while testing the input samples in the target domain.
Sun et al. [64] proposed Test-time Training (TTT) by op-
timizing a self-supervised loss through a proxy task on the
source before adapting to the target domain. The method
proposed in TTT++ [37] aims to minimize the distribu-
tion shift between the training and testing feature distri-
butions by dynamically matching the moments online. It
should be noted that this method requires specific training
on the source data, which is not available in fully test-time
adaptation scenarios [66]. TENT [66] fine-tuned the scale
and bias parameters of the batch normalization layers using
an entropy minimization loss during the inference process.
DUA [41] adapted the statistics of the batch normalization
layer only on a tiny fraction of test data and augmented a
small batch of target data to adapt the model. Choi et al. [8]
proposed a shift-agnostic weight regularization and an aux-
iliary task for the alignment between the source and target
features. Note that this method requires the source data for
computing the source prototypes. The continual test-time
adaptation methods [39,68] consider online TTA where tar-
get data is continually changing during inference. Instead
of using parameters of the pre-trained model, Boudiaf et
al. [4] only adapted the model’s output by optimizing an
objective function based on Laplacian adjusted maximum-
likelihood estimation. Besides image classification, test-
time adaptation has been successfully applied in various
machine learning tasks, such as scene deblurring [7], super-
resolution [62], human pose estimation [34], image seg-

mentation [21], object detection [41], etc.

2.2. Source-free Unsupervised Domain Adaptation

Recently, source-free UDA has emerged as an important
research topic. It aims to adapt the source models to un-
labeled target domains without accessing the data from the
source domain. Among them, SHOT [35] proposed to learn
target-specific features based on an information maximiza-
tion criteria and pseudo-label prediction. 3C-GAN [33]
generated target-style images by training a collaborative
class conditional GAN module and using a clustering-
based regularization scheme. G-SFDA [70] proposed a
domain-specific attention mechanism that selectively ac-
tivates different feature channels for different domains.
CPGA [54] proposed to generate avatar prototypes instead
of images via contrastive learning. HCL [22] proposed a so-
lution for addressing the lack of source data by introducing
both instance-level and category-level historical contrastive
learning. DIPE [67] focuses on exploring the domain-
invariant parameters of the model, rather than trying to learn
domain-invariant representations. SFDA-DE [10] aligned
domains by estimating source class-conditioned feature dis-
tribution and minimizing a contrastive adaptation loss func-
tion. Existing source-free methods are offline. They need
to analyze the whole test dataset and update the model for a
number of adaptation epochs.

2.3. Domain Generalization

Domain generalization aims to train a model only on
the source data that are generalizable to unseen target do-
mains [74]. Domain generalization methods typically aim
to learn domain-invariant representations by aligning the
distributions of the source domains [43, 44, 73]. Meth-
ods based on data augmentation [53, 65] for regularizing
the training process have been studied. Ensemble learning
methods [11, 61] generate an ensemble of different model
weights from different partitions of the training data. Re-
cently, inference-time optimization without training the net-
work model has been studied for domain generalization.
Pandey et al. [49] used a generative model to project the
target data onto the source-feature manifold with labels be-
ing preserved by solving an optimization problem during
the inference stage. Iwasawa et al. [25] proposed a back-
propagation-free generalization method by computing dis-
tance to a pseudo-prototype representation.

2.4. Unsupervised Hebbian Learning

In traditional end-to-end training, back-propagation is
usually used to update the weights of deep neural net-
works. It has been recognized that the learning rule of
supervised end-to-end deep neural network training using
back-propagation is much different from the learning rules
of the early front-end neural processing in neurobiology. In
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addition, supervised training of deep neural networks with
back-propagation requires a large amount of labeled sam-
ples [30]. The tuning of neuron responses in biological neu-
ral networks is achieved through a physically local synapse-
change procedure. The superficial cerebral cortex exhibits
a common connectivity pattern in which neurons are acti-
vated through competition via lateral inhibition [2,12]. This
competition leads to the suppression of weakly activated
neurons and the amplification of strongly activated ones,
a phenomenon known as competitive learning or “winner-
takes-all (WTA)” learning [57, 59]. Motivated by Hebb’s
idea [19], several biological plausibility learning rules have
been proposed, where changes of the synapse strength de-
pend only on the activities of the pre-synaptic and post-
synaptic neurons. The Oja’s rule [47] proposed a linear neu-
ron model with constrained Hebbian synaptic modification
and derived a new unconstrained learning method. Krotov
et al. [28] proposed a family of biologically plausible learn-
ing rules that enable the learning of early representations
that are comparable to those achieved by end-to-end super-
vised training with back-propagation. Pogodin et al. [52]
presents a family of learning rules which use pre- and post-
synaptic firing rates and a global teaching signal. They per-
form almost the same as the back-propagation method.

3. Method
In this section, we present our method of neuro-

modulated Hebbian learning for fully test-time adaptation.

3.1. Problem Formulation

Suppose that a model qθs(y|Xs) with parameters θs has
been successfully trained on the source data {Xs} with la-
bels {Ys} where the true distribution is ps(y|Xs). It con-
sists of a feature extractor F and a classifier C. During
fully test-time adaptation, we are given the target data {Xt}
with unknown labels {Yt}. Our goal is to adapt the trained
model qθs in an unsupervised manner during testing to ap-
proximate the true target distribution pt(y|Xt). Given a se-
quence of input sample batches {B1, B2, ..., Bn}, the i-th
adaptation of the network model can only rely on the i-th
batch of test samples Bi.

We consider this transfer learning on a new target do-
main as an active inference process. The pre-trained
model qθs(y|Xs) is considered as a prior. Thus, predict-
ing the labels for target samples becomes a Bayesian pos-
terior qθ1(y|B1) for the first batch, given the prior model
qθs(y|Xs). After the first adaptation batch, the prior model
is updated to qθ1(y|B1). This Bayesian inference process
is repeated for all subsequent batches and produces a final
posterior estimation

qθ,t(y|Xt) = qθn(y|Bn), (1)

given the prior model qθn−1
(y|Bn−1).

Neural Network Classes

cat

bird

airplane

truck

Testing Samples
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Layer
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Hebbian Learning

Lateral Inhibition
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Exponential Activation
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Figure 2. An overview of the proposed NHL method. During
inference, the first convolution layer of the source model is fine-
tuned by the Hebbian learning rule and the neuromodulator is fur-
ther fine-tuned by the entropy loss before making a prediction
given each mini-batch testing sample. The lock symbol means
the classifier is fixed in the test-time adaptation process.

3.2. Overview of Our NHL Method

As illustrated in Figure 2, our proposed neuro-modulated
Hebbian learning consists of two major components: the
feed-forward soft Hebbian learning layer and the neuro-
modulator. The soft Hebbian learning layer aims to learn
useful early layer representations without supervision based
on local synaptic plasticity and soft competitive learning
rules. It is able to generate early representations which are
as good as those learned by end-to-end supervised training
with labeled samples and back-propagation. During our ex-
periments, we find that this soft Hebbian learning layer can
significantly improve the performance of the network model
in the target domain. However, we recognize that the feed-
forward Hebbian learning only is not able to achieve com-
petitive performance as the current state-of-the-art methods
for fully test-time adaptation. We find that it lacks the ca-
pability to effectively respond to external stimulus, specifi-
cally the feedback from the network output layer.

To address this issue, we propose to design a neuro-
modulator layer, an intermediate layer or an interface be-
tween the soft Hebbian learning layer and the classifier
module of the network. This neuro-modulator layer is up-
dated using back-propagation with the entropy loss being
evaluated at the network output. It serves as the bridge be-
tween two different learning approaches: the feed-forward
Hebbian learning and the original error back-propagation.
From the ablation studies summarized in Table 5, we can
see that both algorithm components, the feed-forward soft
Hebbian learning, and the neuro-modulator are contributing
significantly to the overall performance improvement.

The proposed NHL method can be also formulated by
the free-energy principle in cognitive science [14,15,56]. A
hierarchical predictive coding model was proposed by Rao
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and Ballard [56] to learn a hierarchical internal model for
human perception by maximizing the posterior probability
of generating the observed data. This can be realized by a
concurrent process of prediction through a bottom-up feed-
forward generation process (such as our Hebbian learning
layer) combined with a top-down feedback-based optimiza-
tion process (such as our neuro-modulator). Specifically,
given the sensory input x, assume x is generated by envi-
ronmental causes ϑ, denoted as p(x) = p(x, ϑ). The free-
energy principle states that the brain encodes the recogni-
tion density over sensory causes [14]. Mathematically, it
optimizes a generative probabilistic mixture as q1(x) :=
q(x, ϑ). It has been demonstrated that this process can be
achieved by a Hebbian-like learning approach [42, 45].

On the other hand, to approximate the true distribution
pt(y|Xt) by a posterior approximation q2(y) := qθ,t(y|Xt),
one can consider the similarity between these two distribu-
tions measured by the following Kullback-Leibler (KL) di-
vergence

KL[q2(y)||pt(y|Xt)] =

∫
q2(y) log

q2(y)

pt(y|Xt)
dy. (2)

According to the analysis in Bogacz [3], this minimization
of KL-divergence can be converted to minimization of the
free-energy F defined as:

F =

∫
q2(y) log

q2(y)

pt(Xt, y)
dy. (3)

The maximization of the free-energy F can be solved by an
active inference process if we consider the adaptation for
each batch of test samples as a decision-making step [13].
This leads to a feedback-based optimization, just like the
neuro-modulation as proposed in our NHL method. In the
following sections, we explain the two major components
of our NHL method in more detail.

3.3. Feed-Forward Soft Hebbian Learning

As discussed above, the early feed-forward layer aims to
learn useful layer representations of the input without any
supervision. An approximate solution to this problem can
be reduced to finding the first principal component of the
input data [47], known as Oja’s rule and its variations. The
Oja’s rule is itself a variation of the Hebbian rule, plus a nor-
malization condition. In Oja’s rule, the plasticity defined for
a synaptic weight wik which connects a pre-synaptic neuron
i with input xi to a post-synaptic neuron k with activation
yk is:

∆wik = ηyk(xi − ykwik). (4)

These weights are updated based on a plasticity rule [28].
We recognize that this process lacks the ability to detect
different features of the data by different hidden units in the
network. To address this problem, we propose to identify a

good set of weights, by considering a generative model to
optimize the distribution similarity to the input data.

Specifically, we assume that the target-domain input
samples {Xt} are generated by hidden causes ϑ with dis-
tribution pt(x). We define an approximation to pt(x) by
q(x|w) conditioned on the weights w. Moreover, we use a
mixture of exponential functions to define the probability:

q(x|wk) = exp(< wk, x >)/N, (5)

where wk is the weight vector corresponds to the post-
synaptic neuron k, and N is a normalization factor to ensure
that q is a probabilistic measure. In the above generative
model, the objective function is given by the KL divergence
KL[pt(x)|q(x|w)]. It can be shown that the optimal param-
eter vector that optimizes the KL-divergence is proportional
to the mean of the input distribution [45].

On the other hand, (5) corresponds to neural interpre-
tation as the activation function with normalized weights
wk/R, where R is the norm of the weight vector wk. For
the network layer with K neurons, we define the output of
the k-th neuron to be:

yk = e
uk
τ /

(
K∑
i=1

e
ui
τ

)
, (6)

where uk is the k-th neuron’s weighted input, i.e. uk =∑
i wik · xi. τ is a temperature-scaling hyper-parameter.

This leads to a new soft Hebbian plasticity rule:

∆wik = ηyk(Rxi − ukwik), (7)

where η is the learning rate. It can be shown that, using
the plasticity rule in (7) to update the weights, they can con-
verge to the equilibrium which lies in the sphere of radius R.
The derivative of the weight vector norm can be expressed
as:

d ∥ wk ∥
dt

= 2wk
dwk

dt
= 2wkηyk(Rx− ukwk)

= 2ηwkyk(Rx−wkxwk) = 2ηukyk(R− ∥ wk ∥).
(8)

With this, we see that the norm of the weight vector conver-
gences to a sphere of radius R. This is because the norm
of the weights decreases if ∥wk∥ > R and increases if
∥wk∥ < R. More details are provided in the Supplemental
Materials.

3.4. The Neuro-Modulation Layer

From the ablation studies in Section 4, we can see that
the above soft Hebbian learning alone does not automat-
ically lead to a perfect posterior estimation for pt(y|Xt).
It cannot achieve the state-of-the-art performance for fully
test-time adaptation. This is because it does not have an ef-
fective mechanism to consider external feedback, especially
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the feedback from the top network layers. Our proposed so-
lution is to incorporate one or more modulating layers to
steer the updates of weights to the desired outcome [17,36].
This so-called neuro-modulator has been explored in neuro-
science research [5, 48, 51, 63]. Recent research [32] shows
that the level of neuro-modulation may change the process
of synaptic consolidation, thus ultimately controlling which
type of information is consolidated in the upper neural net-
work. Unlike the above neuromodulator-based learning,
where the modulator factor is embedded inside the Heb-
bian rule, we consider such a neuromodulation process in
a disentangled way derived from the free-energy principle.
It serves as an interface between the feed-forward Hebbian
layer and the top decision network.

As defined in (3), the problem of minimizing the KL-
divergence for q2(y) and its true posterior pt(y|Xt) can be
formulated based on the free-energy principle:

KL[q2(y)||pt(y|Xt)] = F + logPt(Xt), (9)

where Pt(Xt) :=
∫
q2(y)pt(Xt)dy = pt(Xt) is the nor-

malization term. Note that this term does not depend on
q2(y). Therefore, minimizing the KL-divergence is reduced
to minimizing F . To this end, given a batch B of data in the
target domain, we rewrite (use pt(y,B) = pt(B|y)pt(y))
and decompose the free-energy FB for current batch into
the following two items:

FB = KL[q2(y|B)||pt(y)]−
∫
y

q2(y|B) log pt(B|y)dy.

(10)
The first term in (10) is already minimized through soft
Hebbian learning, while minimizing the second term re-
quires the likelihood distribution pt(B|y). Since pt(B|y) =
pt(y|B)pt(B)/pt(y) and q2(y|B) is considered as an ap-
proximation of pt(y|B), we minimize the entropy of y given
the current batch B in a discrete way as:

argmin
w

H(y|B) = argmax
w

∑
q2(y|B) log q2(y|B),

(11)
where w are the weights in the layer implementing the
neuro-modulator. As in existing deep neural network train-
ing, we can use gradient descent to optimize these weights.

4. Experiments
In this section, we conduct experiments on multiple test-

time adaptation benchmark datasets to evaluate the perfor-
mance of our proposed NHL method.

4.1. Benchmark Datasets

We evaluate our method among the following popular
benchmark datasets for test-time adaptation. (1) CIFAR-
10/100C. We choose CIFAR-10/100 [26] with 10/100

classes, a source training set of 50, 000, and a target test-
ing set CIFAR-10/100C [20] of 10, 000 for small-size im-
age experiments at an accessible scale. (2) ImageNet-
C. We choose the ImageNet [58] with 1, 000 classes, a
source training set of 1.2 million, and a validation set
of 50, 000 for large-size image experiments. It should
be noted that we use a fixed target testing subset of
the validation set with 5000 images on which all mod-
els are evaluated following the RobustBench protocol [9].
(3) SVHN→MNIST/MNIST-M/USPS. Following TENT
for domain adaptation, we choose a SVHN [46] source
model and transfer it to MNIST [31] (10, 000 test sam-
ples), MNIST-M [16] (10, 000 test samples) and USPS [23]
(2, 007 test samples), respectively.

4.2. Comparison Methods

We compare our method against the following fully test-
time adaptation methods: (1) Source: the baseline model
is trained only on the source data without any fine-tuning
during the test process. (2) TTT [64]: it adapts the fea-
ture extractor by optimizing a self-supervised loss through
a proxy task. However, it requires training the same proxy
task on the source domain. (3) NORM [60]: this test-time
normalization method updates the batch normalization [24]
statistics using the mini-batch samples during the test pro-
cess. (4) TENT [66]: it fine-tunes scale and bias parame-
ters of the batch normalization layers using an entropy min-
imization loss during inference. (5) DUA [41]: it adapts
the statistics of the batch normalization layer only on a tiny
fraction of test data and augments a small batch of target
data to adapt the model.

4.3. Implementation Details

Following the official implementations of TTT1, TENT2

and DUA3, we use the ResNet-26 [18], Wide-ResNet-28-
10 [71], and Wide-ResNet-40-2 [71] as the backbone net-
works for the CIFAR-10C dataset. We use the Wide-
ResNet-40-2 network for the CIFAR-100C dataset. For the
ImageNet-C dataset, we use the ResNet-18 [18] backbone
network. We use the pre-trained model weights from the of-
ficial implementations of TENT or DUA for all backbones
based on the RobustBench protocol [9]. For the digit recog-
nition transfer tasks, we use the pre-trained model weights
of SVHN from the pytorch-playground [6]. For fair perfor-
mance comparisons, all methods in each experimental con-
dition share the same architecture and the same pre-trained
model parameters. The batch size is set to 128. More im-
plementation details are provided in the Supplemental Ma-
terials.

1TTT: https://github.com/yueatsprograms/ttt cifar release
2TENT: https://github.com/DequanWang/tent
3DUA: https://github.com/jmiemirza/DUA
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Table 1. Top-1 Classification Error (%) for each corruption in CIFAR-10C at the highest severity (Level 5). For TTT, TENT, and DUA, we
use the ResNet-26 (top), WRN-28-10 (middle), and WRN-40-2 (bottom) from their official implementation. The smallest error is shown
in bold.

Methods gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Source 67.7 63.1 69.9 55.3 56.6 42.2 50.1 31.6 46.3 39.1 17.1 74.6 34.2 57.9 31.7 49.2
TTT [64] 45.6 41.8 50.0 21.8 46.1 23.0 23.9 29.9 30.0 25.1 12.2 23.9 22.6 47.2 27.2 31.4
NORM [60] 44.6 43.7 49.1 29.4 45.2 26.2 26.9 25.8 27.9 23.8 18.3 34.3 29.3 37.0 32.5 32.9
TENT [66] 39.4 38.8 47.9 19.9 45.0 23.2 20.6 28.1 32.1 24.5 16.1 26.7 32.4 30.6 35.5 30.7
DUA [41] 34.9 32.6 42.2 18.7 40.2 24.0 18.4 23.9 24.0 20.9 12.3 27.1 27.2 26.2 28.7 26.8
Ours 33.2 30.6 38.2 17.7 41.2 20.8 17.4 24.0 27.2 20.4 13.5 21.1 28.4 23.7 28.9 25.8

Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
NORM [60] 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4
TENT [66] 24.8 23.5 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2 18.6
DUA [41] 27.4 24.6 35.3 13.1 34.9 14.6 11.6 16.8 17.5 13.1 7.6 14.1 22.7 19.3 26.2 19.9
Ours 23.6 21.4 30.9 11.0 31.1 13.0 10.9 14.2 15.5 13.0 8.0 10.3 21.8 16.7 22.4 17.6

Source 28.8 22.9 26.2 9.5 20.6 10.6 9.3 14.2 15.3 17.5 7.6 20.9 14.7 41.3 14.7 18.3
NORM [60] 18.7 16.4 22.3 9.1 22.1 10.5 9.7 13.0 13.2 15.4 7.8 12.0 16.4 15.1 17.6 14.6
TENT [66] 15.7 13.2 18.8 7.9 18.1 9.0 8.0 10.4 10.8 12.4 6.7 10.0 14.0 11.4 14.8 12.1
DUA [41] 15.4 13.4 17.3 8.0 18.0 9.1 7.7 10.8 10.8 12.1 6.6 10.9 13.6 13.0 14.3 12.1
Ours 13.4 12.3 15.0 7.5 16.0 8.7 7.7 9.1 9.6 10.1 6.4 8.2 13.3 9.3 13.3 10.7

Table 2. Top-1 Classification Error (%) for each corruption in CIFAR-100C at the highest severity (Level 5).

Methods gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Source 65.7 60.1 59.1 32.0 51.0 33.6 32.4 41.4 45.2 51.4 31.6 55.5 40.3 59.7 42.4 46.7
NORM [60] 44.7 44.2 47.4 32.4 46.4 32.9 33.0 39.0 38.4 45.3 30.2 36.6 40.6 37.2 44.2 39.5
TENT [66] 40.3 39.9 41.8 29.8 42.3 31.0 30.0 34.5 35.2 39.5 28.0 33.9 38.4 33.4 41.4 36.0
DUA [41] 42.2 40.9 41.0 30.5 44.8 32.2 29.9 38.9 37.2 43.6 29.5 39.2 39.0 35.3 41.2 37.6
Ours 38.4 37.1 36.2 28.4 41.0 29.3 29.7 32.2 33.1 36.1 26.4 30.9 36.2 30.8 38.3 33.6

Table 3. Top-1 Classification Error (%) for each corruption in ImageNet-C at the highest severity (Level 5).

Methods gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Source 98.9 97.6 99.2 93.3 89.0 90.2 82.3 87.9 92.0 99.5 75.9 99.5 65.3 60.3 54.0 85.7
TTT [64] 75.5 76.8 81.9 89.6 82.8 79.1 71.3 83.6 81.0 98.3 59.0 99.0 54.7 53.2 49.6 75.7
NORM [60] 60.2 60.7 59.8 76.6 68.7 67.4 64.2 64.6 66.2 74.7 57.0 88.8 55.8 53.0 52.3 64.7
TENT [66] 59.4 59.6 58.7 72.5 66.1 64.9 62.1 62.2 64.9 68.6 55.2 97.9 54.5 52.1 51.7 62.7
DUA [41] 71.9 72.6 72.4 90.2 80.8 83.1 74.7 76.4 77.9 87.3 62.6 99.3 60.8 58.4 52.6 74.7
Ours 56.7 56.7 56.6 73.3 65.7 61.0 62.0 58.6 63.3 63.9 53.1 77.5 54.0 52.0 51.5 60.4

4.4. Performance Results

The classification errors in the highest severity level cor-
ruption test datasets for test-time adaptation are reported
in Tables 1, 2 and 3, with results of comparison meth-
ods directly cited from their original papers. Table 1 com-
pares the classification error of our proposed method against
recent test-time adaptation methods on the CIFAR-10C
dataset. Our method performs better than other baselines
with the three backbones including ResNet-26, WRN-28-
10, and WRN-40-2, indicating the effectiveness of the pro-
posed test-time adaptation method. Table 2 shows the per-
formance comparison results on the CIFAR-100C dataset.
Very encouraging results are also obtained on the large-size
complicated ImageNet-C dataset, as shown in Table 3. The

mean adaptation error of the full test dataset on Gaussian
noise of CIFAR-10C in the different adaptation stages is
shown in Figure 3. We can see that our method outperforms
the NORM and TENT methods after the 5-th batch test-time
adaptation. This implies our method can reduce error faster
given few testing samples. Results for lower severity levels
of corruption are provided in Supplemental Materials.

Results for digit recognition from the SVHN to MNIST,
MNIST-M, and USPS datasets are also reported in Table 4.
All experiments use the same open-source source model.
Note that the result for the TENT method is reproduced
here since the pre-trained model for the TENT method was
not provided and explained in its original paper. We can
see that our method achieves the lowest average error when
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compared to other test-time adaptation methods. The per-
formance improvement is quite impressive.

NORM
TENT
Ours

Batch Index

Er
ro

r 
(%

)

Figure 3. The mean adaptation error of the full test dataset on
Gaussian noise of CIFAR-10C in the different adaptation stages.

Table 4. Top-1 Classification Error (%) for test-time adaptation on
digit recognition. The asterisk (∗) means the implementation with
a pytorch-playground [6] pre-trained source model by us.

Methods MNIST MNIST-M USPS Avg.

NORM∗ [60] 39.6 52.1 41.4 44.4
TENT∗ [66] 45.8 56.2 48.3 50.1
Ours 31.2 47.9 32.6 37.2

4.5. Further Performance Analysis

4.5.1 Ablation Study

We conduct the ablation study with test-time adaptation
tasks on the ImageNet-C dataset to investigate the contribu-
tion of our method. Hebbian learning alone does not auto-
matically lead to a perfect posterior estimation for pt(y|Xt)
due to the lack of global information communication. From
Table 5, we can see that feed-forward soft Hebbian Learn-
ing plays a significant effect and fine-tuning the feedback
neuro-modulator of Block 1/2 also improves the perfor-
mance. The average error is increased when expanding the
neuro-modulator to more blocks. It is because optimizing
more parameters with a mini-batch of testing samples is be-
coming more challenging.
Table 5. Ablation study on ImageNet-C based on ResNet-18 in-
cluding 4 Blocks at the highest severity (Level 5).

Methods Avg. Error

Source (without adaptation) 85.7
BP Conv1 85.0
Hebbian Conv1 67.2
Hebbian Conv1 + Neuromodulator (Block 1) 60.5
Hebbian Conv1 + Neuromodulator (Block 1/2) 60.4
Hebbian Conv1 + Neuromodulator (Block 1/2/3) 61.2
Hebbian Conv1 + Neuromodulator (Block 1/2/3/4) 64.8

4.5.2 Feature Visualization

Figure 4 compares the feature distributions on corrupted
data obtained by different adaptation methods, including

the source model with no adaptation, the TENT method,
and our method. We also include the feature distribution for
the supervised learning with the labeled sample, denoted by
“Oracle”. We can see that our method is able to learn fea-
tures that are close to those obtained by supervised learning.

(a) Source (b) TENT

(c) Ours (d) Oracle

Figure 4. Density plots of test-time adapted features distribution
on CIFAR-10-C with Gaussian noise (front) and reference features
without corruption (back with yellow color). Each horizontal axis
corresponds to one channel. The height of each ridge indicates the
number of features that take the same value.

5. Further Discussions

Hebbian Learning by competition through lateral inhi-
bition is a feed-forward process that has no gradient. If
combining Hebbian Learning with back-propagation, it is
limited to propagate the gradient through Hebbian layers to
earlier gradient-based layers during training. Therefore, the
Hebbian layers can only be designed in the early layers of
models without back-propagation and gradient. In addition,
although the Hebbian learning rule is commonly used for
long-term reinforcement, the Hebb principle does not cover
all forms of long-term synaptic plasticity.

6. Conclusion

In this work, we take inspiration from the biological neu-
romodulation process to construct a novel neuro-modulated
Hebbian Learning (NHL) framework. With the unsuper-
vised feed-forward soft Hebbian learning being combined
with a learned neuro-modulator to capture feedback from
external responses, the source model can be effectively
adapted during the testing process. Experimental results on
benchmark datasets demonstrate that our proposed method
can significantly reduce the testing error for image classifi-
cation with corruption, and reach new state-of-the-art per-
formance.
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